Coefficients Bounds for Certain New Subclasses of Meromorphic Bi-univalent Functions Associated with Al-Oboudi Differential Operator

Timilehin Gideon Shaba, Muhammad G. Khan and Bakhtiar Ahmad
Communicated by Thabet Abdeljawad

MSC 2010 Classifications: Primary 30C45; Secondary 30C80, 30C50.
Keywords and phrases: Analytic functions, Univalent functions, Al-Oboudi differential operator, Bi-Univalent functions, Meromorphic functions, Meromorphic bi-univalent functions, Coefficient estimates.

The authors are very grateful to anonymous referees and especially to the Editor Professor Thabet Abdeljawad for their valuable contributions by comments through the review process.

Abstract

In this paper, we introduce two interesting subclasses of meromorphic bi-univalent functions defined by Al-Oboudi differential operator. Estimates for the initial coefficients $\left|c_{0}\right|$, $\left|c_{1}\right|$ and $\left|c_{2}\right|$ are obtained for the functions in these new subclasses.

1 Introduction

Let $\mathcal{A}=\left\{f: \mathcal{U} \rightarrow \mathcal{C}: f\right.$ is analytic in $\left.\mathcal{U}, f(0)=0=f^{\prime}(0)-1\right\}$ be the class of functions of the form

$$
\begin{equation*}
f(z)=z+\sum_{\nu=2}^{\infty} b_{\nu} z^{\nu} \tag{1.1}
\end{equation*}
$$

and \mathcal{S} be the subclass of \mathcal{A} consisting of all functions f univalent in $\mathcal{U}=\{z: z \in \mathcal{C},|z|<1\}$.
Since univalent functions are one-to-one, they are invertible and the inverse functions need not to be defined on the entire unit disk \mathcal{U}. In fact, the Koebe one-quarter theorem [11] ensures that the image of \mathcal{U} under every univalent function $f \in \mathcal{S}$ contains a disk of radius $\frac{1}{4}$. Thus, every function $f \in \mathcal{A}$ has an inverse f^{-1}, which is defined by

$$
f^{-1}(f(z))=z, \quad(z \in \mathcal{U})
$$

and

$$
f\left(f^{-1}(w)\right)=w, \quad\left(|w|<r_{0}(f) ; r_{0}(f) \geq \frac{1}{4}\right)
$$

In fact, the inverse function f^{-1} is given by

$$
\begin{equation*}
f^{-1}(w)=w-b_{2} w^{2}+\left(2 b_{2}^{2}-b_{3}\right) w^{3}-\left(5 b_{3}^{3}-5 b_{2} b_{3}+b_{4}\right) w^{4}+\cdots \tag{1.2}
\end{equation*}
$$

A function $f \in \mathcal{A}$ is said to be bi-univalent in \mathcal{U} if both f and f^{-1} are univalent in \mathcal{U}. Let Σ denote the class of bi-univalent functions in \mathcal{U} given by (1.1). For a short history and fascinating examples of functions in the class Σ, see [38] (see also [7, 8]). In fact, the aforecited work of Srivastava et al. [38] essentially revived the investigation of numerous subclasses of bi-univalent function class Σ in recent years; it was followed by such works as those by Murugusundaramoorthy et al. [21], Çaglar et al. [10], Frasin and Aouf [12], and others (for more details see; [20], [40], [6], [30], [2], [21], [22], [31], [41], [17], [37], [16], [34], [32], [25], [33]).

In this research, the concept of bi-univalency is extended to the class of meromorphic function defined on

$$
\mathcal{U}^{*}=\{z: z \in \mathcal{C}, 1<|z|<\infty\} .
$$

Let Σ^{\prime} denote the class of all meromorphic univalent functions h of the form:

$$
\begin{equation*}
h(z)=z+c_{0}+\sum_{\nu=1}^{\infty} \frac{c_{\nu}}{z^{\nu}}, \tag{1.3}
\end{equation*}
$$

defined on the domain \mathcal{U}^{*}. Since $h \in \Sigma^{\prime}$ is univalent, it has an inverse denoted by $h^{-1}=l$ that satisfies the following condition:

$$
h^{-1}(h(z))=z, \quad\left(z \in \mathcal{U}^{*}\right)
$$

and

$$
h\left(h^{-1}(w)\right)=w, \quad(M<|w|<\infty ; M>0)
$$

Furthermore, the inverse function $h^{-1}=l$ is of the form:

$$
\begin{equation*}
h^{-1}(w)=l(w)=w+\mathcal{D}_{0}+\sum_{\nu=1}^{\infty} \frac{\mathcal{D}_{\nu}}{w^{\nu}}, \quad(M<|w|<\infty) \tag{1.4}
\end{equation*}
$$

A simple computation shows that

$$
\begin{align*}
w=h(l(w))=\left(c_{0}+\mathcal{D}_{0}\right)+w+\frac{c_{1}+\mathcal{D}_{1}}{w} & +\frac{\mathcal{D}_{2}-c_{1} \mathcal{D}_{0}+c_{2}}{w^{2}} \\
& +\frac{\mathcal{D}_{3}-c_{1} \mathcal{D}_{1}+c_{1} \mathcal{D}_{0}^{2}-2 c_{2} \mathcal{D}_{0}+c_{3}}{w^{3}}+\cdots \tag{1.5}
\end{align*}
$$

Comparing the initial coefficients in (1.5), we get

$$
\begin{aligned}
c_{0}+\mathcal{D}_{0}=0 & \Longrightarrow \mathcal{D}_{0}=-c_{0} \\
c_{1}+\mathcal{D}_{1}=0 & \Longrightarrow \mathcal{D}_{1}=-c_{1} \\
D_{2}-c_{1} \mathcal{D}_{0}+c_{2}=0 & \Longrightarrow \mathcal{D}_{2}=-\left(c_{2}+c_{0} c_{1}\right) \\
\mathcal{D}_{3}-c_{1} \mathcal{D}_{1}+c_{1} \mathcal{D}_{0}^{2}-2 c_{2} \mathcal{D}_{0}+c_{3}=0 & \Longrightarrow \mathcal{D}_{3}=-\left(c_{3}+2 c_{0} c_{2}+c_{0}^{2} c_{1}+c_{1}^{2}\right) .
\end{aligned}
$$

By inserting these values in (1.4), we have

$$
\begin{equation*}
h^{-1}(w)=l(w)=w-c_{0}-\frac{c_{1}}{w}-\frac{c_{2}+c_{0} c_{1}}{w^{2}}-\frac{c_{3}+2 c_{0} c_{2}+c_{0}^{2} c_{1}+c_{1}^{2}}{w^{3}}+\cdots \tag{1.6}
\end{equation*}
$$

The coefficient problem was studied for numerous interesting subclasses of the meromorphic univalent functions (see, e.g., $[1,13,14,15,9,23,3,36,24]$).

