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Abstract In the present paper, the new generalized Ma-Minda type classes of ¢-starlike and
g-convex functions are introduced by using Ruscheweyh-type ¢-differential operator. Denote by
SR;‘(gb) the class of g-starlike functions and CRQ((;S) the class of g-convex functions associated
with Ruscheweyh-type ¢-differential operator, where ¢ is the function with positive real part. By
making use of these classes, we obtain initial coefficient estimates and Fekete-Szego inequalities
for the classes SR;\(¢>) and CR;‘((b), respectively.

1 Introduction

Let 7(U) denote the class of all analytic functions in the open unit disk U = {z : |z| < 1}. Let
A be the class of analytic functions f € #(U) which are normalized by f(0) = f'(0) —1 =0
and have the following form

f)=z+) anz" (z€D). (1.1)
n=2

Denote by S the subclass of A containing all univalent functions in U. For given two functions
f,9 € H(U), we say that f is subordinate to g in U, denoted by f(z) < g(z), if there exists a
Schwarz function w, analytic in U with w(0) = 0, |w(z)| < 1 such that f(z) = g(w(z)) in the
unit disk U (see [6]).

Let P be the class of analytic functions p in U with p(0) = 1 and R(p(z)) > O such thatp € P
if and only if p(z) < (1 + 2)/(1 — z). It is well known that a function f € S is called starlike
(f € 8*) or convex (f € C) if there exists a function p € P such that p must be expressed,
respectively, by the relations zf'(2)/f(z) = p(z) and 1 + zf"(2)/f'(2) = p(z) for all z € U.
For definitions and properties of these classes see [1] and [6].

Ma and Minda [13] unified various subclasses of starlike and convex functions for which
either one of the quantities zf'(z)/f(z) or 1 + zf"(z)/f'(2) is subordinate to a more general
superordinate function. The classes S*(¢) and C(¢) of Ma-Minda starlike and Ma-Minda convex
functions are, respectively, characterized by zf/(z)/f(z) < ¢(z) and 1 + zf"(2)/ f'(2) < ¢(z).
Here we assume that ¢ € P satisfying ¢(0) = 1,¢’(0) > 0 and ¢(U) is symmetric with respect
to the real axis. Also, ¢ has a series expansion of the form

#(2) =14 Byz + Baz* 4+ B32> + ...,

where all coefficients are real and B; > 0.

The coefficient a3 — pa3| on the normalized analytic functions f in U plays an important
role in geometric functions theory. In 1933, Fekete and Szego [4] obtained a sharp bound of the
functional ua% — a3 with real 0 < g < 1 for a univalent function f . Since then, the problem
of finding the sharp bounds for this functional of any compact family of functions f € A with



542 Amit Soni and Asena Cetinkaya

any complex p is known as the classical Fekete-Szego problem or inequality. Many authors have
considered the Fekete-Szegd problem for various subclasses of A, the upper bound for |a3 — pa3|
was investigated by many different authors (see [11], [12], [16]).

Quantum calculus or g—calculus is the calculus where we do not need limits. The great
interest is due to its applications in various branches of mathematics and physics, as for exam-
ple, in the areas of ordinary fractional calculus, orthogonal polynomials, basic hypergeometric
functions, combinatorics and so on.

Let g € (0,1). The g—derivative (or g—difference) operator, introduced by Jackson [8], is

defined as 1) — fa)
_ f(z) — flqz s
(D)) = E=HEL (2 #0).

We note that lim,_,;- (D, f)(z) = f'(z) if f is differentiable at z. For a function f of the form
q q
(1.1), we observe that
(Dgf)(2) =1+ Z[n]qanzn_l7
n=2

where [n], = ll%qq",q € (0,1). Clearly, for ¢ — 17, [n], — n.

The ¢—Gamma function is given by

Lg(n+1) = [n]gly(n),
and the g—factorial is given by
[n]g! = [1]q[2]g-..[n — 1g[n]q, (n > 0) and [0],! = 1.
Also, the g—shifted factorial is given by
([nlg)m = [nlg[n +1]g-.[n +m —1]g, (m = 1) and  ([n]q)o = 1.

For definitions and properties of g—calculus, one may refer to [5], [8], [9].

