CERTAIN RESULTS ON M- PROJECTIVE CURVATURE TENSOR ON $(k, \mu)-$ CONTACT SPACE FORMS

SHYAM KISHOR, PUSHPENDRA VERMA

Communicated by Siraj Uddin

MSC 2010 Classifications: Primary 53C15; Secondary 53A25.

Keywords and phrases: (k,μ) —contact space forms, M—projectively curvature tensor, N(k)—contact space forms, Einstein manifolds, η —Einstein manifolds.

Abstract The object of the present paper is to study (k,μ) -contact space forms satisfying certain curvature tensor. We also study $\xi-M$ -projectively flat, M-projectively flat and (k,μ) -contact space forms satisfying $\tilde{F}.S=0$ and $Q.\tilde{F}=0$. Also we study $\phi-M$ -projectively semi-symmetric (k,μ) -contact space form.

1 Introduction

The notion of $(k,\mu)-$ contact metric manifold was introduced by Blair, Koufogiorgos and Papantoniou [4]. A class of contact metric manifolds with contact metric structure (ϕ,ξ,η,g) in which the curvature tensor R satisfies the condition

$$R(X,Y)\xi = (kI + \mu h)(\eta(Y)X - \eta(X)Y),$$

for all $X, Y \in TM$ is called (k, μ) – contact metric manifolds.

The sectional curvature $K(X,\phi X)$ of a plane section spanned by a unit vector X orthogonal to ξ is called a ϕ -sectional curvature. If the (k,μ) -contact metric manifold M has constant ϕ -sectional curvature c, then it is called a (k,μ) - contact space form and is denoted by M(c). (k,μ) - contact space forms have been studied by K. Arslan, R. Ezentas, I. Mihai, C. Murthan and Özgür, C. [2] and A. Akbar and A. Sarkar [1] and many others.

The M-projective curvature tensor is important tensor from the differential geometric point of view. Let M be a (2n+1)-dimensional Riemannian manifold. M is said to be locally M-projectively flat for $n \geq 1$, if and only if the M-projective curvature tensor \widetilde{F} vanishes, which is defined by

$$\widetilde{F}(X,Y)Z = R(X,Y)Z - \frac{1}{4n}[S(Y,Z)X - S(X,Z)Y + q(Y,Z)QX - q(X,Z)QY],$$
(1.1)

for all $X, Y, Z \in TM$, where R is the curvature tensor and S is the Ricci tensor.

Let M be an almost contact metric manifold equipped with an almost contact metric structure (ϕ, ξ, η, g) . Since at each point $p \in M$ the tangent space T_PM can be decomposed into direct sum $T_PM = \phi(T_PM) \oplus \{\xi_P\}$, where $\{\xi_P\}$ is the 1- dimensional linear subspace of T_PM generated by $\{\xi_P\}$, the conformal curvature tensor C is a map

$$C: T_PM \times T_PM \times T_PM \longrightarrow \phi(T_PM) \oplus \{\xi_P\}, p \in M.$$

It may be natural to consider the following particular cases:

- (1) the projection of the image of C in $\phi(T_PM)$ is zero;
- (2) the projection of the image of C in $\{\xi_P\}$ is zero;
- (3) the projection of the image of $C|_{\phi(T_PM)\times\phi(T_PM)\times\phi(T_PM)}$ in $\phi(T_PM)$ is zero.

An almost contact metric manifold satisfying the case (1), (2), and (3) is said to be conformally symmetric [18], ξ -conformally flat [19], and ϕ -conformally flat[7] respectively. In an anlogous way, we define $\xi - M$ -projectively flat (k, μ) -contact space forms.

Definition A contact metric manifold is called $M-projectively\ flat$ if the manifold satisfies $\widetilde{F}(X,Y)\xi=0$ for all vector fields X,Y.

As a generalization of symmetric manifolds Cartan in 1946 introduced the notion of semisymmetric manifolds. A Riemannian manifold is called semisymmetric if the curvature tensor satisfies

$$R(X,Y).R = 0$$

where R(X,Y)Z is considered as a field of linear operators acting on R.

A natural extension of such curvature conditions from curvature conditions of pseudosymmetry type. The condition $Q \cdot R = 0$ have been studied by Verstraelen et. al. in [15].