Analogous to the bi-univalent holomorphic functions, a function $h \in \Sigma^{\prime}$ is said to be meromorphic bi-univalent if $h^{-1} \in \Sigma^{\prime}$. We denote the family of all meromorphic bi-univalent functions by $\mathcal{W}_{\Sigma^{\prime}}$. Estimates on the coefficients of meromorphic univalent functions were widely worked on in the literature, for example, Schiffer [28] obtained the estimates $\left|c_{2}\right| \leq \frac{2}{3}$ for meromorphic univalent functions $h \in \Sigma^{\prime}$ with $c_{0}=0$ and Duren [11] gave an elementary proof of the inequality $\left|c_{\nu}\right| \leq \frac{2}{\nu+1}$ on the coefficient of meromorphic univalent functions $h \in \Sigma^{\prime}$ with $c_{k}=0$ for $1 \leq k<\frac{\nu}{2}$. For the coefficient of the inverse of meromorphic univalent functions $l \in \mathcal{W}_{\Sigma^{\prime}}$, Springer [35] used variational methods to prove that

$$
\left|\mathcal{D}_{3}+\frac{1}{2} \mathcal{D}_{1}^{2}\right| \leq \frac{1}{2} \text { and }\left|\mathcal{D}_{3}\right| \leq 1
$$

and conjecture that

$$
\left|\mathcal{D}_{2 \nu-1}\right| \leq \frac{(2 \nu-2)!}{\nu!(\nu-1)!}, \quad(\nu=1,2, \cdots)
$$

In 1977, Kubota [19] has proved that Springer [35] conjecture is true for $\nu=3,4,5$ and subsequently Schober [29] obtained a sharp bounds for the coefficients $\mathcal{D}_{2 \nu-1}, 1 \leq \nu \leq 7$ of the inverse of meromorphic univalent functions in \mathcal{U}^{*}. Also recently, Kapoor and Mishra [18] (also see [39]) found the coefficient estimates for a class consisting of inverses of meromorphic starlike univalent functions of order α in \mathcal{U}^{*}.

A function h in the class $\mathcal{W}_{\Sigma^{\prime}}$ is said to be meromorphic bi-univalent starlike of order η where $0 \leq \eta<1$, if it satisfies the following inequalities

$$
\Re\left(\frac{z h^{\prime}(z)}{h(z)}\right)>\eta \quad \text { and } \quad \Re\left(\frac{w l^{\prime}(w)}{l(w)}\right)>\eta \quad\left(z, w \in \mathcal{U}^{*}\right)
$$

where l is the inverse of h given by (1.6). We denote by $\mathcal{W}_{\Sigma^{\prime}}^{*}(\eta)$ the class of all meromorphic bi-univalent starlike functions of order η. Similarly, a function h in the class $\mathcal{W}_{\Sigma^{\prime}}$ is said to be meromorphic bi-univalent strongly starlike of order ξ where $0<\xi \leq 1$, if it satisfies the following conditions

$$
\left|\arg \left(\frac{z h^{\prime}(z)}{h(z)}\right)\right|<\frac{\xi \pi}{2} \quad \text { and } \quad\left|\arg \left(\frac{w l^{\prime}(w)}{l(w)}\right)\right|<\frac{\xi \pi}{2} \quad\left(z, w \in \mathcal{U}^{*}\right)
$$

where l is the inverse of h given by (1.6). We denote by $\mathcal{W}_{\Sigma^{\prime}}^{*}(\xi)$ the class of all meromorphic biunivalent strongly starlike functions of order ξ. The classes $\mathcal{W}_{\Sigma^{\prime}}^{*}(\eta)$ and $\mathcal{W}_{\Sigma^{\prime}}^{*}(\xi)$ were introduced and studied by Halim et al. [14].

For $f \in \mathcal{A}$, Al-Oboudi [4] introduced the following differential operator:

$$
\begin{gather*}
D_{\zeta}^{0} f(z)=f(z) \\
D_{\zeta}^{1} f(z)=(1-\zeta) f(z)+\zeta z f^{\prime}(z)=D_{\zeta} f(z) ; \quad(\zeta \geq 0) \tag{1.7}\\
D_{\zeta}^{n} f(z)=D_{\zeta}\left(D_{\zeta}^{n-1} f(z)\right) ; \quad(n \in \mathfrak{N}=\{1,2,3, \cdots\}) \tag{1.8}
\end{gather*}
$$

If f is given by (1.1), then from (1.7) and (1.8) we get,

$$
\begin{equation*}
D_{\zeta}^{n} f(z)=z+\sum_{\nu=2}^{\infty}[1+(\nu-1) \zeta]^{n} b_{\nu} z^{\nu} ; \quad\left(n \in \mathfrak{N}_{0}=\{0,1,2,3, \cdots\}\right) \tag{1.9}
\end{equation*}
$$

Also, when $\zeta=0$ we have the Salagean differential operator [27].
Similarly, for $h \in \Sigma^{\prime}$ as given in (1.3), Al-Oboudi differential operator can be defined as:

$$
\begin{gather*}
D_{\zeta}^{0} h(z)=h(z) \\
D_{\zeta}^{1} h(z)=(1-\zeta) h(z)+\zeta z h^{\prime}(z)=D_{\zeta} h(z) ; \quad(\zeta \geq 0) \tag{1.10}\\
D_{\zeta}^{n} h(z)=D_{\zeta}\left(D_{\zeta}^{n-1} h(z)\right) ; \quad(n \in \mathfrak{N}=\{1,2,3, \cdots\}) \tag{1.11}
\end{gather*}
$$

Then from (1.10) and (1.11) we get,

$$
\begin{equation*}
D_{\zeta}^{n} h(z)=z+(1-\zeta)^{n} c_{0}+\sum_{\nu=1}^{\infty}[1-(\nu+1) \zeta]^{n} c_{\nu} z^{-\nu} ; \quad\left(n \in \mathfrak{N}_{0}=\{0,1,2,3, \cdots\}\right) \tag{1.12}
\end{equation*}
$$

Babalola [5] defined the class $\mathcal{L}_{\psi}(\vartheta)$ of ψ-pseudo-starlike functions of order ϑ as follows:
Definition 1.1. [5] Let $f \in \mathcal{A}$ and if $0 \leq \vartheta<1$ and $\psi \geq 1$. Then $f(z) \in \mathcal{L}_{\psi}(\vartheta)$ of ψ-pseudostarlike functions of order ϑ in \mathcal{U} if and only if

$$
\begin{equation*}
\Re\left(\frac{z\left[f^{\prime}(z)\right]^{\psi}}{f(z)}\right)>\vartheta, \quad(z \in \mathcal{U} ; 0 \leq \vartheta<1 ; \psi \geq 1) . \tag{1.13}
\end{equation*}
$$

Especially, Babalola [5] proved that all ψ-pseudo-starlike functions are Bazilevic of type $1-\frac{1}{\psi}$ and order $\vartheta^{\frac{1}{\psi}}$ and are univalent in \mathcal{U}.

