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Abstract This paper deals with some existence of bounded solutions for two classes of sem-
linear differential equations. We consider the cases when the linear part of the equation generates
a C0 semigroup as well as an integrated semigroup. An application is made of a Darbo fixed
point theorem associated with the diagonalization method and the concept of measure of non-
compactness. The present results initiate the application of such method to semilinar differential
equations on the half line.

1 Introduction

There has been a significant development in semilinear functional evolution equations in recent
years; see the monographs [1, 6, 21, 25, 27], the papers [2, 3, 4, 8, 9], and the references therein.
Some global existence results for functional evolution equations and inclusions in the space of
continuous and bounded functions are presented in [11, 12]. In [2], an iterative method is used
for the existence of mild solutions of evolution equations and inclusions. In the previous papers
some restrictions are supposed like the compactness of the semigroup, the Lipschitz conditions
on the nonlinear term or the boundedness of the obtained mild solutions.

Many techniques have been developed for studying the existence and uniqueness of solu-
tions of initial and boundary value problem for fractional differential equations. Several authors
tried to develop a technique that depends on the Darbo or the Mönch fixed point theorems with
the Hausdorff or Kuratowski measure of noncompactness. The notion of the measure of non-
compactness was defined in many ways. In 1930, Kuratowski [26] defined the measure of non-
compactness, α(A), of a bounded subset A of a metric space (X, d), and in 1955, Darbo [17]
introduced a new type of fixed point theorem for set contractions.

In [5], the authors used a generalization of the classical Darbo fixed point theorem combined
with the concept of measure of noncompactness in Fréchet spaces to prove some existence of
mild solutions for the following evolution problem

{
u′′(t)−A(t)u(t) = f(t, ut); if t ∈ R+ := [0,∞),

u0 = Φ ∈ B, u′(0) = ū ∈ E,
(1.1)

where B is an abstract phase space, (E, ‖ · ‖) is a (real or complex) Banach space, {A(t)}t>0 is
a family of linear closed operators from E into E that generate an evolution system of bounded
linear operators {U(t, s)}(t,s)∈Λ; with Λ := {(t, s) ∈ R+ ×R+ : 0 ≤ s ≤ t < +∞}.

In [14], the authors used the diagonalization method to prove some existence of bounded
solutions to an initial value problem for fractional differential equations on the half line. In
[13], by using the Schauder fixed point theorem combined with the diagonalization process, the
authors provide sufficient conditions for the existence of bounded solutions for the following
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class of Caputo fractional differential equations{
CDαy(t) = f(t, y(t),C Dα−1y(t)); if t ∈ R+, 1 < α ≤ 2,
y(0) = y0, y is bounded on R+.

(1.2)

In this paper, we discuss the existence of bounded mild solutions for the evolution equation{
u′(t) = Au(t) + f(t, u(t)); if t ∈ R+,

u(0) = u0 ∈ E, u is bounded on R+,
(1.3)

where f : R+ × E → E is a given function, (E, ‖ · ‖) is a (real or complex) Banach space, and
A : D(A) ⊂ E → E is the infinitesimal generator of a C0-semigroup T (t), t ≥ 0.

Next, we shall be concerned with existence of integral mild solutions for problem (1.3), in the
case where A : D(A) ⊂ E → E is a nondensely defined closed linear operator on the Banach
space E.

This paper initiates the application of the diagonalization method to first order semilinear
differential equations in case that the linear part of the equation generates a C0-semigroup as
well as an integrated semigroup.

2 Preliminaries

Let I := [0, T ]; T > 0. A measurable function u : I → E is Bochner integrable if and only if
‖u‖ is Lebesgue integrable. For properties of the Bochner integral, see for instance, Yosida [28].
By B(E) we denote the Banach space of all bounded linear operators from E into E, with the
norm

‖N‖B(E) = sup
‖u‖=1

‖N(u)‖.

As usual, L1(I, E) denotes the Banach space of measurable functions u : I → E which are
Bochner integrable and normed by

‖u‖L1 =

∫ T

0
‖u(t)‖dt.