In this paper, we characterize (k, μ) – contact space forms $Q \cdot P = 0$.

Motivated by the above studied, in this paper we characterize a (k,μ) -contact space form satisfying certain curvature conditions on the M-projectively curvature tensor. The paper is organized as follows:

In section 2, we give necessary details about (k,μ) -contact space forms. In section 3, we study M-Projectively flat (k,μ) -contact space forms. Section 4 deals with the study of (k,μ) -contact space forms satisfying $\widetilde{F}.S=0$. In section 5, $\xi-M$ -projectively flat (k,μ) -contact space forms have been studied. Section 6, we study (k,μ) -contact space forms satisfying $Q.\widetilde{F}=0$. Finally, we study $\phi-M$ -projectively semisymmetric (k,μ) -contact space form.

2 Preliminaries

A (2n+1)- dimensional differential manifold M is called an almost contact manifold [3] if there is an almost contact structure (ϕ, ξ, η) consisting of a (1,1) tensor field ϕ , a vector field ξ , a 1- form η satisfying

$$\phi^{2}(X) = -X + \eta(X)\xi, \eta(\xi) = 1, \phi\xi = 0, \eta \circ \phi = 0$$
(2.1)

An almost contact structure is said to be normal if the induced almost complex structure J on the product manifold $M \times \mathbb{R}$ defined by

$$J(X, f\frac{d}{dt}) = (\phi X - f\xi, \eta(X)\frac{d}{dt})$$
(2.2)

is integrable where X is tangent to M, t is the coordinate of \mathbb{R} and f is a smooth function on $M \times \mathbb{R}$.

The condition for being normal is equivalent to vanishing of the torsion tensor $[\phi, \phi] + 2d\eta \otimes \xi$, where $[\phi, \phi]$ is the Nijenhuis tensor of ϕ .

Let g be a compatible Riemannian metric with (ϕ, ξ, η) , that is,

$$q(X,Y) = q(\phi X, \phi Y) + \eta(X)\eta(Y), \tag{2.3}$$

or equivalently,

$$g(X,\xi) = \eta(X), g(\phi X, Y) = -g(X, \phi Y), \tag{2.4}$$

for all $X, Y \in TM$.

An almost contact metric structure becomes a contact metric structure if

$$g(X, \phi Y) = d\eta(X, Y), \tag{2.5}$$

for all $X, Y \in TM$.

Given a contact metric manifold $M(\phi, \xi, \eta, g)$, we define a (1, 1) tensor field h by $h = \frac{1}{2}L_{\xi}\phi$ where L denotes the Lie differentiation. Then h is symmetric and satisfies

$$h\xi = 0, h\phi + \phi h = 0, \tag{2.6}$$

$$\nabla \xi = -\phi - \phi h, trace(h) = trace(\phi h) = 0, \tag{2.7}$$

where ∇ is the Levi-Civita connection.

A contact metric manifold is said to be an η -Einstein manifold if

$$S(X,Y) = ag(X,Y) + b\eta(X)\eta(Y), \tag{2.8}$$

where a, b are smooth functions and $X, Y \in TM$, S is the Ricci tensor.

A normal contact metric manifold is called a Sasakian manifold. An almost contact metric manifold is Sasakian if and only if

$$(\nabla_X \phi) = g(X, Y)\xi - \eta(Y)X. \tag{2.9}$$

On a Sasakian manifold the following relation holds

$$R(X,Y)\xi = \eta(Y)X - \eta(X)Y,\tag{2.10}$$

for all $X, Y \in TM$.

Blair, Koufogiorgos and Papantoniou [4] considered the (k,μ) - nullity condition and gave several reasons for studying it. The (k,μ) - nullity distribution $N(k,\mu)$ [4] of a contact metric manifold M is defined by

$$N(k,\mu): p \to N_P(k,\mu) = [U \in T_pM \mid R(X,Y)U = (kI + \mu h)(g(Y,U)X - g(X,U)Y)],$$

for all $X, Y \in TM$, where $(k, \mu) \in \mathbb{R}^2(Y)$.