Recently, Srivastava et al. [36] introduced the following subclasses of the meromorphic biunivalent function and obtained non sharp estimates on the initial coefficient $\left|c_{0}\right|$ and $\left|c_{1}\right|$ as follows.

Definition 1.2. [36] For $\psi \geq 1$ and $0<\xi \leq 1$; a function $h(z)$ given by (1.3) is said to be in the class $\mathcal{W}_{\Sigma^{\prime}}(\psi, \xi)$ if the following condition holds:

$$
\begin{equation*}
\left|\arg \left(\frac{z\left[h^{\prime}(z)\right]^{\psi}}{h(z)}\right)\right|<\frac{\xi \pi}{2}, \tag{1.14}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\arg \left(\frac{w\left[l^{\prime}(w)\right]^{\psi}}{l(w)}\right)\right|<\frac{\xi \pi}{2}, \tag{1.15}
\end{equation*}
$$

where $z, w \in \mathcal{U}^{*}$ and $h^{-1}(w)=l(w)$ is given by (1.6).
Theorem 1.3. [36] Let $h \in \mathcal{W}_{\Sigma^{\prime}}(\psi, \xi)$. Then

$$
\begin{equation*}
\left|c_{0}\right| \leq 2 \xi, \quad\left|c_{1}\right| \leq \frac{2 \sqrt{5} \xi^{2}}{1+\psi} \tag{1.16}
\end{equation*}
$$

Definition 1.4. [36] For $\psi \geq 1$ and $0 \leq \eta<1$; a function $h(z)$ given by (1.3) is said to be in the class $\mathcal{W}_{\Sigma^{\prime}}(\psi, \eta)$ if the following condition holds:

$$
\begin{equation*}
\Re\left(\frac{z\left[h^{\prime}(z)\right]^{\psi}}{h(z)}\right)>\eta \tag{1.17}
\end{equation*}
$$

and

$$
\begin{equation*}
\Re\left(\frac{w\left[l^{\prime}(w)\right]^{\psi}}{l(w)}\right)>\eta \tag{1.18}
\end{equation*}
$$

where $z, w \in \mathcal{U}^{*}$ and $h^{-1}(w)=l(w)$ is given by (1.6).
Theorem 1.5. [36] Let $h(z) \in \mathcal{W}_{\Sigma^{\prime}}(\psi, \eta)$. Then

$$
\begin{equation*}
\left|c_{0}\right| \leq 2(1-\eta), \quad\left|c_{1}\right| \leq \frac{2(1-\eta) \sqrt{4 \eta^{2}-8 \eta+5}}{1+\psi} \tag{1.19}
\end{equation*}
$$

Motivated by the aforecited works, In our current investigation, we introduce two new subclasses of the class $\mathcal{W}_{\Sigma^{\prime}}$ of meromorphic bi-univalent functions defined by Al-Oboudi differential operator and obtained the estimates for the initial coefficients $\left|c_{0}\right|,\left|c_{1}\right|$ and $\left|c_{2}\right|$ of functions in these subclasses.

In order to find out the main results, the following Lemma can be recalled here.
Lemma 1.6. [26] If $r \in \mathcal{P}$, then $\left|\kappa_{\tau}\right| \leq 2$ for each τ, where \mathcal{P} is the family of all functions r analytic in $\mathcal{U}=\{z: z \in \mathcal{C},|z|<1\}$. for which $\operatorname{Re}(r(z))>0$ where

$$
r(z)=1+\kappa_{1} z+\kappa_{2} z^{2}+\kappa_{3} z^{3}+\cdots \quad(z \in \mathfrak{D})
$$

2 Coefficient bounds for the function class $\mathcal{W}_{\Sigma^{\prime}}^{\zeta, n}(\psi, \xi)$

Definition 2.1. For $\zeta \geq 0, n \in \mathfrak{N}, \psi \geq 1$ and $0<\xi \leq 1$; a function $h(z)$ given by (1.3) is said to be in the class $\mathcal{W}_{\Sigma^{\prime}}^{\zeta, n}(\psi, \xi)$ if the following condition holds:

$$
\begin{equation*}
\left|\arg \left(\frac{z\left[\left(D_{\zeta}^{n} h(z)\right)^{\prime}\right]^{\psi}}{D_{\zeta}^{n} h(z)}\right)\right|<\frac{\xi \pi}{2} \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\arg \left(\frac{w\left[\left(D_{\zeta}^{n} l(w)\right)^{\prime}\right]^{\psi}}{D_{\zeta}^{n} l(w)}\right)\right|<\frac{\xi \pi}{2} \tag{2.2}
\end{equation*}
$$

where $z, w \in \mathcal{U}^{*}$ and $h^{-1}(w)=l(w)$ is given by (1.6).
In the ensuring theorems, the initial coefficients $\left|c_{0}\right|,\left|c_{1}\right|$ and $\left|c_{2}\right|$ for the function $\mathcal{W}_{\Sigma^{\prime}}^{\zeta, n}(\psi, \xi)$ and $\mathcal{W}_{\Sigma^{\prime}}^{\zeta, n}(\psi, \eta)$ are obtained.