As usual, by C := C(I) we denote the Banach space of all continuous functions from I into E
with the norm ‖ · ‖∞ defined by

‖u‖∞ = sup
t∈I
‖u(t)‖.

Now, we define the Kuratowski and Hausdorf measures of noncompactness and give their
basic properties.

Definition 2.1. [10] Let E be a Banach space and ΩE the bounded subsets of E. The Kuratowski
measure of noncompactness is the map α : ΩE → [0,∞) defined by

α(B) = inf{ε > 0 : B ⊆ ∪ni=1Bi and diam(Bi) ≤ ε}; here B ∈ ΩE ,

where
diam(Bi) = sup{‖u− v‖ : u, v ∈ Bi}.

The Kuratowski measure of noncompactness satisfies the following properties:

Lemma 2.2. [10, 23] Let A and B be bounded sets.

(a) α(B) = 0⇔ B is compact (B is relatively compact), where B denotes the closure of B.

(b) α(B) = α(B) = α(convB), where convB is the convex hull of B.
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(c) monotonicity: A ⊂ B ⇒ α(A) ≤ α(B).

(d) algebraic semi-additivity : α(A+B) ≤ α(A) + α(B), where

A+B = {x+ y : x ∈ A, y ∈ B}.

(e) semi-homogencity : α(λB) = |λ|α(B); λ ∈ R. where λ(B) = {λx : x ∈ B}.

(f) invariance under translations: α(B + x0) = α(B) for any x0 ∈ E.

Lemma 2.3. [20] Let V ⊂ C(I, E) be a bounded and equicontinuous set, then

(i) the function t→ α(V (t)) is continuous on I, and

αc(V ) = sup
t∈I

α(V (t)).

(ii) α

(∫ T

0
u(s)ds : u ∈ V

)
≤
∫ T

0
α(V (s))ds,

where
V (t) = {u(t) : u ∈ V }; t ∈ I.

Lemma 2.4. [15] If Y is a bounded subset of a Banach space X, then for each ε > 0, there is a
sequence {yk}∞k=1 ⊂ Y such that

µ(Y ) ≤ 2µ({yk}∞k=1) + ε.

Lemma 2.5. [24] If {uk}∞k=1 ⊂ L1(I) is uniformly integrable, then µ({uk}∞k=1) is measurable
and

µ

({∫ t

0
uk(s)ds

}∞
k=1

)
≤ 2

∫ t

0
µ({uk(s)}∞k=1)ds.

For our purpose we will need the following fixed point theorem.

Theorem 2.6. (Darbo’s Fixed Point Theorem) [18, 19] Let X be a Banach space and C be a
bounded, closed, convex and nonempty subset of X. Suppose a continuous mapping N : C → C
is such that for all closed subsets D of C,

α(T (D)) ≤ kα(D), (2.1)

where 0 ≤ k < 1, and α is the Kuratowski measure of noncompactness. Then T has a fixed point
in C.

Remark 2.7. Mappings satisfying the Darbo-condition (2.1) have subsequently been called k-set
contractions.

3 Bounded Mild Solutions

Let us start by defining what we mean by a bounded mild solution of the problem (1.3).

Definition 3.1. By a bounded mild solution of the problem (1.3) we mean a continuous and
bounded function satisfying the integral equation

u(t) = T (t)u0 +

∫ t

0
T (t− s) f(s, u(s))ds.

The following hypotheses will be used in the sequel.

(H1) A : D(A) ⊂ E → E is the infinitesimal generator of a C0-semigroup {T (t)}t≥0,
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(H2) The function t 7→ f(t, u) is measurable for each u ∈ E, and the function u 7→ f(t, u) is
continuous for a.e. t ∈ R+,

(H3) There exists a locally integrable function pn : R+ → R+; n ∈ N such that

‖f(t, u)‖ ≤ pn(t)(1 + ‖u‖), for a.e. t ∈ In := [0, n], and each u ∈ E,

(H4) For each bounded set B ⊂ E, we have

α(f(t, B)) ≤ pn(t)α(B), a.e. t ∈ In.

Set
M = sup

t∈R+

‖T (t)‖B(E), p
∗
n =

∫ n

0
pn(t)dt, p̃n =

∫ n

0
e−ωtpn(t)dt, n ∈ N.

