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Abstract Sufficient conditions are derived for the existence of denumerably many positive
radial solutions to the iterative system of elliptic equations

∆uj + P(|x|)gj(uj+1) = 0, R1 < |x| < R2,

u`+1 = u1, j = 1, 2 · ··, `,

x ∈ RN , N > 2, subject to a linear mixed boundary conditions at R1 and R2, by an application of
Krasnoselskii’s fixed point theorem.

1 Introduction

The system of nonlinear elliptic equations of the form

∆uj + gj(uj+1) = 0 in Ω,

uj = 0 on ∂Ω,

}
(1.1)

where j ∈ {1, 2, 3, · · ·, `}, u`+1 = u1, and Ω is a bounded domain in RN , has an important
applications in population dynamics, combustion theory and chemical reactor theory. The recent
literature for the existence, multiplicity and uniqueness of positive solutions for (1.1), see [5, 3,
6, 9, 10, 11] and references therein.

In [7], Dong and Wei established the existence of radial solutions for the following nonlinear
elliptic equations with gradient terms in annular domains,

− ∆u = g
(
|x|, u, x

|x|
· ∇u

)
in Ω

b
a,

u = 0 on ∂Ω
b
a,

by using Schauder’s fixed point theorem and contraction mapping theorem. In [15], Padhi, Graef
and Kanaujiya considered the following elliptic boundary value problem in an annulus,

∆u+ λh(|x|, u) = 0 in Ω,

u = 0 on ∂Ω,

and established the existence of positive radial solutions by the revised version of Gustaf-son
and Schmitt fixed point theorems. In [12], R. Kajikiya and E. Ko established the existence of
positive radial solutions for a semipositone elliptic equation of the form,

− ∆u = λg(u) in Ω,

u = 0 on ∂Ω,
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where Ω is a ball or an annulus in RN . Recently, Son and Wang [16] studied positive radial
solutions for nonlinear elliptic systems of the form,

∆uj + λKj(|x|)gj(uj+1) = 0 in Ω,

uj = 0 on |x| = r0,

uj → 0 as |x| → +∞,

where j ∈ {1, 2, 3, · · ·, `}, u`+1 = u1, λ > 0, N > 2, r0 > 0, and Ω is an exterior of a ball
and established existence, multiplicity and uniqueness results for various nonlinearities in gj.
Motivated by the aforementioned works, in this paper we establish the existence of denumerably
many positive radial solutions of the iterative system of nonlinear elliptic equation in an annulus,

∆uj + P(|x|)gj(uj+1) = 0, R1 < |x| < R2, (1.2)

with one of the following sets of boundary conditions:

uj = 0 on |x| = R1 and |x| = R2,

uj = 0 on |x| = R1 and
∂uj
∂r

= 0 on |x| = R2,

∂uj
∂r

= 0 on |x| = R1 and uj = 0 on |x| = R2,


(1.3)

where j ∈ {1, 2, 3, · · ·, `}, u`+1 = u1, ∆u = div(∇u), x ∈ RN , N > 2, P =
∏n

i=1 Pi, each
Pi : (R1, R2) → (0,+∞) is continuous, r2(N−1)P is integrable, may have singularities, by an
application of Krasnoselskii’s cone fixed point theorem on a Banach space.

The study of positive radial solutions, writing r = |x|, the iterative system (1.2) reduces to
the study of positive solutions to the following iterative system of ordinary differential equations,

u′′j (r) +
N − 1

r
u′j + P(r)gj

(
uj+1(r)

)
= 0, R1 ≤ r ≤ R2. (1.4)

By the change of variables vj(y) = uj
(
r(y)

)
and the transformation y = −

∫ R2

r
τ1−Ndτ turns

the system (1.4) into

v′′j (y) + r2(N−1)(y)P(r(y))gj
(
vj+1(y)

)
= 0, a < y < 0, (1.5)

where v1 = v`+1 and a = −
∫ R2

R1
τ1−Ndτ. Further, it can still transform system (1.5) into

$′′j (τ) + Q(τ)gj
(
$j+1(τ)

)
= 0, 0 < τ < 1, (1.6)

where Q(τ) = a2r2(N−1)
(
a(1 − τ)