A Contact metric manifold M with $\xi \in N(k,\mu)$ is called a (k,μ) -contact metric manifold. Then we have

$$R(X,Y)\xi = k[\eta(Y)X - \eta(X)Y] + \mu[\eta(Y)hX - \eta(X)hY], \tag{2.11}$$

for all $X,Y\in TM$. For (k,μ) —contact metric manifolds, it follows that $h^2=(k-1)\phi^2$. This class contains Sasakian manifolds for k=1 and h=0. In fact, for a (k,μ) —contact metric manifold, the condition of being Sasakian manifold, K—contact manifold, k=1 and h=0 are equivalent. If $\mu=0$, then the (k,μ) —nullity distribution $N(k,\mu)$ is reduced to k—nullity distribution N(k) [12]. If $\xi\in N(k)$, then we call a contact metric manifold M an N(k)—contact metric manifold.

The sectional curvature $K(X,\phi X)$ of a plane section spanned by a unit vector X orthogonal to ξ is called a ϕ -sectional curvature. If the (k,μ) -contact metric manifold M has constant ϕ -sectional curvature c, then it is called a (k,μ) -contact space form and is denoted by M(c). The curvature tensor of M(c) is given by [14]

$$R(X,Y)Z = \frac{c+3}{4} [g(Y,Z)X - g(X,Z)Y]$$

$$+ \frac{c-1}{4} [2g(X,\phi Y)\phi Z + g(X,\phi Z)\phi Y$$

$$-g(Y,\phi Z)\phi X] + \frac{c+3-4k}{4} [\eta(X)\eta(Z)Y$$

$$-\eta(Y)\eta(Z)X + g(X,Z)\eta(Y)\xi - g(Y,Z)\eta(X)\xi]$$

$$+ \frac{1}{2} [g(hY,Z)hX - g(hX,Z)hY + g(\phi hX,Z)\phi hY$$

$$-g(\phi hY,Z)\phi hX + g(\phi Y,\phi Z)hX - g(\phi X,\phi Z)hY$$

$$+g(hX,Z)\phi^{2}Y - g(hY,Z)\phi^{2}X] + \mu[\eta(Y)\eta(Z)hX$$

$$-\eta(X)\eta(Z)hY + g(hY,Z)\eta(X)\xi - g(hX,Z)\eta(Y)\xi], \qquad (2.12)$$

for all $X, Y, Z \in T(M)$, where $c + 2k = -1 = k - \mu$ if k < 1.

From (2.12), we obtain for (k, μ) —contact space forms:

$$R(X,Y)\phi Z = \frac{c+3}{4} [g(Y,\phi Z)X - g(X,\phi Z)Y]$$

$$+ \frac{c-1}{4} [-2g(X,\phi Y)Z + 2g(X,\phi Y)\eta(Z)\xi - g(X,Z)\phi Y$$

$$+ \eta(Z)\eta(X)\phi Y + g(Y,Z)\phi X - \eta(Y)\eta(Z)\phi X]$$

$$+ \frac{c+3-4k}{4} [g(X,\phi Z)\eta(Y)\xi - g(Y,\phi Z)\eta(X)\xi]$$

$$+ \frac{1}{2} [g(hY,\phi Z)hX - g(hX,\phi Z)hY + g(hX,Z)\phi hY$$

$$-g(hY,Z)\phi hX - g(\phi Y,Z)hX + g(\phi X,Z)hY$$

$$-g(hX,\phi Z)Y + g(hX,\phi Z)\eta(Y)\xi - g(hY,\phi Z)X$$

$$-g(hY,\phi Z)\eta(X)\xi] + \mu[g(hY,\phi Z)\eta(X)\xi$$

$$-g(hX,\phi Z)\eta(Y)\xi],$$
 (2.13)