Now, we shall prove the following theorem concerning the existence of bounded mild solu-
tions of problem (1.3).

Theorem 3.2. Assume that the hypotheses (H1) − (H4) hold. If 4Mp∗n < 1, then the problem
(1.3) has at least one bounded mild solution defined on R+.

Proof. The proof will be given in two parts. Fix n ∈ N and consider the problem
u′(t) = Au(t) + f(t, u(t)); t ∈ In,

u(0) = u0 ∈ E.
(3.1)

Part1 . We begin by showing that (3.1) has a solution un ∈ C(In) with ‖un‖∞ ≤ Rn where

Rn ≥
M‖u0‖+Mp∗n

1−Mp∗n
.

Consider the operator N : C(In)→ C(In) defined by:

(Nu)(t) = T (t)u0 +

∫ t

0
T (t− s) f(s, u(s))ds. (3.2)

Clearly, the fixed points of the operator N are mild solution of the problem (3.1).
For any u ∈ C(In), and each t ∈ In we have

‖(Nu)(t)‖ ≤ M‖u0‖+M

∫ t

0
‖f(s, u(s))‖ds

≤ M‖u0‖+M

∫ t

0
pn(s)(1 + ‖u(s)‖)ds

≤ M‖u0‖+Mp∗n(1 +Rn).

Thus
‖N(u)‖∞ ≤M‖u0‖+Mp∗n(1 +Rn) ≤ Rn. (3.3)

This proves that N transforms the ball BRn
:= B(0, Rn) = {w ∈ C(In) : ‖w‖∞ ≤ Rn} into

itself. We shall show that the operator N : BRn
→ BRn

satisfies all the assumptions of Theorem
2.6. The proof will be given in two steps.

Step 1. N : BRn
→ BRn

is continuous.
Let {un}n∈N be a sequence such that un → u in BRn

. Then, for each t ∈ In, we have

‖(Nun)(t)− (Nu)(t)‖ ≤
∫ t

0
T (t− s)‖f(s, un(s))− f(s, u(s))‖ds. (3.4)
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Since un → u as n → ∞ and f is Carathéodory, then by the Lebesgue dominated convergence
theorem, equation (3.4) implies

‖N(un)−N(u)‖∞ → 0 as n→∞.

Step 2. For each bounded and equicontinuous subset D of C(In), µ(N(D)) ≤ `µ(D).
From Lemmas 2.4 and 2.5, for any D ⊂ BRn

and any ε > 0, there exists a sequence {uk}∞k=0 ⊂
D, such that for all t ∈ [0, n], we have

µ((ND)(t)) = µ

({
T (t)u0 +

∫ t

0
T (t− s) f(s, u(s))ds; u ∈ D

})

≤ 2µ

({∫ t

0
T (t− s)f(s, uk(s))ds

}∞
k=1

)
+ ε

≤ 4
∫ t

0
µ
(∥∥T (t− s)‖B(E){f(s, uk(s))

}∞
k=1

)
ds+ ε

≤ 4M
∫ t

0
µ ({f(s, uk(s))}∞k=1) ds+ ε

≤ 4M
∫ t

0
pn(s)µ ({uk(s)}∞k=1) ds+ ε

≤ 4Mp∗nµc(D) + ε.

Since ε > 0 is arbitrary, then
µc(ND) ≤ 4Mp∗nµc(D).

As a consequence of these two steps together with Theorem 2.6, we can conclude that N has a
fixed point in un ∈ BRn

which is a mild solution of problem (3.1).

Part 2. The diagonalization process.
Now, we use the following diagonalization process. For k ∈ N let{

wk(t) = unk
(t); t ∈ [0, nk],

wk(t) = unk
(nk); t ∈ [nk,∞).

Here {nk}k∈N∗ is a sequence of numbers satisfying

0 < n1 < n2 < . . . nk < . . . ↑ ∞.

Let S = {wk}∞k=1. Notice that

‖wnk
(t)‖E ≤ Rn : for t ∈ [0, n1], k ∈ N.

