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Abstract The paper deals with the study of Ricci solitons on para-Sasakian manifolds sat-
isfying pseudo-symmetry curvature conditions. First, we investigate Ricci solitons in Ricci-
pseudosymmetric para-Sasakian manifolds. Next, we consider Ricci solitons inW3-Ricci-pseudo-
symmetric para-Sasakian manifolds. Moreover, we investigate Ricci solitons in Ricci general-
ized pseudo-symmetric para-Sasakian manifold. Finally, we prove that Ricci solitons in para-
Sasakian manifolds satisfying the curvature condition Q · R = 0, is expanding and an example
is given to verify the theorem.

1 Introduction

The concept of Ricci solitons was introduced by Hamilton [8]. They are natural generalizations
of Einstein metrics, which have been a significant subject of intense study in differential geom-
etry and geometric analysis. Ricci solitons also correspond to special solutions of Hamilton’s
Ricci flow [7] and often arise as limits of dilations of singularities in the Ricci flow. The Ricci
flow is an evolution equation for metrics on a Riemannian manifold defined as follows:

∂

∂t
gij(t) = −2Rij .

A Ricci soliton emerges as the limit of the solutions of the Ricci flow. A solution to the Ricci
flow is called Ricci soliton if it moves only by a one-parameter group of diffeomorphism and
scaling. A Ricci soliton is a generalization of an Einstein metric and is defined on a Riemannian
manifold (M, g). A Ricci soliton is a triple (g, V, λ) with g a Riemannian metric, V is a potential
vector field and λ a real scalar so that the following equation is satisfied:

LV g + 2S + 2λg = 0, (1.1)

where LV is the Lie derivative along the vector field V , S is the Ricci tensor of M . A Ricci
soliton is said to be shrinking, steady or expanding according to λ negative, zero and positive,
respectively. During the last two decades, the geometry of Ricci solitons has become a subject of
growing interest for many mathematicians. The study of the Ricci solitons in contact geometry
has begun with the work of Sharma [17], Nagaraja et al. [13] and others extensively studied
Ricci solitons in contact metric manifolds. For details we refer to [1, 2, 3, 5, 9, 14, 21].

In 1976, Sato [16] introduced the notion of almost paracontact structure (φ, ξ, λ) on a dif-
ferentiable manifold. This structure is an analogue of the almost contact structure. An almost
contact manifold is always odd-dimensional but an almost paracontact manifold could be of even
dimension as well. Takahashi [18] defined almost contact manifolds (in particular, Sasakian
manifolds) equipped with an associated pseudo-Riemannian metric.

In 1985, Kaneyuki and Williams [10] defined the notion of almost paracontact structure on
a pseudo-Riemannian manifold of dimension (2n + 1). Later, Zamkovoy [22] showed that any
almost paracontact structure admits a pseudo-Riemannian metric with signature (n+ 1, n).
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The paper is organized as follows: In Section 2, we recall some basic formulas on para
Sasakian manifolds and we give some basic definitions of pseudo-symmetry curvature conditions
and notions used in this study. In Section 3, we give a brief account on Ricci solitons on para-
Sasakian manifolds. Next, in Section 4, we consider a Ricci soliton in Ricci-pseudo-symmetric
para-Sasakian manifold and prove that the Ricci soliton is expanding provided LS 6= −1. Sec-
tion 5 deals with a Ricci soliton in W3-Ricci-pseudo-symmetric para-Sasakian manifold and
prove that the Ricci soliton is expanding provided f 6= −2. We discuss a Ricci soliton in W3-
pseudo-symmetric para-Sasakian manifold and prove that the Ricci soliton is expanding pro-
vided LW3 6= −1 in Section 6. In the next Section, we study Ricci solitons in Ricci generalized
pseudo-symmetric para-Sasakian manifold, it is shown that the Ricci soliton is expanding pro-
vided nLR 6= 1. Finally, we have pointed out that Ricci solitons in para-Sasakian manifolds
satisfying the curvature condition Q · R = 0, is expanding and we give an example of a Ricci
soliton on a 5-dimensional para-Sasakian manifold to verify some results.