$$\phi R(X,Y)Z = \frac{c+3}{4} [g(Y,Z)\phi X - g(X,Z)\phi Y]
+ \frac{c-1}{4} [-2g(X,\phi Y)Z + 2g(X,\phi Y)\eta(Z)\xi
-g(X,\phi Z)Y + g(X,\phi Z)\eta(Y)\xi + g(Y,\phi Z)X
-g(Y,\phi Z)\eta(X)\xi]
+ \frac{c+3-4k}{4} [\eta(Z)\eta(X)\phi Y - \eta(Y)\eta(Z)\phi X]
+ \frac{1}{2} [g(hY,Z)\phi hX - g(hX,Z)\phi hY - g(\phi hX,Z)hY
+g(\phi hY,Z)hX + g(\phi Y,\phi Z)\phi hX - g(\phi X,\phi Z)\phi hY
-g(hX,Z)\phi Y + g(hY,Z)\phi X]
+\mu[\eta(Y)\eta(Z)\phi hX - \eta(Z)\eta(X)\phi hY],$$
(2.14)

$$R(X,Y)\xi = k[\eta(Y)X - \eta(X)Y] + \mu[\eta(Y)hX - \eta(X)hY], \tag{2.15}$$

$$R(X,\xi)\xi = k[X - \eta(X)\xi] + \mu hX, \tag{2.16}$$

$$R(\xi, Y)Z = k[q(Y, Z)\xi - \eta(Z)Y] + \mu[q(hY, Z)\xi - \eta(Z)hY], \tag{2.17}$$

$$S(Y,Z) = \frac{1}{2}[c(n+1) + 3(n-1) + 2k]g(Y,Z)$$

$$+ \frac{1}{2}[-c(n+1) - 3(n-1) + 2k(2n-1)]\eta(Y)\eta(Z)$$

$$+ [2n-2 + \mu]g(hY,Z),$$
(2.18)

$$S(Y, hZ) = \frac{1}{2} [c(n+1) + 3(n-1) + 2k] g(Y, hZ)$$

$$+(k-1)[2n-2 + \mu] g(Y, Z)$$

$$-(k-1)[2n-2 + \mu] \eta(Y) \eta(Z),$$
(2.19)

$$S(Y,\xi) = 2nk\eta(Y),\tag{2.20}$$

$$S(\xi, \xi) = 2nk,\tag{2.21}$$

$$QY = \frac{1}{2}[c(n+1) + 3(n-1) + 2k]Y$$

$$+ \frac{1}{2}[-c(n+1) - 3(n-1) + 2k(2n-1)]\eta(Y)\xi$$

$$+ [2n-2+\mu]hY,$$
(2.22)

$$Q\xi = 2nk\xi. \tag{2.23}$$

Definition 2.1. The M-projectively curvature tensor \widetilde{F} of type (1,3) on (k,μ) -contact metric form M of dimension (2n+1) is defined as

$$\widetilde{F}(X,Y)Z = R(X,Y)Z - \frac{1}{4n}[S(Y,Z)X - S(X,Z)Y + g(Y,Z)QX - g(X,Z)QY],$$
(2.24)

for any vector field X,Y,Z on M. The manifold is called M-projectively flat if \widetilde{F} vanishes identically on M.

From (2.24) using (2.15), (2.17), (2.18), (2.20), (2.21), (2.22) and (2.23), we have

$$\widetilde{F}(X,Y)\xi = a[\eta(Y)X - \eta(X)Y] + b[\eta(Y)hX - \eta(X)hY], \tag{2.25}$$

$$\widetilde{F}(\xi, Y)\xi = a[\eta(Y)\xi - Y] - bhY, \tag{2.26}$$

$$\widetilde{F}(\xi, Y)Z = a[g(Y, Z)\xi - \eta(Z)Y] + b[g(hY, Z)\xi - \eta(Z)hY],$$
 (2.27)

$$\widetilde{F}(\xi, Y)hZ = ag(Y, hZ)\xi + bg(hY, hZ)\xi, \tag{2.28}$$

where

$$a = \frac{k}{2} - \frac{1}{2(4n)}[c(n+1) + 3(n-1) + 2k],$$

and

$$b = \mu - \frac{1}{4n} [2n - 2 + \mu].$$

3 M-Projectively flat (k, μ) -Contact Space Forms

Theorem 3.1. A (2n+1)-dimensional M-Projectively flat (k, μ) -contact space form is an η -Einstein manifold.

