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Abstract The object of the present paper is to study (k, u)—contact space forms satisfy-
ing certain curvature tensor. We also study &E— M- prOJectlvely flat, M —projectively flat and

(k, u)—contact space forms satisfying F.S = 0and Q. F = 0. Also we study ¢ — M —projectively
semi-symmetric (k, ) —contact space form.

1 Introduction

The notion of (k, 1)— contact metric manifold was introduced by Blair, Koufogiorgos and Pa-
pantoniou [4]. A class of contact metric manifolds with contact metric structure (¢, &, n,g) in
which the curvature tensor R satisfies the condition

R(X,Y)¢ = (kI + ph)(n(Y)X —n(X)Y),

forall X,Y € TM is called (k, u)— contact metric manifolds.

The sectional curvature K (X, X ) of a plane section spanned by a unit vector X orthogonal
to £ is called a ¢p—sectional curvature. If the (k, ) —contact metric manifold M has constant
¢—sectional curvature c, then it is called a (k, u)— contact space form and is denoted by M (c).
(k, u)— contact space forms have been studied by K. Arslan, R. Ezentas, I. Mihai, C. Murthan
and Ozgiir, C.[2] and A. Akbar and A. Sarkar [1] and many others.

The M —projective curvature tensor is important tensor from the differential geometric point
of view. Let M be a (2n + 1)—dimensional Riemannian manifold. M is said to be locally
M —projectively flat for n > 1, if and only if the M —projective curvature tensor F vanishes,
which is defined by

ﬁ(X,Y)Z = R(X, Y)Z*%[S(Y )X -S(X,2)Y
+9(Y7Z)QX_9(X’Z)QY]’ (1.1)

forall XY, Z € TM, where R is the curvature tensor and S is the Ricci tensor.

Let M be an almost contact metric manifold equipped with an almost contact metric structure
(¢,€,m,9). Since at each point p € M the tangent space Tp M can be decomposed into direct
sum TpM = ¢(TpM ) ® {{p}, where {{p} is the 1— dimensional linear subspace of TpM
generated by {¢p}, the conformal curvature tensor C is a map

C:TpM x TpM x TPM—>¢(TPM)@{€P},])E M.

It may be natural to consider the following particular cases:

(1) the projection of the image of C' in ¢(TpM) is zero;

(2) the projection of the image of C'in {{p} is zero;

(3) the projection of the image of C|y (1. ar)x ¢(Tp M) x (T 1) I0 G(Tp M) is zero.

An almost contact metric manifold satisfying the case (1), (2), and (3) is said to be confor-
mally symmetric [18], £—conformally flat [19], and ¢—conformally flat[7] respectively. In an
anlogous way, we define £ — M —projectively flat (k, 1) —contact space forms.
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Definition A contact metric manifold is called M — projectively flat if the manifold satisfies
F(X,Y)¢ = 0 for all vector fields X, Y.

As a generalization of symmetric manifolds Cartan in 1946 introduced the notion of semisym-
metric manifolds. A Riemannian manifold is called semisymmetric if the curvature tensor satis-
fies

R(X,Y).R=0,

where R(X,Y)Z is considered as a field of linear operators acting on R.

A natural extension of such curvature conditions from curvature conditions of pseudosym-
metry type. The condition @) - R = 0 have been studied by Verstraelen et. al. in [15].

In this paper, we characterize (k, 1)— contact space forms @ - P = 0.

Motivated by the above studied, in this paper we characterize a (k, u)—contact space form
satisfying certain curvature conditions on the M —projectively curvature tensor. The paper is
organized as follows:

In section 2, we give necessary details about (k, u)—contact space forms. In section 3,
we study M —Projectively flat (k, u)—contact space forms. Section 4 deals with the study of
(k, u)—contact space forms satisfying F.S = 0.Insection 5, &— M —projectively flat (k, ) —contact
space forms have been studied. Section 6, we study (k, u)—contact space forms satisfying

Q.f = 0. Finally, we study ¢ — M —projectively semisymmetric (k, ) —contact space form.

2 Preliminaries

A (2n + 1)— dimensional differential manifold M is called an almost contact manifold [3] if
there is an almost contact structure (¢, £, n) consisting of a (1, 1) tensor field ¢, a vector field &,
a 1— form 7 satisfying

P*(X) = —X +n(X)&,n(€) = 1,0 = 0,10 =0 2.1)

An almost contact stucture is said to be normal if the induced almost complex structure .J on
the product manifold M x R defined by

I Ty = (0X — fen(x) D) @2)

is integrable where X is tangent to M, t is the coordinate of R and f is a smooth function on
M x R.