2 Preliminaries

An n-dimensional differentiable manifold M is called almost paracontact manifold with the
almost paracontact structure (φ, ξ, η) consisting of a (1, 1)-tensor field φ, a vector field ξ and an
1-form η satisfying the following conditions [10]:

φ2 = I − η ⊗ ξ, η(ξ) = 1, φξ = 0, η ◦ φ = 0, (2.1)

where I denote the identity transformation. If an n-dimensional almost paracontact manifold M
with an almost paracontact structure (φ, ξ, η) admits a pseudo-Riemannian metric g such that

g(φX, φY ) = −g(X,Y ) + η(X)η(Y ), (2.2)

then we say that M is an almost paracontact metric manifold with an almost paracontact metric
structure (φ, ξ, η, g) and such a metric g is called compatible metric [22]. From (2.2), it can be
easily seen that

g(X,φY ) = −g(φX, Y ), (2.3)

g(X, ξ) = η(X). (2.4)

The fundamental 2-form Φ of an almost paracontact structure (φ, ξ, η, g) is defined by

Φ(X,Y ) = g(X,φY ),

for all tangent vector fields X,Y . If dη = Φ, then the manifold M(φ, ξ, η, g) is called a para-
contact metric manifold associated to the metric g, where X,Y, Z ∈ TMn; TM is the set of
all differentiable vector fields on M . Here the paracontact metric structure is normal and the
structure is called para-Sasakian [22]. Equivalently, a paracontact metric structure (φ, ξ, η, g) is
para-Sasakian if

(∇Xφ)Y = −g(X,Y )ξ + η(Y )X, (2.5)

for any X,Y ∈ TMn, where ∇ is Levi–Civita connection of g. From the above equation, it
follows that

∇Xξ = −φX. (2.6)

In an n-dimensional para-Sasakian manifold, the following relations hold:

R(X,Y, Z,W ) = g(X,Z)g(Y,W )− g(Y,Z)g(X,W ), (2.7)

η(R(X,Y )Z) = g(X,Z)η(Y )− g(Y,Z)η(X), (2.8)

R(ξ.X)Y = −g(X,Y )ξ + η(Y )X, (2.9)

R(X, ξ)Y = g(X,Y )ξ − η(Y )X, (2.10)
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R(X,Y )ξ = η(X)Y − η(Y )X, (2.11)

R(ξ, Y )ξ = Y − η(Y )ξ, (2.12)

S(X, ξ) = −(n− 1)η(X), (2.13)

S(ξ, ξ) = −(n− 1), (2.14)

for any vector fields X,Y, Z,W ∈ TMn, where R is the Riemannian curvature tensor, S is the
Ricci tensor and Q is the Ricci operator defined by g(QX,Y ) = S(X,Y ). We define endomor-
phisms R(X,Y ) and X ∧A Y by

R(X,Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z, (2.15)

and
(X ∧A Y )Z = A(Y,Z)X −A(X,Z)Y, (2.16)

respectively [6], where X,Y, Z ∈ TMn, A is the symmetric (0, 2)-tensor, R is the Riemannian
curvature tensor of type (1, 3) and ∇ is the Levi-Civita connection. For a (0, k)-tensor field T ,
k > 1; on (Mn, g), we define the tensors R · T and Q(g, T ) by

(R(X,Y ) · T )(X1, X2, X3, ......, Xk) (2.17)

= −T (R(X,Y )X1, X2, X3, ......, Xk)

−T (X1, R(X,Y )X2, X3, ......, Xk)

−......− T (X1, X2, X3, ......, R(X,Y )Xk),

and

Q(g, T )(X1, X2, X3, ......, Xk;X,Y ) (2.18)

= −T ((X ∧g Y )X1, X2, X3, ......, Xk)

−T (X1, (X ∧g Y )X2, X3, ......, Xk)

−......− T (X1, X2, X3, ......, (X ∧g Y )Xk),

respectively [20].
In 1973 Pokhariyal [15] introduced the notion of a new curvature tensor, denoted by W3 and

studied its relativistic significance. The W3-curvature tensor of type (1, 3) on a para-Sasakian
manifold is defined by:

W3(X,Y )Z = R(X,Y )Z +
1

(n− 1)
[g(Y,Z)QX − S(X,Z)Y ], (2.19)

Then in a para-Sasakian manifold, W3 satisfies the following relations:

W3(ξ, Y )Z = 2[η(Z)Y − g(Y,Z)ξ], (2.20)

W3(ξ, Y )ξ = 2[Y − η(Y )ξ], (2.21)

W3(ξ, ξ)Z = 0. (2.22)

Definition 2.1. A para-Sasakian manifold (Mn, g) is said to be Ricci-pseudo-symmetric if the
tensors R · S and Q(g, S) are linearly dependent. This is equivalent to

R · S = LSQ(g, S), (2.23)

holding on the set US = {x ∈M : S 6= 0 at x}, where LS is some function on US . [20]
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Definition 2.2. A para-Sasakian manifold (Mn, g) is said to be W3-Ricci-pseudo-symmetric if
the tensors W3 · S and Q(g, S) are linearly dependent. This is equivalent to

W3 · S = fQ(g, S), (2.24)

holding on the set US = {x ∈M : S 6= 0 at x}, where f is some function on US .