Theorem 2.2. Let $h \in \mathcal{W}_{\Sigma}^{\zeta, n}(\psi, \xi)$. Then

$$
\begin{equation*}
\left|c_{0}\right| \leq \frac{2 \xi}{(1-\zeta)^{n}} \tag{2.3}
\end{equation*}
$$

$$
\begin{gather*}
\left|c_{1}\right| \leq \frac{2 \sqrt{5} \xi^{2}}{(1-2 \zeta)^{n}(1+\psi)} \tag{2.4}\\
\left|c_{2}\right| \leq \frac{2 \xi}{(1-3 \zeta)^{n}(1+2 \psi)}\left[2\left\{\frac{\left(6(1-\zeta)^{3 n}-1\right) \xi^{2}+3 \xi-2}{3}\right\}+3-2 \xi\right] \tag{2.5}
\end{gather*}
$$

Proof. Since $h(z) \in \mathcal{W}_{\Sigma^{\prime}}^{\zeta, n}(\psi, \xi)$, there exist two functions κ and t such that

$$
\begin{equation*}
\frac{z\left[\left(D_{\zeta}^{n} h(z)\right)^{\prime}\right]^{\psi}}{D_{\zeta}^{n} h(z)}=(\kappa(z))^{\xi} \tag{2.6}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{w\left[\left(D_{\zeta}^{n} l(w)\right)^{\prime}\right]^{\psi}}{D_{\zeta}^{n} l(w)}=(t(w))^{\xi} \tag{2.7}
\end{equation*}
$$

respectively, where $\kappa(z)$ and $t(w)$ satisfy the inequality $\Re(\kappa(z))>0$ and $\Re(t(w))>0$.
Furthermore, the functions $\kappa(z)$ and $t(w)$ have the forms:

$$
\kappa(z)=1+\frac{\kappa_{1}}{z}+\frac{\kappa_{2}}{z^{2}}+\frac{\kappa_{3}}{z^{3}}+\cdots \quad\left(z \in \mathcal{U}^{*}\right)
$$

and

$$
t(w)=1+\frac{t_{1}}{w}+\frac{t_{2}}{w^{2}}+\frac{t_{3}}{w^{3}}+\cdots \quad\left(w \in \mathcal{U}^{*}\right)
$$

By definition of h and l, we get

$$
\begin{align*}
& \frac{z\left[\left(D_{\zeta}^{n} h(z)\right)^{\prime}\right]^{\psi}}{D_{\zeta}^{n} h(z)}=1-\frac{(1-\zeta)^{n} c_{0}}{z}+\frac{(1-\zeta)^{2 n} c_{0}^{2}-(1-2 \zeta)^{n}(1+\psi) c_{1}}{z^{2}} \\
& \quad-\frac{(1-\zeta)^{3 n} c_{0}^{3}-(1-\zeta)^{n}(1-2 \zeta)^{n} c_{0} c_{1}(2+\psi)+(1-3 \zeta)^{n} c_{2}(1+2 \psi)}{z^{3}}+\cdots \tag{2.8}
\end{align*}
$$

and

$$
\begin{align*}
& \frac{w\left[\left(D_{\zeta}^{n} l(w)\right)^{\prime}\right]^{\psi}}{D_{\zeta}^{n} l(w)}=1+\frac{(1-\zeta)^{n} c_{0}}{w}+\frac{(1-\zeta)^{2 n} c_{0}^{2}+(1-2 \zeta)^{n}(1+\psi) c_{1}}{w^{2}} \\
& (1-\zeta)^{3 n} c_{0}^{3}+(1-3 \zeta)^{n}(1+2 \psi) c_{2}+\left((1-3 \zeta)^{n}(1+2 \psi)+\right. \\
& +\frac{\left.(1-\zeta)^{n}(1-2 \zeta)^{n}(2+\psi)\right) c_{0} c_{1}}{w^{3}}+\cdots \tag{2.9}
\end{align*}
$$

A simple calculation shows

$$
\begin{align*}
&(\kappa(z))^{\xi}=1+\frac{\xi \kappa_{1}}{z}+\frac{\frac{1}{2} \xi(\xi-1) \kappa_{1}^{2}+\xi \kappa_{2}}{z^{2}} \\
& \quad+\frac{\frac{1}{6} \xi(\xi-1)(\xi-2) \kappa_{1}^{3}+\xi(\xi-1) \kappa_{1} \kappa_{2}+\xi \kappa_{3}}{z^{3}}+\cdots \tag{2.10}
\end{align*}
$$

and

$$
\begin{equation*}
(t(w))^{\xi}=1+\frac{\xi t_{1}}{w}+\frac{\frac{1}{2} \xi(\xi-1) t_{1}^{2}+\xi t_{2}}{w^{2}}+\frac{\frac{1}{6} \xi(\xi-1)(\xi-2) t_{1}^{3}+\xi(\xi-1) t_{1} t_{2}+\xi t_{3}}{w^{3}}+\cdots \tag{2.11}
\end{equation*}
$$

Putting (2.8), (2.10) in (2.6) and (2.9), (2.11) in (2.7), we have

$$
\begin{equation*}
-(1-\zeta)^{n} c_{0}=\xi \kappa_{1} \tag{2.12}
\end{equation*}
$$

$$
\begin{gather*}
(1-\zeta)^{2 n} c_{0}^{2}-(1-2 \zeta)^{n}(1+\psi) c_{1}=\frac{1}{2} \xi(\xi-1) \kappa_{1}^{2}+\xi \kappa_{2}, \\
-\left[(1-\zeta)^{3 n} c_{0}^{3}-(1-\zeta)^{n}(1-2 \zeta)^{n} c_{0} c_{1}(2+\psi)+(1-3 \zeta)^{n} c_{2}(1+2 \psi)\right] \\
=\frac{1}{6} \xi(\xi-1)(\xi-2) \kappa_{1}^{3}+\xi(\xi-1) \kappa_{1} \kappa_{2}+\xi \kappa_{3}, \tag{2.14}\\
(1-\zeta)^{n} c_{0}=\xi t_{1}, \tag{2.15}\\
(1-\zeta)^{2 n} c_{0}^{2}+(1-2 \zeta)^{n}(1+\psi) c_{1}=\frac{1}{2} \xi(\xi-1) t_{1}^{2}+\xi t_{2}, \tag{2.16}\\
(1-\zeta)^{3 n} c_{0}^{3}+(1-3 \zeta)^{n}(1+2 \psi) c_{2}+\left((1-3 \zeta)^{n}(1+2 \psi)+(1-\zeta)^{n}(1-2 \zeta)^{n}\right. \\
(2+\psi)) c_{0} c_{1}=\frac{1}{6} \xi(\xi-1)(\xi-2) t_{1}^{3}+\xi(\xi-1) t_{1} t_{2}+\xi t_{3} . \tag{2.17}
\end{gather*}
$$

From (2.12) and (2.15) , it follows that

$$
\begin{equation*}
c_{0}=-\xi \kappa_{1}=\xi t_{1} \quad\left(\kappa_{1}=-t_{1}\right) \tag{2.18}
\end{equation*}
$$

and

$$
\begin{equation*}
c_{0}^{2}=\frac{\xi^{2}\left(\kappa_{1}^{2}+t_{1}^{2}\right)}{2(1-\zeta)^{2 n}} . \tag{2.19}
\end{equation*}
$$