)∏n
i=1 Qi(τ), Qi(τ) = Pi

(
r(a(1 − τ))

)
, by the change of

variables $j(τ) = vj(y) and τ = (a − y)/a. The detailed explanation of the transformation
from the equation (1.4) to (1.6) see [4, 13, 14]. By suitable choices of nonnegative real numbers
α,β,γ and δ with d = αγ+ αδ+ βγ > 0, the set of boundary conditions (1.3) reduces to

α$j(0)− β$′j(0) = 0,

γ$j(1) + δ$′j(1) = 0,

}
(1.7)

where j ∈ {1, 2, 3, · · ·, `} and $1 = $`+1. We note that Qi may have singularities on [0, 1]. Thus
for each i ∈ {1, 2, 3, · · ·, n}, we assume that the following conditions hold throughout the paper:

(H1) gj : [0,+∞)→ [0,+∞) is continuous.

(H2) Qi ∈ Lpi [0, 1], (pi ≥ 1) and may have denumerably many singularities on (0, 1/2).

(H3) There exists a sequence {τk}∞k=1 such that 0 < τk+1 < τk <
1
2
, k ∈ N,

lim
k→∞

τk = τ∗ <
1
2
, lim

τ→τk

Qi(τ) = +∞, k ∈ N, i = 1, 2, 3, · · · , n

and each Qi(τ) does not vanish identically on any subinterval of [0, 1]. Moreover, there
exists Q∗i > 0 such that

Q∗i < Qi(τ) <∞ a.e. on [0, 1].
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The rest of the paper is organized in the following fashion. In Section 2, we convert the boundary
value problem (1.6)–(1.7) into equivalent integral equation which involves the kernel. Also, we
estimate bounds for the kernel which are useful in our main results. In Section 3, we establish
a criteria for the existence of denumerably many positive radial solutions for (1.2) by apply-
ing Krasnoselskii’s cone fixed point theorem in a Banach space. Finally, as an application, an
example to demonstrate our results is given.

2 Kernel and Its Bounds

In this section, we constructed kernel to the homogeneous boundary value problem correspond-
ing to (1.6)–(1.7) and established certain lemmas for the bounds of the kernel.

Lemma 2.1. Let V ∈ C[0, 1]. Then the boundary value problem

$′′1 (τ) + V(τ) = 0, 0 < τ < 1, (2.1)

α$1(0)− β$′1(0) = 0,

γ$1(1) + δ$′1(1) = 0,

}
(2.2)

has a unique solution

$1(τ) =

∫ 1

0
ℵ(τ, s)V(s)ds, (2.3)

where

ℵ(τ, s) = 1
d

{
(β+ ατ)(γ+ δ− γs), 0 ≤ τ ≤ s ≤ 1,

(β+ αs)(γ+ δ− γτ), 0 ≤ s ≤ τ ≤ 1.

Lemma 2.2. For c ∈ (0, 1/2), let π(c) = min
{
β+ αc

β+ α
,
δ+ γc

δ+ γ

}
. The kernel ℵ(τ, s) has the

following properties:

(i) ℵ(τ, s) is nonnegative and continuous on [0, 1]× [0, 1],

(ii) ℵ(τ, s) ≤ ℵ(s, s) for t, τ ∈ [0, 1],

(iii) there exists c ∈ (0, 1/2) such that π(c)ℵ(s, s) ≤ ℵ(τ, s) for τ ∈ [c, 1− c], s ∈ [0, 1].

Proof. From the definition of kernel ℵ(τ, s), it is clear that (i) and (ii) hold. To prove (iii), let
τ ∈ [c, 1− c] and s ≤ τ, then

ℵ(τ, s)
ℵ(s, s)

=
γ+ δ− γτ

γ+ δ− γs
≥ δ+ γc

δ+ γ
≥ π(c),

and for τ ≤ s, we have
ℵ(τ, s)
ℵ(s, s)

=
β+ ατ

β+ αs
≥ β+ αc

β+ α
≥ π(c).

This completes the proof.