The condition for being normal is equivalent to vanishing of the torsion tensor [¢, ¢]+2dn®¢,
where [¢, ¢] is the Nijenhuis tensor of ¢.

Let g be a compatible Riemannian metric with (¢, £, n), that is,

9(X,Y) = g(¢X,0Y) + n(X)n(Y), (2.3)

or equivalently,

forall XY € TM.
An almost contact metric structure becomes a contact metric structure if

9(X,¢Y) = dn(X,Y), (2.5)

forall XY € TM.
Given a contact metric manifold M (¢,&,7, g), we define a (1, 1) tensor field h by h = 1L¢¢
where L denotes the Lie differentiation. Then & is symmetric and satisfies

hé = 0,hé + oh =0, 2.6)

V& = —¢ — ¢h,trace(h) = trace(¢h) =0, 2.7

where v/ is the Levi-Civita connection.
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A contact metric manifold is said to be an n—Einstein manifold if
S(X,Y) = ag(X,Y) + bn(X)n(Y), (2.8)

where a, b are smooth functions and X,Y € T'M, S is the Ricci tensor.
A normal contact metric manifold is called a Sasakian manifold. An almost contact metric
manifold is Sasakian if and only if

(Vxd) =g(X,Y)§ —n(Y)X. (2.9)
On a Sasakian manifold the following relation holds
R(X,Y)¢{ =n(Y)X —n(X)Y, (2.10)

forall XY € TM.

Blair, Koufogiorgos and Papantoniou [4] considered the (k, 1) — nullity condition and gave
several reasons for studying it. The (k, ) — nullity distribution N (k, i) [4] of a contact metric
manifold M is defined by

Nk, 1) :p— Np(kos) = [U € T,M | ROX,Y)U = (kI + uh) (9(Y, U)X — g(X,U)Y)],

forall X,Y € TM, where (k,u) € R*(Y).
A Contact metric manifold M with £ € N(k, p) is called a (k, i) —contact metric manifold.
Then we have

R(X,Y)E = k[n(Y)X —n(X)Y] + u[n(Y)hX — n(X)hY], 211

for all X, Y € TM. For (k, 1) —contact metric manifolds, it follows that h?> = (k — 1)¢?*. This
class contains Sasakian manifolds for ¥ = 1 and h = 0. In fact, for a (k, u)—contact metric
manifold, the condition of being Sasakian manifold, K —contact manifold, k = 1 and h = 0
are equivalent. If g = 0, then the (k, u)—nullity distribution N (k, z1) is reduced to k—nullity
distribution N (k) [12]. If ¢ € N(k), then we call a contact metric manifold M an N (k)—contact
metric manifold.

The sectional curvature K (X, ¢X) of a plane section spanned by a unit vector X orthogonal
to £ is called a ¢p—sectional curvature. If the (k, ) —contact metric manifold M has constant
¢—sectional curvature c, then it is called a (k, 1) —contact space form and is denoted by M (c).
The curvature tensor of M (c) is given by [14]

RXY)Z = T3 2)x —g(x,2)Y]

+ L g(x ov)6z + g(x, 0208

4
~g(¥,92)9x] + 2

—n(Y)n(Z)X + g(X, Z)n(Y)¢ — g(Y, Z)n(X)¢]

+%[g(hY, Z)hX — g(hX, Z)hY + g(¢hX, Z)phY

n(X)n(Z2)Y

—g(ohY, Z)phX + g(¢Y, 0Z)hX — g(¢ X, ¢Z)hY
+9(hX, Z)¢*Y — g(hY, Z)¢* X + u[n(Y)n(Z)hX
—n(X)n(Z)hY + g(hY, Z)n(X)€ — g(hX, Z)n(Y)E], (2.12)

forall X,Y,Z € T(M), where c+ 2k = -1 =k —pif k < 1.
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From (2.12), we obtain for (k, 1) —contact space forms:

RXY)0Z = “T2[(v.02)X — (X, 62)Y]
+ T 290X, 0¥) 7 + 290X, 0¥ In(2)6 — 9(X, Z)6Y
+n(Zn(X)pY + g(Y, 2)pX —n(Y)n(Z)9X]

eI X 2V )E - oY SZ)n(X)E]