As $\Re(\kappa(z))>0$ in \mathcal{U}^{*}, the function $\kappa\left(\frac{1}{z}\right) \in \mathcal{P}$. Similarly $t\left(\frac{1}{w}\right) \in \mathcal{P}$. So, the coefficients of $\kappa(z)$ and $t(w)$ satisfy the inequality of Lemma 1.6. Applications of triangle inequality and followed by Lemma 1.6 in (2.19) we get,

$$
\left|c_{0}\right| \leq \frac{2 \xi}{(1-\zeta)^{n}}
$$

Furthermore, in order to find the bound on $\left|c_{1}\right|$, by applying (2.13) and (2.16), we have

$$
\begin{aligned}
& {\left[(1-\zeta)^{2 n} c_{0}^{2}-(1-2 \zeta)^{n}(1+\psi) c_{1}\right] \cdot\left[(1-\zeta)^{2 n} c_{0}^{2}+(1-2 \zeta)^{n}(1+\psi) c_{1}\right] } \\
&=\left(\frac{1}{2} \xi(\xi-1) \kappa_{1}^{2}+\xi \kappa_{2}\right) \cdot\left(\frac{1}{2} \xi(\xi-1) t_{1}^{2}+\xi t_{2}\right)
\end{aligned} \begin{aligned}
&(1-2 \zeta)^{2 n}(1+\psi)^{2} c_{1}^{2}=(1-\zeta)^{4 n}\left(c_{0}^{2}\right)^{2}-\frac{1}{4} \xi^{2}(\xi-1)^{2} \kappa_{1}^{2} t_{1}^{2} \\
&-\frac{1}{2} \xi^{2}(\xi-1)\left(\kappa_{2} t_{1}^{2}+\kappa_{1}^{2} t_{2}\right)-\xi^{2} \kappa_{2} t_{2}
\end{aligned}
$$

and

$$
\begin{aligned}
(1-2 \zeta)^{2 n}(1+\psi)^{2} c_{1}^{2}=(1-\zeta)^{4 n}\left(\frac{\xi^{2}\left(\kappa_{1}^{2}+t_{1}^{2}\right)}{2(1-\zeta)^{2 n}}\right)^{2} & -\frac{1}{4} \xi^{2}(\xi-1)^{2} \kappa_{1}^{2} t_{1}^{2} \\
& -\frac{1}{2} \xi^{2}(\xi-1)\left(\kappa_{2} t_{1}^{2}+\kappa_{1}^{2} t_{2}\right)-\xi^{2} \kappa_{2} t_{2}
\end{aligned}
$$

Applying Lemma 1.6, we have

$$
(1-2 \zeta)^{2 n}(1+\psi)^{2}\left|c_{1}^{2}\right| \leq 16 \xi^{4}+4 \xi^{2}(\xi-1)^{2}+8 \xi^{2}(\xi-1)+4 \xi^{2}
$$

that is,

$$
\left|c_{1}\right| \leq \frac{2 \sqrt{5} \xi^{2}}{(1-2 \zeta)^{n}(1+\psi)}
$$

Finally, to obtain the bounds on c_{2}, consider the sum of (2.14) and (2.17) with $\kappa_{1}=-t_{1}$, we get

$$
\begin{equation*}
c_{0} c_{1}=\frac{\xi(\xi-1) \kappa_{1}\left(\kappa_{2}-t_{2}\right)+\xi\left(\kappa_{3}+t_{3}\right)}{2(1-\zeta)^{n}(1-2 \zeta)^{n}(2+\psi)+(1-3 \zeta)^{n}(1+2 \psi)} \tag{2.20}
\end{equation*}
$$

Subtracting (2.17) from (2.14) with $\kappa_{1}=-t_{1}$, we have

$$
\begin{align*}
-2(1-3 \zeta)^{n}(1+2 \psi) c_{2} & =2(1-\zeta)^{3 n} c_{0}^{3}+(1-3 \zeta)^{n}(1+2 \psi) c_{0} c_{1} \\
& +\frac{1}{3} \xi(\xi-1)(\xi-2) \kappa_{1}^{3}+\xi(\xi-1) \kappa_{1}\left(\kappa_{2}+t_{2}\right)+\xi\left(\kappa_{3}-t_{3}\right) \tag{2.21}
\end{align*}
$$

Putting (2.18) and (2.20) in (2.21) gives

$$
\begin{aligned}
\frac{2(1-3 \zeta)^{n}(1+2 \psi) c_{2}}{\xi} & =\frac{\left(6(1-\zeta)^{3 n}-1\right) \xi^{2}+3 \xi-2}{3} \kappa_{1}^{3} \\
& +\frac{2(1-3 \zeta)^{n}(1+2 \psi)(1-\xi)+2(1-\xi)}{2(1-\zeta)^{n}(1-2 \zeta)^{n}(2+\psi)+(1-3 \zeta)^{n}(1+2 \psi)} \kappa_{1} \kappa_{2} \\
& +\frac{2(1-\xi)(1-\zeta)^{n}(1-2 \zeta)^{n}(2+\psi)}{2(1-\zeta)^{n}(1-2 \zeta)^{n}(2+\psi)+(1-3 \zeta)^{n}(1+2 \psi)} \kappa_{1} t_{2} \\
& +\frac{2(1-3 \zeta)^{n}(1+2 \psi)+2(1-\zeta)^{n}(1-2 \zeta)^{n}(2+\psi)}{2(1-\zeta)^{n}(1-2 \zeta)^{n}(2+\psi)+(1-3 \zeta)^{n}(1+2 \psi)} \kappa_{3} \\
& +\frac{2(1-\zeta)^{n}(1-2 \zeta)^{n}(2+\psi)}{2(1-\zeta)^{n}(1-2 \zeta)^{n}(2+\psi)+(1-3 \zeta)^{n}(1+2 \psi)} t_{3}
\end{aligned}
$$

By applying Lemma 1.6 for the above equation we have

$$
\left|c_{2}\right| \leq \frac{2 \xi}{(1-3 \zeta)^{n}(1+2 \psi)}\left[2\left\{\frac{\left(6(1-\zeta)^{3 n}-1\right) \xi^{2}+3 \xi-2}{3}\right\}+3-2 \xi\right]
$$

which is the desired estimates on c_{2} given by (2.5).
Taking $n=1$ in Theorem 2.2, we get the following results.
Corollary 2.3. Let $h \in \mathcal{W}_{\Sigma^{\prime}}(\psi, \xi)$. Then

$$
\begin{gathered}
\left|c_{0}\right| \leq 2 \xi \\
\left|c_{1}\right| \leq \frac{2 \sqrt{5} \xi^{2}}{1+\psi} \\
\left|c_{2}\right| \leq \frac{2 \xi}{1+2 \psi}\left[2\left\{\frac{5 \xi^{2}+3 \xi-2}{3}\right\}+3-2 \xi\right]
\end{gathered}
$$