Also, if k ∈ N and t ∈ [0, n1], we have

wnk
(t) = T (t)u0 +

∫ t

0
T (t− s) f(s, wnk

(s))ds.

Thus, for k ∈ N and t, x ∈ [0, n1], we have

‖wnk
(t)− wnk

(x)‖ ≤
∫ n1

0
‖T (t− s)− T (x− s))‖B(E)‖f(s, wnk

(s))‖ds.

Hence
‖wnk

(t)− wnk
(x)‖ ≤ p∗1

∫ n1

0
‖T (t− s)− T (x− s))‖B(E)ds.

The Arzelà-Ascoli Theorem guarantees that there is a subsequence N∗1 of N and a function z1 ∈
C([0, n1]) with unk

→ z1 as k →∞ in C([0, n1]) through N∗1 . Let N1 = N∗1 − {1}.
Notice that

|wnk
(t)| ≤ Rn : for t ∈ [0, n2], k ∈ N.
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Also, if k ∈ N and t, x ∈ [0, n2], we have

‖wnk
(t)− wnk

(x)‖ ≤ p∗2
∫ n2

0
‖T (t− s)− T (x− s))‖B(E)ds.

The Arzelà-Ascoli Theorem guarantees that there is a subsequence N∗2 of N1 and a function
z2 ∈ C([0, n2]) with unk

→ z2 as k → ∞ in C([0, n2]) through N∗2 . Note that z1 = z2 on
[0, n1] since N∗2 ⊂ N1. Let N2 = N∗2 − {2}. Proceed inductively to obtain for m = 3, 4, . . .
a subsequence N∗m of Nm−1 and a function zm ∈ C([0, nm]) with unk

→ zm as k → ∞ in
C([0, nm]) through N∗m. Let Nm = N∗m − {m}.

Fix t ∈ (0,∞) and let m ∈ N with t ≤ nm. Define a function u by u(t) = zm(t). Then
u ∈ C((0,∞)), u(0) = u0 and ‖u(t)‖ ≤ Rn : for t ∈ [0,∞).
Again fix t ∈ (0,∞) and let m ∈ N with t ≤ nm. Then for n ∈ Nm we have

unk
(t) = T (t)u0 +

∫ nm

0
T (t− s) f(s, unk

(s))ds.

Let nk →∞ through Nm to obtain

zm(t) = T (t)u0 +

∫ nm

0
T (t− s) f(s, zm(s))ds.

We can use this method for each t ∈ [0, nm] and for each m ∈ N. Thus

u′(t) = Au(t) + f(t, u(t)); for t ∈ [0, nm];

for each m ∈ N and the constructed function u is a mild solution of problem (1.3).

4 Bounded Integral Solutions

In this section, we present the main results for the existence of integral solutions for problem
(1.3), in the case where A : D(A) ⊂ E → E is a nondensely defined closed linear operator on
the Banach space E.

Definition 4.1. ([7]). An integrated semigroup is a family of operators (S(t))t≥0 of bounded
linear operators S(t) on E with the following properties:

(i) S(0) = 0;

(ii) t→ S(t) is strongly continuous;

(iii) S(s)S(t) =
∫ s

0
(S(t+ r)− S(r))dr; for all t, s ≥ 0.

Definition 4.2. [22]. An operatorA is called a generator of an integrated semigroup if there exists
ω ∈ R such that (ω,∞) ⊂ ρ(A) (ρ(A), is the resolvent set of A) and there exists a strongly
continuous exponentially bounded family (S(t))t≥0 of bounded operators such that S(0) = 0

and R(λ,A) := (λI −A)−1 = λ

∫ ∞
0

e−λtS(t)dt exists for all λ with λ > ω.

Definition 4.3. We say that u(·) : R+ → E is an integral solution of problem (1.3) if

(i) u(t) = u0 +A

∫ t

0
u(s)ds+

∫ t

0
f(s, u(s))ds; for each t ∈ R+;

(ii)
∫ t

0
u(s)ds ∈ D(A); for each t ∈ R+.