+%[g(hY, 6Z)hX — g(hX,pZ)hY + g(hX, Z)phY

—g(hY, Z)$hX — g(9Y, Z)hX + g(6X, Z)hY
—9(hX,02)Y + g(hX,0Z)n(Y)§ — g(hY, ¢Z) X

—g(hY, ¢Z)n(X)E] + pulg(RY, ¢Z)n(X)E

—g(hX, 0Z)n(Y)E], (2.13)

SROYV)Z = “E21g(v, 2)6X — (X, 2)6V]

+%[_2g(x, OY)Z +29(X, Y )n(Z)¢

—9(X,02)Y +9(X,0Z)n(Y)S +g(Y,0Z) X
—9(Y,¢Z)n(X)¢]

2 ()Y (v n(Z)0x]
+%[g(hY, Z)qShX — g(hX, Z)(;ShY — g(qi)hX, Z)hY

+9(ohY, Z)hX + g(¢Y, ¢Z)phX — g(¢X,¢Z)phY

+uln(Y)n(Z2)phX —n(Z)n(X)ohY], (2.14)

R(X,Y)¢ = k[n(Y)X = n(X)Y] + u[n(Y)hX = n(X)hY], (2.15)

R(X,§)§ = k[X — n(X)¢] + phX, (2.16)

R(§,Y)Z = k[g(Y, 2)§ =n(2)Y] + plg(hY, Z)§ = n(Z)hY], 2.17)

S(Y.7) = %[c(n 1) +3(n— 1)+ 2k]g(Y, 2) 2.18)
L en 4 1) = 30— 1) + 2620 — DIn(¥V)(2)

2
+[2n =2+ pg(RY, Z),

[e(n+ 1) +3(n — 1) + 2k]g(Y, h2) (2.19)

(k=1)[2n =2+ plg(Y, Z)
—(k=1)[2n =2+ pn(Y)n(2),

S(v.hz) =

+ ©I=
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S(Y,€) = 2nkn(Y), (2.20)
S(£,€) = 2nk, (2.21)
Qv = %[C(n+1)+3(n_ 1) + 2Ky (2.22)

5 [eln+ 1) = 30— 1)+ 2k(2n — D]n(Y)¢

+[2n — 2 + plhy,

Q& = 2nk¢. (2.23)

Definition 2.1. The M —projectively curvature tensor F' of type (1,3) on (k, ;1)—contact metric
form M of dimension (2n + 1) is defined as

F(X,Y)Z = R(X,Y)Z- %[S(Y, 2)X - S(X,2)Y
+9(Y, 2)QX — g(X, 2)QY), (2.24)

for any vector field X,Y, Z on M. The manifold is called M —projectively flat if F' vanishes
identically on M.

From (2.24) using (2.15), (2.17), (2.18), (2.20), (2.21), (2.22) and (2.23), we have

F(X,Y)§ = an(Y)X —n(X)Y]+bn(Y)hX —n(X)hY], (2.25)
F(£,Y)¢ = a[n(Y)€ — Y] — bhY, (2.26)
F(&,Y)Z = alg(Y, 2)¢ = n(2)Y] + blg(hY, Z)¢ — n(Z)hY], (2.27)
F(&,Y)hZ = ag(Y,hZ)¢ + bg(hY, hZ)E, (2.28)
where
a=r- 2(in) le(n+ 1) +3(n — 1) + 2k,
and

1
b=p——[2n—2+
p g2 =2+

3 M —Projectively flat (k, ;1) —Contact Space Forms

Theorem 3.1. A (2n+1)-dimensional M —Projectively flat (k, 1) —contact space form is an n—Einstein
manifold.

Proof. From the definition of M —Projectively flat (k, 1) —contact space forms we have

F(X,Y)Z =0.

Applying this in (2.24), we obtain

R(X,Y)Z = %[S(Y, 2)X — S(X, 2)Y + g(Y. 2)QX — g(X, Z)QY].  G.D)
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Taking the inner product with W of (3.1), we obtain

1
+9(Y, 2)9(QX, W) — g(X, Z)g(QY, W). (3.2)
Putting X = W = ¢ in (3.2) and using (2.17), (2.18), (2.19), (2.20) and (2.21), we have
91, 2) = S(Y,2) - 5(Y.2). (3

By using (3.3) in (2.18), we get

S(Y,Z) = ag(Y,Z) + bin(Y)n(Z), (3.4)
where
w 2npfe(n+ 1) +3(n—1) + 2k — 5(2n — 2 + p)]
b dnp — (2n — 2+ p) ’
and

b — 2npl—c(n+1) = 3(n — 1) +2k(2n — 1)]
b dnp— 2n —24 p) ’

4 (k,pu)—Contact Space Forms Satisfying F.S=0

Theorem 4.1. A (2n + 1)-dimensional (k, ju)—contact space forms satisfying F.S = 0 is an
n—Einstein manifold.