3 Coefficient bounds for the function class $\mathcal{W}_{\Sigma^{\prime}}^{\zeta, n}(\psi, \eta)$

Definition 3.1. For $\zeta \geq 0, n \in \mathfrak{N}, \psi \geq 1$ and $0 \leq \eta<1$; a function $h(z)$ given by (1.3) is said to be in the class $\mathcal{W}_{\Sigma^{\prime}}^{\zeta, n}(\psi, \eta)$ if the following condition holds:

$$
\begin{equation*}
\Re\left(\frac{z\left[\left(D_{\zeta}^{n} h(z)\right)^{\prime}\right]^{\psi}}{D_{\zeta}^{n} h(z)}\right)>\eta \tag{3.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\Re\left(\frac{w\left[\left(D_{\zeta}^{n} l(w)\right)^{\prime}\right]^{\psi}}{D_{\zeta}^{n} l(w)}\right)>\eta \tag{3.2}
\end{equation*}
$$

where $z, w \in \mathcal{U}^{*}$ and $h^{-1}(w)=l(w)$ is given by (1.6).

Theorem 3.2. Let $h(z) \in \mathcal{W}_{\Sigma^{\prime}}^{\zeta, n}(\psi, \eta)$. Then

$$
\begin{gather*}
\left|c_{0}\right| \leq \frac{2(1-\eta)}{(1-\zeta)^{n}} \tag{3.3}\\
\left|c_{1}\right| \leq \frac{2(1-\eta) \sqrt{4 \eta^{2}-8 \eta+5}}{(1-2 \zeta)^{n}(1+\psi)} \tag{3.4}
\end{gather*}
$$

and

$$
\begin{equation*}
\left|c_{2}\right| \leq \frac{2(1-\eta)}{(1-3 \zeta)^{n}(1+2 \psi)}\left[1+4(1-\eta)^{2}\right] \tag{3.5}
\end{equation*}
$$

Proof. Let $h \in \mathcal{W}_{\Sigma^{\prime}}^{\zeta, n}(\psi, \eta)$. Then, by definition of the class $\mathcal{W}_{\Sigma^{\prime}}^{\zeta, n}(\psi, \eta)$,

$$
\begin{equation*}
\frac{z\left[\left(D_{\zeta}^{n} h(z)\right)^{\prime}\right]^{\psi}}{D_{\zeta}^{n} h(z)}=\eta+(1-\eta) \kappa(z) \tag{3.6}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{w\left[\left(D_{\zeta}^{n} l(w)\right)^{\prime}\right]^{\psi}}{D_{\zeta}^{n} l(w)}=\eta+(1-\eta) t(w) \tag{3.7}
\end{equation*}
$$

where κ and t are as in Theorem 2.2.
Equating coefficients in (3.6) and (3.7) yields

$$
\begin{gather*}
-(1-\zeta)^{n} c_{0}=(1-\eta) \kappa_{1}, \tag{3.8}\\
(1-\zeta)^{2 n} c_{0}^{2}-(1-2 \zeta)^{n}(1+\psi) c_{1}=(1-\eta) \kappa_{2} \tag{3.9}\\
-\left[(1-\zeta)^{3 n} c_{0}^{3}-(1-\zeta)^{n}(1-2 \zeta)^{n} c_{0} c_{1}(2+\psi)+(1-3 \zeta)^{n} c_{2}(1+2 \psi)\right]=(1-\eta) \kappa_{3} \tag{3.10}\\
(1-\zeta)^{n} c_{0}=(1-\eta) t_{1} \tag{3.11}\\
(1-\zeta)^{2 n} c_{0}^{2}+(1-2 \zeta)^{n}(1+\psi) c_{1}=(1-\eta) t_{2} \tag{3.12}\\
(1-\zeta)^{3 n} c_{0}^{3}+(1-3 \zeta)^{n}(1+2 \psi) c_{2}+\left((1-3 \zeta)^{n}(1+2 \psi)+(1-\zeta)^{n}\right. \\
\left.(1-2 \zeta)^{n}(2+\psi)\right) c_{0} c_{1}=(1-\eta) t_{3} \tag{3.13}
\end{gather*}
$$

From (3.8) and (3.11), we have

$$
\kappa_{1}=-t_{1}
$$

and

$$
\begin{equation*}
c_{0}^{2}=\frac{(1-\eta)^{2}\left(\kappa_{1}^{2}+t_{1}^{2}\right)}{2(1-\zeta)^{2 n}} \tag{3.14}
\end{equation*}
$$

An application of triangle inequality and lemma 1.6 in (3.14) we have

$$
\left|c_{0}\right| \leq \frac{2(1-\eta)}{(1-\zeta)^{n}}
$$

Furthermore, in order to find the bound on $\left|c_{1}\right|$, by applying (3.9) and (3.12), we have

$$
\begin{array}{r}
{\left[(1-\zeta)^{2 n} c_{0}^{2}-(1-2 \zeta)^{n}(1+\psi) c_{1}\right] \cdot\left[(1-\zeta)^{2 n} c_{0}^{2}+(1-2 \zeta)^{n}(1+\psi) c_{1}\right]} \\
=\left((1-\eta) \kappa_{2}\right) \cdot\left((1-\eta) t_{2}\right)
\end{array}
$$

$$
(1-2 \zeta)^{2 n}(1+\psi)^{2} c_{1}^{2}=(1-\zeta)^{4 n}\left(c_{0}^{2}\right)^{2}-(1-\eta)^{2} \kappa_{2} t_{2}
$$

and

$$
(1-2 \zeta)^{2 n}(1+\psi)^{2} c_{1}^{2}=(1-\zeta)^{4 n}\left(\frac{(1-\eta)^{2}\left(\kappa_{1}^{2}+t_{1}^{2}\right)}{2(1-\zeta)^{2 n}}\right)^{2}-(1-\eta)^{2} \kappa_{2} t_{2} .
$$

Applying Lemma 1.6, we have

$$
(1-2 \zeta)^{2 n}(1+\psi)^{2}\left|c_{1}^{2}\right| \leq 4(1-\eta)^{2}\left(4 \eta^{2}-8 \eta+5\right)
$$

that is,

$$
\left|c_{1}\right| \leq \frac{2(1-\eta) \sqrt{4 \eta^{2}-8 \eta+5}}{(1-2 \zeta)^{n}(1+\psi)} .
$$