From Lemma 2.1, we note that an `-tuple ($1, $2, · · ·, $`) is solution of the boundary value
problem (1.6)–(1.7) if and only, if

$1(τ) =

∫ 1

0
ℵ(τ, s1)Q(s1)g1

[∫ 1

0
ℵ(s1, s2)Q(s2)g2

[∫ 1

0
ℵ(s2, s3)Q(s3)g4 · · ·

g`−1

[∫ 1

0
ℵ(s`−1, s`)Q(s`)g`

(
$1(s`)

)
ds`

]
· · ·

]
ds3

]
ds2

]
ds1.
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In general,

$j(τ) =

∫ 1

0
ℵ(τ, s)Q(s)gj

(
$j+1(s)

)
ds, j = 1, 2, 3, · · · , `,

$1(τ) =$`+1(τ), 0 < τ < 1.

Denote the Banach space C([0, 1],R) by B with the norm ‖$‖ = max
τ∈[0,1]

|$(τ)|. For c ∈

(0, 1/2), the cone Pc ⊂ B is defined by

Pc =
{
$ ∈ B : $(τ) ≥ 0, min

$∈[c, 1−c]
$(τ) ≥ π(c)‖$‖

}
.

For any $1 ∈ Pc, define an operator T : Pc → B by

(T $1)(τ) =

∫ 1

0
ℵ(τ, s1)Q(s1)g1

[∫ 1

0
ℵ(s1, s2)Q(s2)g2

[∫ 1

0
ℵ(s2, s3)Q(s3)g4 · · ·

g`−1

[∫ 1

0
ℵ(s`−1, s`)Q(s`)g`

(
$1(s`)

)
ds`

]
· · ·

]
ds3

]
ds2

]
ds1.

Lemma 2.3. For each c ∈ (0, 1/2), T (Pc) ⊂ Pc and T : Pc → Pc is completely continuous.

Proof. Let c ∈ (0, 1/2). Since gj($j+1(τ)) is nonnegative for τ ∈ [0, 1], $1 ∈ Pc. Since ℵ(τ, s),
is nonnegative for all τ, s ∈ [0, 1], it follows that T ($1(τ)) ≥ 0 for all τ ∈ [0, 1], $1 ∈ Pc Now,
by Lemma 2.1 and 2.2, we have

min
τ∈[c,1−c]

(T $1)(τ)

= min
τ∈[c,1−c]

{∫ 1

0
ℵ(τ, s1)Q(s1)g1

[∫ 1

0
ℵ(s1, s2)Q(s2)g2

[∫ 1

0
ℵ(s2, s3)Q(s3)g4 · · ·

g`−1

[∫ 1

0
ℵ(s`−1, s`)Q(s`)g`

(
$1(s`)

)
ds`

]
· · ·

]
ds3

]
ds2

]
ds1

}

≥ π(c)

∫ 1

0
ℵ(s1, s1)Q(s1)g1

[∫ 1

0
ℵ(s1, s2)Q(s2)g2

[∫ 1

0
ℵ(s2, s3)Q(s3)g4 · · ·

g`−1

[∫ 1

0
ℵ(s`−1, s`)Q(s`)g`

(
$1(s`)

)
ds`

]
· · ·

]
ds3

]
ds2

]
ds1

≥ π(c)

{∫ 1

0
ℵ(τ, s1)Q(s1)g1

[∫ 1

0
ℵ(s1, s2)Q(s2)g2

[∫ 1

0
ℵ(s2, s3)Q(s3)g4 · · ·

g`−1

[∫ 1

0
ℵ(s`−1, s`)Q(s`)g`

(
$1(s`)

)
ds`

]
· · ·

]
ds3

]
ds2

]
ds1

}
≥ π(c) max

τ∈[0,1]
|T $1(τ)|.

Thus T (Pc) ⊂ Pc. Therefore, the operator T is completely continuous by standard methods and
by the Arzela-Ascoli theorem.

3 Denumerably Many Positive Radial Solutions

In this section, for the existence of denumerably many positive radial solutions of (1.2), we apply
the following theorems.