Proof. Let M(c) be a (2n + 1)-dimensional (k, ;1) —contact space forms satisfying F.5 = 0
which implies that

S(F(X,Y)U,V)+S(U,F(X,Y)V) =0, (4.1
By putting U = X = ¢, we get
S(F(EY)E V) +S(E F(&Y)V) =0. 4.2)
By using (2.18), (2.19), (2.20) and (2.24), we obtain

g(hY,Z) = c1g(Y, V) + din(Y)n(V), (4.3)
where,
~ {5le(n+ 1) +3(n — 1) + 2k] + (k — 1)b(2n — 2 + p) + 2nka}
O T 2nkb—an—2+p) - Sle(n+ 1)+ 3(n— 1) + 2k]}
and

{$[-c(n+1)=3(n—1)+2k2n—1)] =b(k—1)(2n — 2+ p)}
{2nkb —a(2n — 24 p) — S[c(n+ 1) + 3(n — 1) + 2k]}

dy =

By using (4.3) in (2.18), we get
S, V) = cg(Y, V) 4 dan(Y)n(V),

where
[ec(n+1)+3(n—1)+2k+ (2n -2+ wey,

| =

and
[—e(n+1)=3(n—1)+2k2n—1)] 4+ 2n — 2+ u)d;.
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5 & — M —Projectively Flat (k, ;1) —Contact Space Forms

Theorem 5.1. Let M (c) be a £¢ — M —projectively flat (k, u)—contact space forms. Then M (c)
is either a Sasakian space form or a N (k)- contact space form for particular n = 1.

Proof. Assume that M(c) is a ¢ — M —Projectively flat (k, u)—contact space form. Then

F(X,Y)¢E=0. (5.1)
putting Z = £ in (1.1), we obtain
FX.Y)e = RXY)E- i[ S(.6X - S(X. )Y

Using (2.11) and (2.20) in (5.2), we get
Al (V)X = n(X)Y] + bn(Y)hX — n(X)hY] = 0. (53)
From (5.3), we may conclude that if a = 0 then either b = 0 or
n(Y)hX — n(X)hY =0 (5.4)
Putting Y = £ in above equation , we have
hX =0

If 4 = 0, then M (c) is a N(k)- contact space form for particular n = 1.
If h = 0, then M (c) is a Sasakian space form. i

(k, p)—Contact Space Forms Satisfying Q.ﬁ =0

Theorem 6.1. A (k, ;1) —Contact Space Forms Satisfying Q.F = 0 is either (0, 1)—contact space
Jorm of constant ¢—sectional curvature -1 or N (k)- contact space form for particular n = 1 or,
a Sasakian space form.

Proof. A (k, u)—contact space forms satisfying Q.ﬁ = 0, where (@ is the Ricci operator defined
by S(X,Y) = g(QX,Y). Suppoese M (c) be a (k, u)— contact space form satisfying Q.F = 0.
Then

QF(X,Y)Z) - F(QX,Y)Z — F(X,QY)Z — F(X,Y)QZ = 0. (6.1)
Putting Z = ¢ in (6.1) and using (2.25), we have
a[n(Q@X)Y —n(QY)X] - 2nka[n(Y)X — n(X)Y] +

n(Y)[Q(hX) — hQX] — bn(X)[Q(RY) — hQY] +
b[n(QX)hY — n(QY)hX] — 2nkbln(Y)hX — n(X)hY] = (6.2)

Using (2.22), we obtain
Q(hY) —hQY = %[c(n + 1) +3(n— 1) + 2k]RY

3 lme(n+1) = 3(n — 1) +2k(2n — Din(hY )¢

+[2n — 2 + p]h?Y — %[C(n + 1) +3(n — 1) + 2k]nY

—%[fc(n +1) =3(n —1) +2k(2n — 1)]

n(Y)hé — 2n — 2 + p]h*Y =0, (6.3)
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and
n(@X)Y —n(QY)X = 2nk[n(X)Y —n(Y)X], (6.4)
and
n(QX)RY — n(QY)hX = 2nk[n(X)hY —n(Y)hX]. (6.5)
Using (6.3), (6.4) and (6.5) in (6.2), we have
dnk{a[n(X)Y —n(Y)X] + b[n(X)hY —n(Y)hX} = 0. (6.6)
From (6.6), we may conclude that if a = 0 then either k =0 or b = 0 or
M(X)hY —n(Y)hX] =0. 6.7)
Putting Y = £ in the above equation yields
hX =0.
If &k = 0, then from (2.12), we have 1 = 1 and constant ¢—sectional curvature ¢ = —1.
If » = O for particular n = 1, then M (c) is a N (k)- contact space form.
If h = 0, then M (c) is a Sasakian space form. i