From the above definition it follows that u(t) ∈ D(A), for each t ∈ R+, in particular
u0 ∈ D(A). Moreover, u(·) satisfies the following variation of constants formula:

u(t) = S′(t)u0 +
d

dt

∫ t

0
S(t− s)f(s, u(s))ds; t ∈ R+. (4.1)
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Notice that, if u(·) satisfies (4.1), then

u(t) = S′(t)u0 + lim
λ→∞

∫ t

0
S′(t− s)Bλf(s, u(s))ds; t ∈ R+.

Let us introduce the following hypothesis:

(H5) A satisfies Hille-Yosida condition.

Let B(t) = {v(t) ∈ D(A) : v ∈ B}; t ≥ 0.

Theorem 4.4. Assume that the hypotheses (H2)− (H5) are satisfied, and 4Lp̃neωn < 1 for each
n ∈ N. Then the problem (1.3) has at least one bounded integral solution defined on R+.

Proof. The proof will be given in two parts. Fix n ∈ N and consider the problem (3.1).

Part 1. We begin by showing that (3.1) has a solution un ∈ C(In) with ‖un‖∞ ≤ ρn where

ρn ≥
Leωn‖u0‖+ Lp̃ne

ωn

1− Lp̃neωn
.

Consider the operator G : C(In)→ C(In) defined by:

(Gu)(t) = u(t) = S′(t)u0 +
d

dt

∫ t

0
S(t− s)f(s, u(s))ds. (4.2)

For any u ∈ Bρn := B(0, ρn) = {w ∈ C(In) : ‖w‖∞ ≤ ρn}, and each t ∈ [0, n] we have

‖(Gu)(t)‖ ≤ ‖S′(t)u0 +
d

dt

∫ t

0
S(t− s)f(s, u(s))ds‖

≤ Leωn‖u0‖+ Leωn
(∫ t

0
e−ωspn(s)(1 + ‖u(s)‖)ds

)
≤ Leωn‖u0‖+ Leωn(1 + ρn)

(∫ n

0
e−ωspn(s)ds

)
≤ Leωn‖u0‖+ Leωnp̃n(1 + ρn)

≤ ρn.

Thus
‖G(u)‖∞ ≤ ρn.

This proves thatG transforms the ballBρn into itself. We shall show that the operatorG : Bρn →
Bρn satisfies all the assumptions of Theorem 2.6. The proof will be given in two steps.

Step 1. G : Bρn → Bρn is continuous.
Let {uk}k∈N be a sequence such that uk → u in Bρn(w). Then, for each t ∈ [0, n] and w ∈ Ω,
we have

‖(Guk)(t)− (Gu)(t)‖ ≤ d

dt

∫ t

0
‖S(t− s)‖B(E)‖f(s, uk(s))− f(s, u(s))‖ds

≤ Leωn
∫ t

0
e−ωs‖f(s, uk(s))− f(s, u(s))‖ds.

Since uk → u as k →∞, the Lebesgue dominated convergence theorem implies that

‖G(uk)−G(u)‖n → 0 as k →∞.

Hence, we can conclude that G : Bρn → Bρn is a continuous.
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Step 2. For each bounded and equicontinuous set B of Bρn , µ(G(B)) ≤ ˜̀µ(B).
From Lemmas 2.4 and 2.5, for any B ⊂ Bρn and any ε > 0, there exists a sequence {uk}∞k=0 ⊂
B, such that for all t ∈ [0, n], we have

µ((GB)(t)) = µ

({
S′(t)u0 +

d

dt

∫ t

0
S(t− s)f(s, u(s))ds; u ∈ B

})

≤ 2µ

({
d

dt

∫ t

0
S(t− s)f(s, u(s))ds

}∞
k=1

)
+ ε

≤ 4Leωn
∫ t

0
µ
({
e−ωsf(s, uk(s))

}∞
k=1

)
ds+ ε

≤ 4Leωn
∫ t

0
µ
(
{e−ωsf(s, uk(s))}∞k=1

)
ds+ ε

≤ 4Leωn
∫ t

0
e−ωspn(s)µ ({uk(s)}∞k=1) ds+ ε

≤ 4Leωnp̃n
∫ t

0
µ ({uk(s)}∞k=1) ds+ ε

≤ 4Lp̃neωnµc(B) + ε.