Theorem 3.1. [8] Let E be a cone in a Banach space X and Λ1, Λ2 are open sets with 0 ∈
Λ1,Λ1 ⊂ Λ2. Let T : E ∩ (Λ2\Λ1)→ E be a completely continuous operator such that



ELLIPTIC EQUATIONS IN AN ANNULUS 553

(a) ‖T u‖ ≤ ‖u‖, u ∈ E ∩ ∂Λ1, and ‖T u‖ ≥ ‖u‖, u ∈ E ∩ ∂Λ2, or

(b) ‖T u‖ ≥ ‖u‖, u ∈ E ∩ ∂Λ1, and ‖T u‖ ≤ ‖u‖, u ∈ E ∩ ∂Λ2.

Then T has a fixed point in E ∩ (Λ2\Λ1).

Theorem 3.2. (Hölder’s) Let f ∈ Lpi [0, 1] with pi > 1, for i = 1, 2, · · · , n and
n∑

i=1

1
pi

= 1. Then

n∏
i=1

fi ∈ L1[0, 1] and ‖
∏n

i=1 fi‖1 ≤
∏n

i=1 ‖fi‖pi . Further, if f ∈ L1[0, 1] and g ∈ L∞[0, 1]. Then

fg ∈ L1[0, 1] and ‖fg‖1 ≤ ‖f‖1‖g‖∞.

Consider the following three possible cases for Pj ∈ Lpi [0, 1] :

n∑
i=1

1
pi
< 1,

n∑
i=1

1
pi

= 1,
n∑

i=1

1
pi
> 1.

Firstly, we seek denumerably many positive radial solutions for the case
n∑

i=1

1
pi
< 1.

Theorem 3.3. Suppose (H1)− (H3) hold, let {ck}∞k=1 be a sequence with τk+1 < ck < τk. Let
{Ak}∞k=1 and {Bk}∞k=1 be such that

Ak+1 < π(ck)Bk < Sk < ηBk < Ak, k ∈ N,

where

η = max

{[
π(c1)a

2
n∏

i=1

Q∗i

∫ 1−c1

c1

ℵ(s, s)r2(N−1)(a(1− s))ds]−1

, 1

}
.

Further, assume that gj satisfies

(J1) gj($(τ)) ≤ N1Ak for all τ ∈ [0, 1], 0 ≤ $ ≤ Ak,
where

N1 <

[
a2‖ℵ‖q

n∏
i=1

‖Qi‖pi

]−1

, ℵ(s) = ℵ(s, s)r2(N−1)(a(1− s`)),
(J2) gj($(τ)) ≥ ηBk for all τ ∈ [ck, 1− ck], π(ck)Bk ≤ $ ≤ Bk.

The iterative system (1.2) has denumerably many positive radial solutions {($[k]
1 , $

[k]
2 , ···, $[k]

` )}∞k=1

such that $[k]
j (τ) ≥ 0 on (0, 1), j = 1, 2, · · ·, ` and k ∈ N.

Proof. Consider the sequences {Λ1,k}∞k=1 and {Λ2,k}∞k=1 of open subsets of B defined by

Λ1,k = {$ ∈ B : ‖$‖ < Ak}, Λ2,k = {$ ∈ B : ‖$‖ < Bk}.

Let {ck}∞k=1 be as in the hypothesis and note that τ∗ < τk+1 < ck < τk <
1
2 , for all k ∈ N. For

each k ∈ N, define the cone Pck by

Pck =

{
$ ∈ B : $(τ) ≥ 0 and min

τ∈[ck, 1−ck]
$(t) ≥ π(ck)‖$‖

}
.

Let $1 ∈ Pck ∩ ∂Λ1,k. Then, $1(s) ≤ Ak = ‖$1‖ for all s ∈ [0, 1]. By (J1) and 0 < s`−1 < 1,
we have∫ 1

0
ℵ(s`−1, s`)Q(s`)g`

(
$1(s`)

)
ds` ≤

∫ 1

0
ℵ(s`, s`)Q(s`)g`

(
$1(s`)

)
ds`

≤ N1Ak

∫ 1

0
ℵ(s`, s`)Q(s`)ds`

≤ N1Ak

∫ 1

0
ℵ(s`, s`)a2r2(n−1)(a(1− s`)) n∏

i=1

Qi(s`)ds`.