In [10], Kanas and Raducanu introduced the Ruscheweyh-type ¢-differential operator. Let
f € Abe given by (1.1). Then the Ruscheweyh-type g-differential operator R* : A — A is
defined by

ROF(2) = f(2) % Fypii(z —z—i—z n—l ATl o (e U, A> —1), (1.2)
n=2
where
n 1 n
Fq)\+1 _Z+Z ’I’L—l —_—Zz.

The Ruscheweyh-type g¢-differential operator reduces to the differential operator defined by
Ruscheweyh [15] in the case when g — 1~

The class S; of g-starlike functions was introduced and studied by Ismail ez al. in [7]. A
function f € Ais said to be in the class S; if and only if

:{feA : %(w>>0,qe(0,l),zeﬂj}.

In the limiting case ¢ — 17, the class Sj; reduces to the class S*.
The class C, of g-convex functions was introduced by Ahuja ef al. in [2]. A function f € A

is said to be in the class C, if and only if

={rea: %<W>>o,qe(o,1),zem}.

In the limiting case ¢ — 17, the class C, reduces to the class C.
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By using principle of subordination, we define two new Ma-Minda type classes of ¢-starlike
and g-convex functions associated with the Ruscheweyh-type ¢-differential operator as below:

SRy(@) ={rea: W<¢(z), peP,A>—1,2eU},
z A z
CR) () = {feA: Dq%i‘?’éifég)))) <9(2), 6 €PA> -1,z €U},

Remark 1.1. For A = 0, we get the following known classes defined in [3]:
SRy(¢) = S;(¢) and CRY(¢) = Cy(9).
In order to prove our results, we need the following lemma:

Lemma 1.2. [14] Let p € P with p(2) = 1 +¢12+ 222 + ..., then |e, | < 2 forn > 1.1If ¢ = 2,
then p(z) = p1(z) = }*W with v = §. Conversely, if p(z) = pi(z) for some |y;| = 1, then
¢ = 271 and |¢;| = 2. Furthermore, we have

\01|2
<219l
2

2
-l
‘Cz 2

If o] < 2and |e, — 5 < 2 — 141, then p(2) = pa (), where

Y2zt
(z) = 1+ “TiFimz
p2 1 _ peztn
14+71722
2c,—cf .
and v = 9, 72 = 7% Conversely, if p(z) = pa(z) for some |y;| = 1 and |y,| = 1, then
Nn=%7n= 2czlcc\'z and |y — | <2- ‘Cll

The aim of this paper is to investigate the initial coefficient estimates and Fekete-Szegé in-
equalities for the classes SR(?(gﬁ) of g-starlike functions and CR(’I\(QS) of g-convex functions de-
fined by Ruscheweyh-type ¢-differential operator. Several special cases of the main results are
also obtained.

2 Main Results

We first give initial coefficient estimates |a;| and |a3| for the functions in the class SR;\(QS).

Theorem 2.1. Let ¢(z) = | + Bz + Byz% + ..., where the coefficients B,, are real and By > 0.
If f given by (1.1) belongs to the class SRQ (¢), then for X > —1 we have

By

ozl = (2lg = DA+ 1] 2.1)
2)¢' By max Bi B>
S B oD ) {1’ 2, -1 B } 2.2)
([2]11*1)2([)\—1-l]q)z(z)q!([zf%le%,1) 2 (2)4!B;
o BB, - D 11,)2 R eSS

These results are sharp.
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Proof. If f € SR;\((,ZS), then there exists a Schwarz function w, analytic in U with w(0) = 0 and
|w(2)| < 1 such that

ZDq(R)\f(Z» .
R )
Define the function p by

1 +w(z)
1 —w(z)

p(2) =1l+ciz+e>+.. .

We can note that p(0) = 1 and p is a function with positive real part. Therefore

P(w(z)) = ¢ <§Ez§+1> =¢ (; [clz—i- (Cz— Cj) 2+ <C3 —cie+ f) 2+ D

_1+B;u+[€le—§)+Bfﬂz%w“. 2.4)
Also, computations show that
2Dy(R;, f(2)) (2l — DA +1]
RGO Tme
2
+ ([3]11 - 1()25{[:\4- 1](1) az — ([z]q o 1) (P‘(Bqﬁ]q) a% 22 NI (25)

From equations in (2.4) and (2.5), we obtain

(2] = DA+ 1]y _ Bia

(0),! 20

and

“%_29*”*%—mr4%“+“ff=&@ By B )