Proof. From the definition of M-Projectively flat (k, μ) -contact space forms we have

$$\widetilde{F}(X,Y)Z = 0.$$

Applying this in (2.24), we obtain

$$R(X,Y)Z = \frac{1}{4n}[S(Y,Z)X - S(X,Z)Y + g(Y,Z)QX - g(X,Z)QY].$$
 (3.1)

Taking the inner product with W of (3.1), we obtain

$$g(R(X,Y)Z,W) = \frac{1}{4n} [S(Y,Z)g(X,W) - S(X,Z)g(Y,W) + g(Y,Z)g(QX,W) - g(X,Z)g(QY,W).$$
(3.2)

Putting $X = W = \xi$ in (3.2) and using (2.17), (2.18), (2.19), (2.20) and (2.21), we have

$$g(hY,Z) = \frac{1}{4n\mu}S(Y,Z) - \frac{k}{2}g(Y,Z). \tag{3.3}$$

By using (3.3) in (2.18), we get

$$S(Y,Z) = a_1 q(Y,Z) + b_1 \eta(Y) \eta(Z), \tag{3.4}$$

where

$$a_1 = \frac{2n\mu[c(n+1) + 3(n-1) + 2k - \frac{k}{2}(2n-2+\mu)]}{4n\mu - (2n-2+\mu)},$$

and

$$b_1 = \frac{2n\mu[-c(n+1) - 3(n-1) + 2k(2n-1)]}{4n\mu - (2n-2+\mu)}.$$

4 (k, μ) —Contact Space Forms Satisfying $\widetilde{F}.S = 0$

Theorem 4.1. A (2n+1)-dimensional (k,μ) -contact space forms satisfying $\widetilde{F}.S=0$ is an η -Einstein manifold.

Proof. Let M(c) be a (2n+1)-dimensional (k,μ) -contact space forms satisfying $\widetilde{F}.S=0$ which implies that

$$S(\widetilde{F}(X,Y)U,V) + S(U,\widetilde{F}(X,Y)V) = 0, \tag{4.1}$$

By putting $U = X = \xi$, we get

$$S(\widetilde{F}(\xi, Y)\xi, V) + S(\xi, \widetilde{F}(\xi, Y)V) = 0. \tag{4.2}$$

By using (2.18), (2.19), (2.20) and (2.24), we obtain

$$g(hY,Z) = c_1 g(Y,V) + d_1 \eta(Y) \eta(V), \tag{4.3}$$

where,

$$c_1 = \frac{\left\{\frac{a}{2}[c(n+1) + 3(n-1) + 2k] + (k-1)b(2n-2+\mu) + 2nka\right\}}{\left\{2nkb - a(2n-2+\mu) - \frac{b}{2}[c(n+1) + 3(n-1) + 2k]\right\}},$$

and

$$d_1 = \frac{\left\{\frac{a}{2}\left[-c(n+1) - 3(n-1) + 2k(2n-1)\right] - b(k-1)(2n-2+\mu)\right\}}{\left\{2nkb - a(2n-2+\mu) - \frac{b}{2}\left[c(n+1) + 3(n-1) + 2k\right]\right\}}.$$

By using (4.3) in (2.18), we get

$$S(Y,V) = c_2 q(Y,V) + d_2 \eta(Y) \eta(V),$$

where

$$c_2 = \frac{1}{2}[c(n+1) + 3(n-1) + 2k] + (2n-2+\mu)c_1,$$

and

$$d_2 = \frac{1}{2}[-c(n+1) - 3(n-1) + 2k(2n-1)] + (2n-2+\mu)d_1.$$

5 $\xi - M$ -Projectively Flat (k, μ) -Contact Space Forms

Theorem 5.1. Let M(c) be a $\xi - M$ -projectively flat (k, μ) -contact space forms. Then M(c) is either a Sasakian space form or a N(k)-contact space form for particular n = 1.