554 K. Rajendra Prasad, Mahammad Khuddush and B. Bharathi

There exists a q > 1 such that
n∑

i=1

1
pi

+
1
q
= 1. By the first part of Theorem 3.2, we have

∫ 1

0
ℵ(s`−1, s`)Q(s`)g`

(
$1(s`)

)
ds` ≤ N1Aka

2‖ℵ‖q
n∏

i=1

‖Qi‖pi

≤ Ak.

It follows in similar manner for 0 < s`−2 < 1,∫ 1

0
ℵ(s`−2, s`−1)Q(s`−1)g`−1

[∫ 1

0
ℵ(s`−1, s`)Q(s`)g`

(
$1(s`)

)
ds`

]
ds`−1

≤
∫ 1

0
ℵ(s`−1, s`−1)Q(s`−1)g`−1(Rk)ds`−1

≤ M1Rk

∫ 1

0
ℵ(s`−1, s`−1)Q(s`−1)ds`−1

≤ N1Aka
2‖ℵ‖q

n∏
i=1

‖Qi‖pi

≤ Ak.

Continuing with this bootstrapping argument, we get

(Ω$1)(τ) =

∫ 1

0
ℵ(τ, s1)Q(s1)g1

[∫ 1

0
ℵ(s1, s2)Q(s2)g2

[∫ 1

0
ℵ(s2, s3)Q(s3)g4 · · ·

g`−1

[∫ 1

0
ℵ(s`−1, s`)Q(s`)g`

(
$1(s`)

)
ds`

]
· · ·

]
ds3

]
ds2

]
ds1

≤ Ak.

Since Ak = ‖$1‖ for $1 ∈ Pβk
∩ ∂Λ1,k, we get

‖Ω$1‖ ≤ ‖$1‖. (3.1)

Let τ ∈ [ck, 1− ck]. Then, Bk = ‖$1‖ ≥ $1(t) ≥ min
τ∈[ck,1−ck]

$1(t) ≥ π(ck) ‖$1‖ ≥ ckBk. By

(J2) and for s`−1 ∈ [ck, 1− ck], we have∫ 1

0
ℵ(s`−1, s`)Q(s`)g`

(
u1(s`)

)
ds`

≥
∫ 1−ck

ck

ℵ(s`−1, s`)Q(s`)g`
(
u1(s`)

)
ds`

≥ ηBk

∫ 1−ck

ck

ℵ(s`−1, s`)Q(s`)ds`

≥ ηBkπ(c1)

∫ 1−c1

c1

ℵ(s`, s`)Q(s`)ds`

≥ ηBkπ(c1)a
2
∫ 1−c1

c1

ℵ(s`, s`)r2(n−1)(a(1− s`)) n∏
i=1

Qi(s`)ds`

≥ ηBkπ(c1)a
2

n∏
i=1

Q∗i

∫ 1−c1

c1

ℵ(s`, s`)r2(n−1)(a(1− s`))ds`
≥ Bk.
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Continuing with bootstrapping argument, we get

(Ω$1)(τ) =

∫ 1

0
ℵ(τ, s1)Q(s1)g1

[∫ 1

0
ℵ(s1, s2)Q(s2)g2

[∫ 1

0
ℵ(s2, s3)Q(s3)g4 · · ·

g`−1

[∫ 1

0
ℵ(s`−1, s`)Q(s`)g`

(
$1(s`)

)
ds`

]
· · ·

]
ds3

]
ds2

]
ds1

≥ Bk.

Thus, if $1 ∈ Pck ∩ ∂Λ2,k, then
‖Ω$1‖ ≥ ‖$1‖. (3.2)

It is evident that 0 ∈ Λ2,k ⊂ Λ2,k ⊂ Λ1,k. From (3.1),(3.2), it follows from Theorem 3.1 that
the operator Ω has a fixed point $[k]

1 ∈ Pck ∩
(
Λ1,k\Λ2,k

)
such that $[k]

1 (τ) ≥ 0 on (0, 1),
and k ∈ N. Next setting $`+1 = $1, we obtain denumerably many positive radius solutions
{($[k]

1 , $
[k]
2 , · · ·, $[k]

` )}∞k=1 of (1.3) given iteratively by

$j(τ) =

∫ 1

0
ℵ(τ, s)Q(s)gj($j+1(s))ds, j = 1, 2, · · · , `− 1, `,

$`+1(τ) = $1(τ).