Taking into account Lemma 1.2, we obtain

a|:‘ B]Cl < B]
TR0 - D+ T (@l - DI g
and
B (Z)q!B c% c% B B
las] = ’mq - 1><[Al+ 1]q)2 [ 272 (([2@ - Nt B)”
(2),!B e P (B B
< 3B DT [2‘ 2+ (([21q11>+3fﬂ
(2)q!B1 max By &
=Bl - DO+ ™ {1"@%—1)*& }

Now using (2.6) and (2.7), we get

(z)q!([z]q B I)Z(P‘ + l]q)2 Bl BZ
T BBl — DA+ 1) (mq 1B 1)
(2)¢![Bica| (2)4!B

BE(EFED T

(Blg = DA+ 1]g)2
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An examination of the proof shows that equality in (2.1) is attained if ¢; = 2. Equivalently,
we have p(z) = (1 4+ z)/(1 — z). Therefore, the extremal function in class SR;((ﬁ) is given by

ZDq(Rqu(Z))_ pi(z) — 1
RG) (p1<z)+1)' )

In equality (2.2), for the first case, equality holds if ¢;, = 0, ¢, = 2. Equivalently, we have
p(z) = pa(z) = (1+ 2%)/(1 — 2?). Therefore, the extremal function in SR, (¢) is given by

Ry f(2) p(z)+1) '
In (2.2), for the second case, the equality holds if ¢; = 2, ¢; = 2. Therefore, the extremal

function in & R(’I\ (¢) is given by (2.8). Obtained extremal function for (2.1) is also valid for (2.3).
In fact, Theorem 2.1 gives a special case of Fekete-Szego problem for real

_ (2)q!([2]g — 1PN+ 1] < B By >
C BBl - DA+ \ 2, -1 B ’

which obtain the naturally and simple estimate. Thus the proof is completed.
Setting A = 0, we get the following known result given in [3].

Remark 2.2. Let ¢(z) = 1 + Bz + By2? + ..., where the coefficients B,, are real and B; > 0.
If f given by (1.1) belongs to the class S;(¢), then

laa] < =21 3] < =D max{l B Bl
a —_— a — —_ =
R P R T 2y -1 " B

B B
Rl - (s +2-1) , B
a3 — ay| <
Bl(B]q - 1) [3]q -1
We consider the Fekete-Szego problem with complex p in the following theorem. O

Theorem 2.3. Let i be a non-zero complex number and let f given by (1.1) belongs to the class
SR(/I\(gb), then for A > —1 we have

o @B [ B B p(Bl— D+ 1)
o3 =12l < TR = (s 1 {1"31*([2]{;—1) (1 <2>qz<[2}q—1>u+us)”' @10

The result is sharp.
Proof. Applying (2.6) and (2.7), we get
Cudd = (2)q!Bi o a.,dfB B _ #l(Bla = (A +1]q)o
o= s (3 3 5 @ (Bt )

In view of Lemma 1.2, we arrive at
(2)q!Bs el | el (| B B p([8le = DA + 1]q)2
o] < s P2 3 B @y (1 <z>q!<[21q—1>u+ua>m

@B B B, u(Blg — DA+ 1y)s
=30, - D+ 1) {“*{‘ e (“wm —1>[A+uz)’ IH
(2),!B: B, (1  u(Ble— D+ uq)z)H

S B0+ 1,0 2, -0 \' " @@, - D+ 13|

Equality is attained for the first case on choosing ¢; = 0, ¢; = 2 in (2.9) and for the second case
on choosing ¢; = 2, ¢ = 2 in (2.8) . Thus the proof is completed. O

max |1, =24
[

Setting A = 0, we get the following known result given in [3].
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Remark 2.4. Let ;1 be a nonzero complex number and let f given by (1.1) belongs to the class
S;(¢), then

B B B (B3l,-1)

2 1 2 1 q

az — pas| < max{l,‘Jr (1— 1 .
PR e N T P S P

In the next theorem, we investigate initial coefficient estimates for the class C'R;\((b).

Theorem 2.5. Let ¢(z) = 1 + Bz + Baz? + ..., where the coefficients B,, are real and By > 0.
If f given by (1.1) belongs to the class CR2(¢), then for X\ > —1 we have

By

el = e @10
(Z)Q!Bl max By @
51 < BB - D T, %wm—1+&}’ @12
OB - P B B D | 215,
: BiBl(Bly ~ D+ 1) 2| < BB - D+ 1)
(2.13)

These results are sharp.