Finally, in order to obtain the bound on c_{2}, adding (3.10) and (3.13) yields

$$
\begin{equation*}
c_{0} c_{1}=\frac{(1-\eta)\left(\kappa_{3}+t_{3}\right)}{2(1-\zeta)^{n}(1-2 \zeta)^{n}(2+\psi)+(1-3 \zeta)^{n}(1+2 \psi)} . \tag{3.15}
\end{equation*}
$$

Subtracting (3.13) from (3.10), we have

$$
\begin{equation*}
-2(1-3 \zeta)^{n}(1+2 \psi) c_{2}=2(1-\zeta)^{3 n} c_{0}^{3}+(1-3 \zeta)^{n}(1+2 \psi) c_{0} c_{1}+(1-\eta)\left(\kappa_{3}-t_{3}\right) . \tag{3.16}
\end{equation*}
$$

Putting (3.8) and (3.15) in (3.16) gives

$$
\begin{aligned}
& c_{2}=\frac{(1-\eta)}{(1-3 \zeta)^{n}(1+2 \psi)} \\
& \quad\left[(1-\eta)^{2} \kappa_{1}^{3}-\frac{(1-3 \zeta)^{n}(1+2 \psi)+(1-\zeta)^{n}(1-2 \zeta)^{n}(2+\psi)}{2(1-\zeta)^{n}(1-2 \zeta)^{n}(2+\psi)+(1-3 \zeta)^{n}(1+2 \psi)} \kappa_{3}\right. \\
& \left.\quad+\frac{(1-\zeta)^{n}(1-2 \zeta)^{n}(2+\psi)}{2(1-\zeta)^{n}(1-2 \zeta)^{n}(2+\psi)+(1-3 \zeta)^{n}(1+2 \psi)} t_{3}\right] .
\end{aligned}
$$

By applying Lemma 1.6 for the above equation we have

$$
\left|c_{2}\right| \leq \frac{2(1-\eta)}{(1-3 \zeta)^{n}(1+2 \psi)}\left[1+4(1-\eta)^{2}\right] .
$$

Choosing $n=1$ in Theorem 3.2, yields:
Corollary 3.3. Let $h \in \mathcal{W}_{\Sigma^{\prime}}(\psi, \eta)$. Then

$$
\begin{gathered}
\left|c_{0}\right| \leq 2(1-\eta), \\
\left|c_{1}\right| \leq \frac{2(1-\eta) \sqrt{4 \eta^{2}-8 \eta+5}}{(1+\psi)}
\end{gathered}
$$

and

$$
\left|c_{2}\right| \leq \frac{2(1-\eta)}{(1+2 \psi)}\left[1+4(1-\eta)^{2}\right] .
$$

4 Conclusion

Here, in our present investigation, we have introduced and studied coefficient problems associated with each of the following two new subclasses:

$$
\mathcal{W}_{\Sigma^{\prime}, n}^{\zeta}(\psi, \xi) \quad \text { and } \quad \mathcal{W}_{\Sigma^{\prime}, n}^{\zeta, n}(\psi, \eta)
$$

of the class $\mathcal{W}_{\Sigma^{\prime}}$ of meromorphic bi-univalent functions associated with Al-Oboudi differential operator defined on $\mathcal{U}^{*}=\{z: z \in \mathcal{C}, 1<|z|<\infty\}$. These class $\mathcal{W}_{\Sigma^{\prime}}$ of meromorphic biunivalent functions associated with Al-Oboudi differential operator are given by Definition 2.1
and 3.1, respectively. For function in each of these two meromorphic bi-univalent functions classes, we have obtained the estimates for the coefficients $\left|c_{0}\right|,\left|c_{1}\right|$ and $\left|c_{2}\right|$. The results presented in this research have been shown to considerably improve the earlier results of Srivastava et al. [36] in terms of the bounds.
Using the Feber polynomial expansion for the two classes $\mathcal{W}_{\Sigma^{\prime}}^{\zeta, n}(\psi, \xi)$ and $\mathcal{W}_{\Sigma^{\prime}}^{\zeta, n}(\psi, \eta)$ is still an interesting open problem, as well as for $\left|c_{n}\right|$ where $n \geq 3$. Another investigation to consider, Amol B. Patil and Uday H. Naik [24] obtained initial coefficient for certain subclass of meromorphic bi-univalent function class Σ^{\prime} of complex order $\gamma \in \mathcal{C} \backslash\{0\}$, using Al-Oboudi differential operator. Obtaining complex order $\gamma \in \mathcal{C} \backslash\{0\}$ for the two classes $\mathcal{W}_{\Sigma^{\prime}}^{\zeta, n}(\psi, \xi)$ and $\mathcal{W}_{\Sigma^{\prime}}^{\zeta, n}(\psi, \eta)$ are issues to be investigated.