7 ¢ — M —Projectively Semisymmetric (k, ;1) —Contact Space Forms

Definition 7.1. A (k, ;1) —contact space form is said to be ¢ — M —projectively semi-symmetric
if F(X,Y)-¢=0forall X,Y € TM.

Proposition 7.2. Let M (c) be a  — M —projectively semi-symmetric (k, i)—contact space form,
then p = ﬁ

Proof. Suppose M(c) be a ¢ — M —projectively semi-symmetric (k, u)—contact space form.
Then

F(X,Y)¢Z — o(F(X,Y)Z) = 0. 71.1)
From (1.1), it follows that
F(X,Y)¢Z = R(X,Y)$Z - ﬁ[S(Y, $Z)X — S(X,02)Y
+9(Y,02)QX — g(X,6Z2)QY]. (7.2)

Using (2.18) in (7.2), we get

F(X,Y)pZ = R(X,Y)pZ—

%{[C(n + 1) +3(n— 1) +2k][g(Y, 02) X

—9(X,02)Y]+ %[—c(n +1)-3(n—-1)+

2k(2n — D][g(Y, ¢Z)n(X)¢ = g(X, ¢Z)n(Y)¢] +
2n =2 + ul[g(RY, 9Z)X — g(hX,$Z)Y
+9(Y, 0Z)hX — g(X,pZ)nY ]} (7.3)
Again,
O(F(X,Y)Z) = ¢R(X,Y)Z

—ﬁ{[c(n +1)+3(n—1)+2k][g(Y, Z)pX

-9(X,2)oY + %[—c(n +1)—-3(n—-1)+

2k(2n — D]n(Y)n(Z2)¢X —n(Z)n(X)eY +

9(Y, Z)n(X)€ — g(X, Z)n(Y)E] +

2n — 2+ [g(hY, 2)6X — g(hX, Z)$Y

+9(Y. Z2)ho X — g(X, Z)hoY]}. (7.4)
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Using (7.3) and (7.4) in (7.2), we have
(F(X,Y)-¢)Z = R(X,Y)¢pZ—¢R(X,Y)Z
Al 1) +3(n 1) + 24][g(Y, 62)X

—9(X,02)Y] + %[—c(n—i— 1)-3(n—1)+

2k(2n — D]g(Y, 9Z)n(X)§ — g(X, ¢Z)n(Y)¢] +
2n — 2+ p)[g(hY, 0 2)X — g(hX,$2)Y + g(Y,pZ)hX

—g(X,0Z)RY |} + ﬁ{[c(n +1)+
3(n— 1) +2K][g(Y, Z2)¢X — g(X, Z)pY

2

—n(Z)n(X)pY + g(Y, Z)n(X)€ — g(X, Z)n(Y )¢]

+[2n =2+ p]lg(hY, Z)pX — g(hX, Z)¢Y
+9(Y, Z)h¢ X — g(X, Z)hoY]} = 0.

e 1) = 3= 1)+ 2620 — DY )(2)6X

(7.5)

Putting the value of R(X,Y)¢Z and ¢R(X,Y)Z in (7.5) and taking inner product with W of

(7.5) and contracting Y and W, we obtain

c+3 c—1 1
{ y) (1-2n)+ ) (Zn—l)—l—%@n—l)

[ec(n+1)+3(n—1)+2k]}g(¢Z, X) +

{1(1 —2n) + W

> (2n + 1)}g(6Z, hX) = 0.

Putting X = hX in the above equation yields

20+ -+ - 1)
[e(n+1)+3(n—1)+2k}g(0Z,hX) +
{%(1 —2n) + W(Zn +1)}g(¢Z, h*X) = 0.

Taking trace in both sides of (7.7) and using trace(h) = 0, we get

2
n+1"

u = 2

From the above proposition we can state the following:

(7.6)

(7.7)

Theorem 7.3. A three dimensional ¢ — M —projectively semi-symmetric (k, u)—contact space

form reduces to an N (k)—contact space form.
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