Proof. If f € C’RQ(QS), then there exists a Schwarz function w, analytic in U with w(0) = 0 and
|w(2)| < 1 such that

Dy(2Dy(Ryf(2)))
bRy W)
Computations show that
Dy(=Dy(RAf () _ | 22— DN+ 1]y,
D,(Ryf(2)) (1D)! ’
2
+ 3]¢ ([3]4 _(21))(15[)\ =+ l]q)2a3 B [2]§([2]q _1) (P\(i;qﬂ]q) a% 2o
(2.14)
From equations given in (2.4) and (2.14), we obtain
22~ DA +1, B 015
(D! “T7 ‘
and
[ﬂﬁpbz$¥p+whh%_{ﬂaph_l)Ci$;b>a%_Bgz_Bfl+ny(zm)

In view of Lemma 1.2, using (2.15) and (2.16) we obtain

las] = ‘ Bicy < By
= L, D 1| S P, - Dt T
and
(2),!B: B B
931 < BB - DT 1,0 {LM%—U+&}'

Using (2.15) and (2.16), we also get

[23(2)q!([2]g = 1)*[A + 1]

_ By B\ 2
&mxmr4xu+m»<mf4+311>2

ESES)

as
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_ (2)¢!|Bica| - (2)¢!Bi
2[3]4([Blg = DA+ )2 — [Bla([B]g = (A +1]g)2°
Equality in (2.11) holds if

D,(2D,(R) —
q(z q(}\ qf(z))) :¢<p1(2) 1) 2.17)
Dy(Ry f(2)) pi(z) +1
and in (2.12) holds if
D, (2D, (R} _
q(Z q(/\ qf(z))) —¢ <p2(2’) 1> ’ (2.18)
Dy(Ry f(2)) p2(2) +1
where p; and p; are given by Lemma 1.2.
Theorem 2.5 gives a special case of Fekete-Szego problem for real
M:&wmamr4vu+%< B, zb_Q
Bil3]g(Blg = DA+ 12 \[2g =1~ B ’
which obtain the naturally and simple estimate. Thus the proof is completed. O

Putting A = 0, we get the following known result given in [3].

Remark 2.6. Let ¢(z) = 1 + Bz + By2? + ..., where the coefficients B,, are real and B; > 0.
If f given by (1.1) belongs to the class C,(¢), then

B B,

B B
2l =1 B

m&m—w’mﬂgmum—wm“%’

laa| <

RE(Rl, ~ DA + B2 - 1) B,
¢ .
B1[3]q([3]q* 1) ? [3]11([3]&1* 1)
We now consider Fekete-Szego inequality for complex .

<

az —

Theorem 2.7. Let p be a non-zero complex number and let f given by (1.1) belongs to the class
CR2(¢), then for A > —1 we have

(2)q!B1 X & B _ [3]<1([3]q - 1)([)‘ + ]]CI)Z
thﬂqflxu4fuazma[L‘Bl+<phgw){l [ﬂapﬁqaqflnx+1ﬁ“}u'

|las — paj| <

The result is sharp.
Proof. Applying (2.15) and (2.16), we obtain

(2)4!Bs o — Ci Ci & B _ pB3la([3lg = DA +1]q)2
mmh—nw+uw{2 2*2{Bﬁwmr4>o @mmmm—nu+%>ﬂ'
In view of Lemma 1.2, we get

2)4!B 2 2
a3 — e < (2)q!B1 [2|c. el {

B, B (1 _ ABla(Blg = DA+ 1) ) 'H
= 2B3q(Blg = DA+ 1q)2 2 2 (B (2lg—1) (2)q'22([21g — DA+ 112
(2)q'Bi LB <1 _ #Bla(Bla = DA+ 1q) )

&
aBla— D+ 1a)e 7B T (@l —1) 2)4'212(2lg — DA+ 12 ]

This result is sharp for the functions given in (2.17) and (2.18). This completes the proof. O

2
az—pa; = 2]

x |1

<
1

)

Setting A = 0, we get the following known result given in [3].

Remark 2.8. Let ;. be a nonzero complex number and let f given by (1.1) belongs to the class

Cq(¢), then
B, B - BBl -1
a+mq10 mmmn@H'

q

5 B
laz — pas| < M’]Ll)max{L

The authors wish to thank the referees for their constructive comments that helped improving
this paper substantially.
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