References

[1] E. A. Adegani, A. Motamednezhad and S. Bulut, Coefficient estimates for a subclass of meromorphic bi-univalent functions defined by subordination, Stud. Univ. Babeş-Bolyai Math. 65(1), 57-66 (2020).
[2] A. Aldawish, T. Al-Hawary and B.A. Frasin, Subclasses of bi-univalent function defined by Frasin differential operator, E. Mathematics. 8, 1-11 (2020).
[3] A. G. Alamoush, A Subclass of pseudo-type meromorphic bi-univalent functions, Commun. Fac. Sci. Univ. Ank. Ser. Al Math. Stat. 69(2), 31-38 (2020).
[4] F. M. Al-Oboudi, On univalent functions defined by a generalized Salagean operator, Int. J. Math. Sci. 27, 1429-1436 (2004).
[5] K.O. Babalola, On λ-pseudo-starlike function, J. Class. Anal. 3, 137-147 (2013).
[6] D.A. Brannan, J. Clunie and W.E. Kirwan, Coefficient estimate for a class of starlike functions, Canad. J. Math. 22, 476-485 (2009).
[7] D. A. Brannan and T. S. Taha, On some classes of bi-univalent functions, In Mathematical Analysis and its Applications; Pergamon Press: Pergamon, Turkey. 53-60 (2009).
[8] D.A. Brannan and T.S. Taha, On some classes of bi-univalent functions, Stud. Univ. Babeş-Bolyai Math., Canad. J. Math. 31(2), 70-77 (1986).
[9] S. Bulut, Coefficient estimate for new subclasses of meromorphic bi-univalent functions, International Sch. Research Notices. Article ID 376076, 476-485.
[10] M. Çaǧlar, H. Orhan, and N. Yaǧmur, Coefficient bounds for new subclasses of bi-univalent functions, Filomat. 27(7), 1165-1171 (2013).
[11] P.L. Duren, Univalent functions, Grundlehren der Mathematischen Wissenschaften, Springer, New York, (2004).
[12] B. A. Frasin and M. K. Aouf, New subclasses of bi-univalent functions, Appl. Math. Lett. 24(9), 15691573 (2011).
[13] S. G. Hamidi, S. A. Halim, and J. M. Jahangiri, Coefficent estimates for bi-univalent strongly starlike and Bazilevic functions, International Journal of Mathematics Research, 5(1), 87-96 (2013).
[14] S. A. Halim, S. G. Hamidi and V. Ravichandran, Coefficients estimates for meromorphic bi-univalent functions, arXiv: $1108.4089 \mathrm{vl}, 1-9$ (2011).
[15] T. Janani and G. Murugusundaramoorthy, Coefficients estimates of meromorphic bi-starlike functions of complex order, Internat. J. Anal. Appl. 4(1), 68-77 (2014).
[16] S.B. Joshi and P.P. Yadav, Coefficient bounds for new subclasses of bi-univalent function associated with pseudo-starlike functions, Ganita J. 69, 67-74 (2019).
[17] J. Jothibasu, Certain subclasses of bi-univalent functions defined by salagean operator, Elec. J. Math. Anal. Appl. 3, 150-157 (2015).
[18] G. P. Kapoor and A. K. Mishra, Coefficient estimates for inverses of starlike functions of positive order, Journal of Mathematical Analysis and Applications 329 (2), 922-934 (2017).
[19] Y. Kubota, Coefficients of meromorphic univalent functions, Kōdai Math. Sem. Rep. 28 (2-3), 253-261 (1976/77).
[20] M. Lewin, On a coefficients problem of bi-univalent functions, Proc. Amer. Math. Soc. 18, 63-68 (1967).
[21] G. Murugusundaramoorthy, N. Magesh and V. Prameela, Coefficient bounds for certain subclasses of bi-univalent functions, Abs. Appl. Anal., 1-3 (2013).
[22] S.0. Olatunji and P.T. Ajayi, On subclasses of bi-univalent functions of Bazelevic type involving linear salagean operator, Internat. J. Pure. Appl. Math. 92, 645-656 (2014).
[23] T. Panigrahi, Coefficient bounds for certain subclasses of meromorphic and bi-univalent functions, Bull. Korean. Math. Soc., 50(5), 1531-1538 (2013).
[24] A. B. Patil and U. H. Naik, Coefficient estimates for a new subclass of meromorphic bi-univalent function defined by Al-Oboudi differential operator, Global Journal of Pure and Applied Mathematics, 13(9), 4405-4414 (2017).
[25] A. B. Patil, T. G. Shaba, On sharp Chebyshev polynomial bounds for general subclassof bi-univalent functions. Applied Sciences, 23, 109-117 (2021).
[26] C.H. Pommerenke, Univalent Functions, Vandendoeck and Rupercht, Gottingen, (1975).
[27] G.S. Salagean, Subclasses of Univalent functions, Lecture Notes in Math., Spinger Verlag, Berlin. 1013, 362-372 (1983).
[28] M. Schiffer, Sur un probléme dextrémum de la représentation conforme, Bull. Soc. Math. France, 66, 48-55 (1938).
[29] G. Schober, Coefficients of inverses of meromorphic univalent functions, Proc. Amer. Math. Soc., 67, 111-116 (1977).
[30] T. G. Shaba, On some new subclass of bi-univalent functions associated with Opoola differential operator, Open J. Math. Anal., 4(2), 74-79 (2020).
[31] T. G. Shaba, Certain new subclasses of analytic and bi-univalent functions using salagean operator, Asia Pac. J. Math., 7(29), 1-11 (2020).
[32] T. G. Shaba and A. K. Wanas, Coefficients bounds for a new family of bi-univalent functions associated with (U, V)-Lucas polynomial, Int. J. Nonlinear Anal. Appl. 13(1), 615- 626 (2022).
[33] T. G. Shaba, On some subclasses of bi-pseudo-starlike functions defined by Salagean differential operator, Asia Pac. J. Math. 8(6), 1-11 (2021) .
[34] T. G. Shaba, A. A. Ibrahim and A. A. Jimoh, On a new subclass of bi-pseudo-starlike functions defined by frasin differential operator, Adv. Math., Sci. J. 9(7), 4829-4841 (2020).
[35] G. Springer, The coefficient problem for schlicht mappings of the exterior of the unit circle, Trans. Amer. Math. Soc. 70, 421-450 (1951).
[36] H.M. Srivastava, S.B. Joshi, S.S. Joshi, and H. Pawar, Coefficients estimates for certain subclasses of meromorphically bi-univalent function, Palestine J. Math. 5(1), 250-258 (2016).
[37] H. M. Srivastava, S. S. Eker, and R. M. Ali, Coefficients estimates for a certain class of analytic and bi-univalent functions, Filomat, 29, 1839-1845 (2015).
[38] H. M. Srivastava, A. K. Mishra, and P. Gochhayat, Certain subclasses of analytic and bi-univalent functions, Appl. Math. Lett. 23(10), 1188-1192 (2010).
[39] H. M. Srivastava, A. K. Mishra, and S. N. Kund, Coefficient estimates for the inverses of starlike functions represented by symmetric gap series, Panamerican Mathematical Journal 21(4), 105-123 (2011).
[40] T.S. Taha, Topics in univalent functions theory, Ph.D. Thesis, University of London, London, UK, (1998).
[41] Q.H. Xu, Y.C. Gui and H.M. Srivastava, A certain general subclass of analytic and bi-univalent functions and associated coefficient estimate problems, Appl. Math. Comput. 11461-11465 (2012).

Author information

Timilehin Gideon Shaba, Department of Mathematics, Physical Sciences, University of Ilorin, Ilorin, Nigeria. E-mail: shabatimilehin@gmail.com, shaba_timilehin@yahoo.com

Muhammad G. Khan, Department of Mathematics, Abdul Wali Khan university Mardan, Pakistan.
E-mail: ghaffarkhan020@gmail.com
Bakhtiar Ahmad, Department of Mathematics, Govt Degree College Mardan, Pakistan.
E-mail: pirbakhtiarbacha@gmail.com
Received: August 7, 2020.
Accepted: October 7, 2020