Proof. Assume that M(c) is a $\xi - M$ -Projectively flat (k, μ) -contact space form. Then

$$\widetilde{F}(X,Y)\xi = 0. \tag{5.1}$$

putting $Z = \xi$ in (1.1), we obtain

$$\widetilde{F}(X,Y)\xi = R(X,Y)\xi - \frac{1}{4n}[S(Y,\xi)X - S(X,\xi)Y + g(Y,\xi)QX - g(X,\xi)QY], \tag{5.2}$$

Using (2.11) and (2.20) in (5.2), we get

$$a[\eta(Y)X - \eta(X)Y] + b[\eta(Y)hX - \eta(X)hY] = 0.$$
(5.3)

From (5.3), we may conclude that if a = 0 then either b = 0 or

$$\eta(Y)hX - \eta(X)hY = 0 \tag{5.4}$$

Putting $Y = \xi$ in above equation , we have

$$hX = 0$$

If $\mu=0$, then M(c) is a N(k)- contact space form for particular n=1. If h=0, then M(c) is a Sasakian space form.

6 (k,μ) —Contact Space Forms Satisfying $Q.\widetilde{F}=0$

Theorem 6.1. A (k, μ) -Contact Space Forms Satisfying $Q.\widetilde{F} = 0$ is either (0, 1)-contact space form of constant ϕ -sectional curvature -1 or N(k)- contact space form for particular n = 1 or, a Sasakian space form.

Proof. A (k,μ) – contact space forms satisfying $Q.\widetilde{F}=0$, where Q is the Ricci operator defined by S(X,Y)=g(QX,Y). Supposes M(c) be a (k,μ) – contact space form satisfying $Q.\widetilde{F}=0$. Then

$$Q(\widetilde{F}(X,Y)Z) - \widetilde{F}(QX,Y)Z - \widetilde{F}(X,QY)Z - \widetilde{F}(X,Y)QZ = 0. \tag{6.1}$$

Putting $Z = \xi$ in (6.1) and using (2.25), we have

$$a[\eta(QX)Y - \eta(QY)X] - 2nka[\eta(Y)X - \eta(X)Y] + b\eta(Y)[Q(hX) - hQX] - b\eta(X)[Q(hY) - hQY] + b[\eta(QX)hY - \eta(QY)hX] - 2nkb[\eta(Y)hX - \eta(X)hY] = 0.$$
(6.2)

Using (2.22), we obtain

$$Q(hY) - hQY = \frac{1}{2}[c(n+1) + 3(n-1) + 2k]hY$$

$$+ \frac{1}{2}[-c(n+1) - 3(n-1) + 2k(2n-1)]\eta(hY)\xi$$

$$+ [2n - 2 + \mu]h^{2}Y - \frac{1}{2}[c(n+1) + 3(n-1) + 2k]hY$$

$$- \frac{1}{2}[-c(n+1) - 3(n-1) + 2k(2n-1)]$$

$$\eta(Y)h\xi - [2n - 2 + \mu]h^{2}Y = 0,$$
(6.3)

and

$$\eta(QX)Y - \eta(QY)X = 2nk[\eta(X)Y - \eta(Y)X],\tag{6.4}$$

and

$$\eta(QX)hY - \eta(QY)hX = 2nk[\eta(X)hY - \eta(Y)hX]. \tag{6.5}$$

Using (6.3), (6.4) and (6.5) in (6.2), we have

$$4nk\{a[\eta(X)Y - \eta(Y)X] + b[\eta(X)hY - \eta(Y)hX\} = 0.$$
(6.6)

From (6.6), we may conclude that if a = 0 then either k = 0 or b = 0 or

$$[\eta(X)hY - \eta(Y)hX] = 0. \tag{6.7}$$

Putting $Y = \xi$ in the above equation yields

$$hX = 0.$$

If k=0, then from (2.12), we have $\mu=1$ and constant ϕ -sectional curvature c=-1.

If $\mu = 0$ for particular n = 1, then M(c) is a N(k)- contact space form.

If h = 0, then M(c) is a Sasakian space form.

7 $\phi - M$ -Projectively Semisymmetric (k, μ) -Contact Space Forms

Definition 7.1. A (k, μ) -contact space form is said to be $\phi - M$ -projectively semi-symmetric if $\widetilde{F}(X,Y) \cdot \phi = 0$ for all $X,Y \in TM$.

Proposition 7.2. Let M(c) be a $\phi-M$ -projectively semi-symmetric (k,μ) -contact space form, then $\mu=\frac{2}{2n+1}$.