Since ε > 0 is arbitrary, then

µc((GB)(t)) ≤ 4Lp̃neωnµc(B).

Hence, we can conclude that G has at least one fixed point in Bρn which is an integral mild
solution of problem (3.1).

Part 2. The diagonalization process.
Now, we use the following diagonalization process. For k ∈ N let{

wk(t) = unk
(t); t ∈ [0, nk],

wk(t) = unk
(nk); t ∈ [nk,∞).

Here {nk}k∈N∗ is a sequence of numbers satisfying

0 < n1 < n2 < . . . nk < . . . ↑ ∞.

Let S = {wk}∞k=1. Notice that

‖wnk
(t)‖ ≤ ρn : for t ∈ [0, n1], k ∈ N.

Also, if k ∈ N and t ∈ [0, n1], we have

wnk
(t) = S′(t)u0 +

d

dt

∫ t

0
S(t− s)f(s, wnk

(s))ds.

Thus, for k ∈ N and t, x ∈ [0, n1], we have

‖wnk
(t)− wnk

(x)‖ ≤ ‖S′(t)− S′(s))‖B(E)‖u0‖

+
d

dt

∫ n1

0
‖S(t− s)− S(x− s))‖B(E)‖f(s, wnk

(s))‖ds.

Hence

‖wnk
(t)− wnk

(x)‖ ≤ ‖S′(t)− S′(s))‖B(E)‖u0‖

+p∗1

∫ n1

0
‖S(t− s)− S(x− s))‖B(E)ds.
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The Arzelà-Ascoli Theorem guarantees that there is a subsequence N∗1 of N and a function z1 ∈
C([0, n1]) with unk

→ z1 as k →∞ in C([0, n1]) through N∗1 . Let N1 = N∗1 − {1}.
Notice that

|wnk
(t)| ≤ ρn : for t ∈ [0, n2], k ∈ N.

Also, if k ∈ N and t, x ∈ [0, n2], we have

‖wnk
(t)− wnk

(x)‖ ≤ ‖S′(t)− S′(s))‖B(E)‖u0‖

+p∗2

∫ n2

0
‖S(t− s)− S(x− s))‖B(E)ds.

The Arzelà-Ascoli Theorem guarantees that there is a subsequence N∗2 of N1 and a function
z2 ∈ C([0, n2]) with unk

→ z2 as k → ∞ in C([0, n2]) through N∗2 . Note that z1 = z2 on
[0, n1] since N∗2 ⊂ N1. Let N2 = N∗2 − {2}. Proceed inductively to obtain for m = 3, 4, . . .
a subsequence N∗m of Nm−1 and a function zm ∈ C([0, nm]) with unk

→ zm as k → ∞ in
C([0, nm]) through N∗m. Let Nm = N∗m − {m}.

Define a function y as follows. Fix t ∈ (0,∞) and let m ∈ N with t ≤ nm. Then define
u(t) = zm(t). Then u ∈ C((0,∞)), u(0) = u0 and ‖u(t)‖E < Rn : for t ∈ [0,∞).
Again fix t ∈ (0,∞) and let m ∈ N with t ≤ nm. Then for n ∈ Nm we have

unk
(t) = S′(t)u0 +

d

dt

∫ nm

0
S(t− s)f(s, unk

(s))ds.

Let nk →∞ through Nm to obtain

zm(t) = S′(t)u0 +
d

dt

∫ nm

0
S(t− s)f(s, zm(s))ds.

We can use this method for each x ∈ [0, nm] and for each m ∈ N. Thus

u′(t) = Au(t) + f(t, u(t)); for t ∈ [0, nm];

for each m ∈ N and the constructed function u is an integral solution of problem (1.3).

5 Examples

Example 1. For a given a function u ∈ L2([0, π],R),we consider the following partial functional
semilinear problem

∂
∂tz(t, x) =

∂2

∂x2 z(t, x) +Q(t, z(t, x)); x ∈ [0, π], t ∈ R+, (5.1)

z(t, 0) = z(t, π) = 0; t ∈ R+, (5.2)

z(0, x) = φ(x); x ∈ [0, π], u is bounded on R+, (5.3)

where φ : [0, π]→ R, and Q : R+ ×R→ R are the functions given by

φ(x) = 1 + ex,

and

Q(t, z) =
e−t

1 + z2 (1 + z).