The proof is completed.

For
∑n

i=1 pi = 1, we have the following theorem.

Theorem 3.4. Suppose (H1)− (H3) hold, let {ck}∞k=1 be a sequence with τk+1 < ck < τk. Let
{Ak}∞k=1 and {Bk}∞k=1 be such that

Ak+1 < π(ck)Bk < Sk < ηBk < Ak, k ∈ N,

Further, assume that gj satisfies (J2) and
(J3) gι($(τ)) ≤ N2Ak for all 0 ≤ $(τ) ≤ Ak, τ ∈ [0, 1], where

N2 < min

{[
a2‖ℵ‖∞

n∏
i=1

‖Qi‖pi

]−1

, η

}
.

The iterative system (1.2) has denumerably many positive radial solutions {($[k]
1 , $

[k]
2 , · · ·,

$
[k]
` )}∞k=1 such that $[k]

j (τ) ≥ 0 on (0, 1), j = 1, 2, · · ·, ` and k ∈ N.

Proof. Let Λ1,k be as in the proof of Theorem 3.3 and let $1 ∈ Pck ∩ ∂Λ2,k. Again $1(τ) ≤
Ak = ‖$1‖, for all τ1 ∈ [0, 1]. By (J3) and 0 < τ`−1 < 1, we have∫ 1

0
ℵ(s`−1, s`)Q(s`)g`

(
u1(s`)

)
ds`

≤
∫ 1

0
ℵ(s`, s`)Q(s`)g`

(
u1(s`)

)
ds`

≤ N2Ak

∫ 1

0
ℵ(s`, s`)Q(s`)ds`

≤ N2Aka
2
∫ 1

0
ℵ(s`, s`)r2(n−1)(a(1− s`)) n∏

i=1

Qi(s`)ds`

≤ N2Aka
2‖ℵ‖∞

n∏
i=1

‖Qi‖pi

≤ Ak.
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Continuing with this bootstrapping argument, we get

(Ω$1)(τ) =

∫ 1

0
ℵ(τ, s1)Q(s1)g1

[∫ 1

0
ℵ(s1, s2)Q(s2)g2

[∫ 1

0
ℵ(s2, s3)Q(s3)g4 · · ·

g`−1

[∫ 1

0
ℵ(s`−1, s`)Q(s`)g`

(
$1(s`)

)
ds`

]
· · ·

]
ds3

]
ds2

]
ds1

≤ Ak.

Thus, ‖Ω$1‖ ≤ ‖$1‖, for$1 ∈ Pck∩∂Λ1,k. Rest of the proof is similar to the proof of Theorem
3.3. Hence, the theorem.

Finally, we deal with the case
∑n

i=1 pi > 1.

Theorem 3.5. Suppose (H1)− (H3) hold, let {ck}∞k=1 be a sequence with τk+1 < ck < τk. Let
{Ak}∞k=1 and {Bk}∞k=1 be such that

Ak+1 < π(ck)Bk < Sk < ηBk < Ak, k ∈ N,

Further, assume that gj satisfies (J2) and
(J4) gj($(τ)) ≤ N3Ak for all 0 ≤ u(τ) ≤ Ak, τ ∈ [0, 1], where

N3 < min

{[
a2‖ℵ‖∞

n∏
i=1

‖Qi‖1

]−1

, η

}
.

The iterative system (1.2) has denumerably many positive radial solutions {($[k]
1 , $

[k]
2 , · · ·,

$
[k]
` )}∞k=1 such that $[k]

j (τ) ≥ 0 on (0, 1), j = 1, 2, · · ·, ` and k ∈ N.

Proof. The proof of the present theorem is similar to the proofs of Theorem 3.3 and Theorem
3.4. So, we omit details here.

4 Application

In this section, we provide an example to illustrate the applicability of main results.