Proof. Suppose M(c) be a $\phi-M-$ projectively semi-symmetric $(k,\mu)-$ contact space form. Then

$$\widetilde{F}(X,Y)\phi Z - \phi(\widetilde{F}(X,Y)Z) = 0. \tag{7.1}$$

From (1.1), it follows that

$$\widetilde{F}(X,Y)\phi Z = R(X,Y)\phi Z - \frac{1}{4n}[S(Y,\phi Z)X - S(X,\phi Z)Y + g(Y,\phi Z)QX - g(X,\phi Z)QY]. \tag{7.2}$$

Using (2.18) in (7.2), we get

$$\widetilde{F}(X,Y)\phi Z = R(X,Y)\phi Z - \frac{1}{4n} \{ [c(n+1) + 3(n-1) + 2k] [g(Y,\phi Z)X - g(X,\phi Z)Y] + \frac{1}{2} [-c(n+1) - 3(n-1) + 2k(2n-1)] [g(Y,\phi Z)\eta(X)\xi - g(X,\phi Z)\eta(Y)\xi] + [2n-2+\mu] [g(hY,\phi Z)X - g(hX,\phi Z)Y + g(Y,\phi Z)hX - g(X,\phi Z)hY] \}$$
(7.3)

Again,

$$\phi(\widetilde{F}(X,Y)Z) = \phi R(X,Y)Z$$

$$-\frac{1}{4n} \{ [c(n+1) + 3(n-1) + 2k] [g(Y,Z)\phi X - g(X,Z)\phi Y + \frac{1}{2} [-c(n+1) - 3(n-1) + 2k(2n-1)] [\eta(Y)\eta(Z)\phi X - \eta(Z)\eta(X)\phi Y + g(Y,Z)\eta(X)\xi - g(X,Z)\eta(Y)\xi] + [2n-2+\mu] [g(hY,Z)\phi X - g(hX,Z)\phi Y + g(Y,Z)h\phi X - g(X,Z)h\phi Y] \}.$$
(7.4)

Using (7.3) and (7.4) in (7.2), we have

$$(\widetilde{F}(X,Y) \cdot \phi)Z = R(X,Y)\phi Z - \phi R(X,Y)Z$$

$$-\frac{1}{4n} \{ [c(n+1) + 3(n-1) + 2k] [g(Y,\phi Z)X - g(X,\phi Z)Y] + \frac{1}{2} [-c(n+1) - 3(n-1) + 2k(2n-1)] [g(Y,\phi Z)\eta(X)\xi - g(X,\phi Z)\eta(Y)\xi] + [2n-2+\mu] [g(hY,\phi Z)X - g(hX,\phi Z)Y + g(Y,\phi Z)hX - g(X,\phi Z)hY] \} + \frac{1}{4n} \{ [c(n+1) + 3(n-1) + 2k] [g(Y,Z)\phi X - g(X,Z)\phi Y + \frac{1}{2} [-c(n+1) - 3(n-1) + 2k(2n-1)] [\eta(Y)\eta(Z)\phi X - \eta(Z)\eta(X)\phi Y + g(Y,Z)\eta(X)\xi - g(X,Z)\eta(Y)\xi] + [2n-2+\mu] [g(hY,Z)\phi X - g(hX,Z)\phi Y + g(Y,Z)h\phi X - g(X,Z)h\phi Y] \} = 0.$$

$$(7.5)$$

Putting the value of $R(X,Y)\phi Z$ and $\phi R(X,Y)Z$ in (7.5) and taking inner product with W of (7.5) and contracting Y and W, we obtain

$$\left\{ \frac{c+3}{4}(1-2n) + \frac{c-1}{4}(2n-1) + \frac{1}{4n}(2n-1) \right. \\
 \left[c(n+1) + 3(n-1) + 2k \right] \right\} g(\phi Z, X) + \\
 \left\{ \frac{1}{2}(1-2n) + \frac{[2n-2+\mu]}{4n}(2n+1) \right\} g(\phi Z, hX) = 0.$$
(7.6)

Putting X = hX in the above equation yields

$$\left\{ \frac{c+3}{4}(1-2n) + \frac{c-1}{4}(2n-1) + \frac{1}{4n}(2n-1) \right.$$

$$\left[c(n+1) + 3(n-1) + 2k \right] \left. \right\} g(\phi Z, hX) +$$

$$\left\{ \frac{1}{2}(1-2n) + \frac{[2n-2+\mu]}{4n}(2n+1) \right\} g(\phi Z, h^2X) = 0.$$
(7.7)

Taking trace in both sides of (7.7) and using trace(h) = 0, we get

$$\mu = \frac{2}{2n+1}.$$

From the above proposition we can state the following:

Theorem 7.3. A three dimensional $\phi - M$ -projectively semi-symmetric (k, μ) -contact space form reduces to an N(k)-contact space form.