Let
u(t)(x) = z(t, x); t ∈ R+, x ∈ [0, π],

f(t)(x) = Q(t, z(t, x)); t ∈ R+, x ∈ [0, π],
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u(0)(x) = φ(x); x ∈ [0, π].

Take E = L2[0, π] and define A : D(A) ⊂ E → E by Aw = w′′ with domain

D(A) = {w ∈ E,w,w′ are absolutely continuous, w′′ ∈ E,w(0) = w(π) = 0}.

Then

Aw =
∞∑
n=1

n2(w,wn)wn, w ∈ D(A)

where (·, ·) is the inner product in L2 and wn(s) =
√

2
π sin ns, n = 1, 2, . . . is the orthogonal

set of eigenvectors in A. It is well known (see [25]) that A is the infinitesimal generator of an
analytic semigroup T (t), t ≥ 0 in E and is given by

T (t)w =
∞∑
n=1

exp(−n2t)(w,wn)wn, w ∈ E.

Since the analytic semigroup T (t) is compact, there exists a constant M ≥ 1 such that

‖T (t)‖B(E) ≤M.

For any n ∈ N we have
|Q(t, z)| ≤ ent(1 + |z|).

This means that for the locally integrable function pn : R+ → R+, with pn(t) = ent, we have

‖f(t, u)‖ ≤ pn(t)(1 + ‖u‖), for a.e. t ∈ [0, n].

We can show that problem (1.3) is an abstract formulation of problem (5.1)-(5.3) . Since all the
conditions of Theorem 2.6 are satisfied, the problem (5.1)-(5.3) has a bounded mild solution z
on R+ × [0, π].

Example 2. Consider now the following partial functional semilinear problem

∂
∂tz(t, x) =

∂2

∂x2 z(t, x) +Q(t, z(t, x)); x ∈ [0, π], t ∈ R+, (5.4)

z(t, 0) = z(t, π) = 0; t ∈ R+, (5.5)

z(0, x) = φ(x); x ∈ [0, π], u is bounded on R+, (5.6)

where φ : [0, π]→ R, and Q : R+ ×R→ R are the functions given by

φ(x) = 1 + x2,

and

Q(t, z) =
e−t

2 + t2
(1 + |z|).

Let
u(t)(x) = z(t, x); t ∈ R+, x ∈ [0, π],

f(t)(x) = Q(t, z(t, x)); t ∈ R+, x ∈ [0, π],

u(0)(x) = φ(x); x ∈ [0, π].

Take E = C(Ω), the Banach space of continuous function on Ω with values in R. Define the
linear operator A on E by

Az =
∂2

∂x2 z, in D(A) = {z ∈ C(Ω) : z = 0 on ∂Ω,
∂2

∂x2 z ∈ C(Ω}.

Now, we have
D(A) = C0(Ω) = {v ∈ C(Ω) : v = 0 on ∂Ω} 6= C(Ω).
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It is well known from [16] that A is sectorial, (0,+∞) ⊆ ρ(A) and for λ > 0

‖R(λ,A)‖B(E) ≤
1
λ
.

It follows that A generates an integrated semigroup (S(t))t≥0 and that

‖S′(t)‖B(E) ≤ e−µt;

for t ≥ 0 and some constant µ > 0, and A satisfies the Hille-Yosida condition.

For any n ∈ N, we have
|Q(t, z)| ≤ ent(1 + |z|).

This means that for the locally integrable function pn : R+ → R+, with pn(t) = ent, we have

‖f(t, u)‖ ≤ pn(t)(1 + ‖u‖), for a.e. t ∈ [0, n].

We can show that problem (1.3) is an abstract formulation of problem (5.4)-(5.6). Since all the
conditions of Theorem 4.4 are satisfied, the problem (5.4)-(5.6) has an integral bounded solution
z defined on R+ × [0, π].
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