Example 4.1. Consider the following fractional order boundary value problem,

∆uj + P(|x|)gj(uj+1) = 0, 1 < |x| < 2,

uj = 0 on |x| = 1 and |x| = 2,

uj = 0 on |x| = 1 and
∂uj
∂r

= 0 on |x| = 2,

∂uj
∂r

= 0 on |x| = 1 and uj = 0 on |x| = 2,


(4.1)

where j ∈ {1, 2}, u3 = u1. Let N = 3 and α = β = γ = δ = 1. Then d = 3. Now by simple

calculations, we get a = −1
2

and r(τ) =
2

1− 2τ
,

Q(τ) =
1
4

[
2

2− τ

]4 2∏
i=1

Qi(τ), Qi(τ) = Pi

(
2

2− τ

)
,

in which

P1(t) =
1

|t− 1|
and P2(t) =

1
|t− 1

2 |
,
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gj($) =



0.1× 10−4, $ ∈ (10−4,+∞),

28×10−(4k+2)−0.1×10−4k−10

10−(4k+2)−10−4k (u− 10−4k) + 0.1× 10−4k−10,

$ ∈
[

10−(4k+2), 10−4k
]
,

28× 10−(4k+2), $ ∈
(

1
5 × 10−(4k+2), 10−(4k+2)

)
,

28×10−(4k+2)−0.1×10−(4k+4)

1
5×10−(4k+2)−10−(4k+4) ($ − 10−(4k+4)) + 0.1× 10−(4k+4),

$ ∈
(

10−(4k+4), 1
5 × 10−(4k+2)

]
,

0, $ = 0,

j = 1, 2. Let

τk =
31
64
−

k∑
r=1

1
4(r + 1)4 , ck =

1
2
(τk + τk+1), k = 1, 2, 3, · · · ,

then

c1 =
15
32
− 1

648
<

15
32

and

τk+1 < ck < τk, π(ck) =
1 + ck

2
>

1
5
.

It is easy to see

τ1 =
15
32

<
1
2
, τk − τk+1 =

1
4(k + 2)4 , k = 1, 2, 3, · · · .

Since
∞∑
k=1

1
k4 =

π4

90
and

∞∑
k=1

1
k2 =

π2

6
, it follows that

τ∗ = lim
k→∞

τk =
31
64
−
∞∑
i=1

1
4(i+ 1)4 =

47
64
− π4

360
>

1
5
,

Also, P1, P2 ∈ Lp[0, 1],
∏2

i=1 Q
∗
i = 2, and

π(c1)a
2

n∏
i=1

Q∗i

∫ 1−c1

c1

ℵ(s, s)r2(N−1)(a(1− s))ds ≈ 0.03636905790.

η = max

{[
π(c1)a

2
n∏

i=1

Q∗i

∫ 1−c1

c1

ℵ(s, s)r2(N−1)(a(1− s))ds]−1

, 1

}
≈ 27.49590057.

and let q = 2, p1 = p2 = 1/4, then ‖ℵ‖q = 4.230401435, ‖Q1‖p1 = 4.895788358,
‖Q2‖p2 = 1.199795099, and

N1 <

[
a2‖ℵ‖q

n∏
i=1

‖Qi‖pi

]−1

≈ 0.1609713891.

So, let N1 = 0.15. In addition if we take

Ak = 10−4k, Bk = 10−(4k+2),
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then

Ak+1 = 10−(4k+4) <
1
5
× 10−(4k+2) < ckBk

< Bk = 10−(4k+2) < Ak = 10−4k,

and g1, g2 satisfies the following growth conditions:

gj($) ≤ N1Ak = 0.15× 10−4k, $ ∈
[

0, 10−4k
]
,

gj($) ≥ηBk = 27.49590057× 10−(4k+2), $ ∈
[

1
5
× 10−(4k+2), 10−(4k+2)

]
.

Then all the conditions of Theorem 3.3 are satisfied. Therefore, by Theorem 3.3, the boundary
value problem (4.1) has denumerably many positive radial solutions {($[k]

1 , $
[k]
2 )}∞k=1 such that

10−(4k+2) ≤ ‖$[k]
j ‖ ≤ 10−4k for each k = 1, 2, 3, · · · , and j = 1, 2.
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