References

- [1] Akbar, A. and Sarkar , A., Some curvature properties of $(k,\mu)-$ contact space forms, $Malaya\ Journal\ of\ Matematik$, 3, 1 (2015) 45-50.
- [2] Arslan, K., Ezentas, R., Mihai, I., Murathan, C., and Özgür, C., Certain inequalities for submanifolds in (k, μ) —contact space forms, $Bull.\ Austral.\ Math.\ Soc.$, 64 (2001) 201-212.
- [3] Blair, D.E., Contact manifolds in Riemannian geometry, Lecture notes in math., 509, *Springer-verlag*. (1976).

- [4] Blair, D.E., Koufogiorgos, T. and Papantoniou, B.J., Contact metric manifold satisfying a nullity condition , *Israel J.Math.* 91 (1995) 189-214.
- [5] Blair, D.E., Two remarks on contact metric structures, Tohoku Math. J. 29 (1977) 319-324.
- [6] B. J. Papantoniou, Contact Riemannian manifolds satisfying $R(\xi, X).R = 0$ and ξ belongs to (k, μ) -nullity distribution, Yokohama Math. J. 40 (1993), 149-161.
- [7] Cabreizo, J.L., Fernandez, L.M., Fernandez, M. and Zhen, G., The structure of a clss of K-contact manifolds, *Acta Math. Hungar.*, 82, 4 (1999) 331-340.
- [8] De, U.C. and De, A., On some curvature properties of K-contact manifolds, Extracta Mathematicae, 27 (2012) 125-134.
- [9] De, U.C. and Samui S., The structure of some classes of (k, μ) —contact space forms, Differential Geometry Dynamical System, 18(2016), 1-13.
- [10] Ghosh, S., On a class of (k, μ) —contact manifolds, $Bull.Cal.\ Math.\ Soc.$, 102 (2010) 219-226.
- [11] Jawarneh, M., Samui, S. and De, U.C. Projective curvature tensor on (k, μ) —contact space forms, International Journal of Pure and Applied Mathematics, vol. 113 no. 3 (2017), 425-439.
- [12] Tanno, S., Ricci curvature of contact Riemannian manifolds, Tôhoku Math. J., 40 (1988) 441-448.
- [13] Kishor, S. and Gupt, P.K., Some curvature tensor on (k, μ) —contact space forms, GANITA,vol. 66 (2016), 77-85.
- [14] Koufogiorgos, T., Contact Riemannian manifolds with ϕ -sectional curvature, $Tokyo\ J.\ Math.$, 20 (1997) 13-22.
- [15] Verheyen, P. and Verstraelen, L., A new intrinsic characterization of hypercylinders in Euclidean spaces, Kyungpook Math. J., 25 (1985) 1-4.
- [16] Yano, K. and Kon, M., Structure on manifolds, Series in Pure Mathematics 3, World Scientific Publishing Co., Singapore, (1984).
- [17] Yano, K. and Bochner, S., Curvature and Betti numbers, Annals of mathematics studies, 32, Princeton university press (1953).
- [18] Zhen, G., On conformal symmetric K-contact manifolds, Chinese Quart. J. Math., 7 (1992) 5-10.
- [19] Zhen, G., Cabreizo, J.L., Fernandez, L.M., Fernandez, M., On ξ—conformally flat contact metric manifolds, Indian J. Pure Appl. Math., 28 (1997) 725-734.

Author information

SHYAM KISHOR, PUSHPENDRA VERMA, Department of Mathematics and Astronomy, University of Lucknow, INDIA.

E-mail: skishormath@gmail.com, pushpendra140690@gmail.com

Received: May 7, 2020.

Accepted: September 14, 2020.