Definition 2.3. A para-Sasakian manifold (Mn, g) is said to be Ricci generalized pseudo-symmetric
if the tensors R ·R and Q(S,R) are linearly dependent. This is equivalent to

R ·R = LRQ(S,R), (2.25)

holding on the set UR = {x ∈M : R 6= 0 at x}, where LR is some function on UR. [20]

A very important subclass of this class of manifolds realizing the condition is

R ·R = Q(S,R).

Every three dimensional manifold satisfies the above equation identically. Other examples
are the semi-Riemannian manifolds (M, g) admitting a non-zero 1-form ω such that the equality
ω(X)R(Y, Z)+ω(Y )R(Z,X)+ω(Z)R(X,Y ) = 0, holds onM . The conditionR·R = Q(S,R)
also appears in the theory of plane gravitational waves.

Furthermore, we define the tensors R ·R and R · S on (Mn, g) by

(R(X,Y ) ·R)(U, V )W (2.26)

= R(X,Y )R(U, V )W −R(R(X,Y )U, V )W
−R(U,R(X,Y )V )W −R(U, V )R(X,Y )W,

and
(R(X,Y ) · S)(U, V ) = −S(R(X,Y )U, V )− S(U,R(X,Y )V ), (2.27)

respectively [4]. Recently, Kowalczyk [11] studied semi-Riemannian manifolds satisfyingQ(S,R) =
0 and Q(S, g) = 0, where S and R are the Ricci tensor and curvature tensor respectively.

Definition 2.4. A para-Sasakian manifold (Mn, g) is said to be W3-pseudo-symmetric if the
tensors R ·W3 and Q(g,W3) are linearly dependent. This is equivalent to

R ·W3 = LW3Q(g,W3), (2.28)

holding on the set UW3 = {x ∈M : W3 6= 0 at x}, where LW3 is some function on UW3 .

A Riemannian manifold or pseudo-Riemannian manifold is said to be Ricci semi-symmetric
if R(X,Y ) · S = 0, where S denotes the Ricci tensor of type (0, 2). A general classification of
these manifolds has been worked out by Mirzoyan [12]. An example of a curvature condition of
a semi-symmetry type is the following:

Q ·R = 0,

where Q is the Ricci operator of type (1, 1) and S(X,Y ) = g(QX,Y ).
A natural extension of such curvature conditions from curvature conditions of pseudo-symmetry

type. The curvature condition Q ·R = 0 have been studied by Verstraelen et al. in [19].

3 Ricci solitons in para-Sasakian manifolds

Let (g, ξ, λ) be a Ricci soliton in an n-dimensional para-Sasakian manifold M . From (1.1), we
have

(L
ξ
g)(X,Y ) + 2S(X,Y ) + 2λg(X,Y ) = 0, (3.1)

for any X,Y ∈ TMn, where L
ξ

is the Lie derivative operator along the vector field ξ, S is the
Ricci tensor field of the metric g and λ is real constant. On a para-Sasakian manifold M , from
(2.6) and the skew-symmetric property of φ, we obtain

(L
ξ
g)(X,Y ) = g(∇Xξ, Y ) + g(X,∇Y ξ) = 0. (3.2)
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By virtue of (3.2) in (3.1), we get

S(X,Y ) = −λg(X,Y ). (3.3)

Thus the pair (M, g, ξ, λ) is an Einstein one. Ricci soliton is called shrinking, steady or
expanding according as λ is negative, zero or positive, respectively by [9].

4 Ricci solitons in Ricci pseudo-symmetric para-Sasakian manifolds

In this section, we consider a Ricci pseudo-symmetric para-Sasakian manifold. Then from the
definition 2.1, we have

(R(X,Y ) · S)(U, V ) = LSQ(g, S)(X,Y ;U, V ),

which implies that

(R(X,Y ) · S)(U, V ) = LS((X ∧g Y ) · S)(U, V ). (4.1)

With the help of (2.27) and (2.18), we get from (4.1)

−S(R(X,Y )U, V )− S(U,R(X,Y )V ) (4.2)

= LS [−S((X ∧g Y )U, V )− S(U, (X ∧g Y )V )].

Using (2.16) in (4.2), yields

−S(R(X,Y )U, V )− S(U,R(X,Y )V ) (4.3)

= LS [−g(Y,U)S(X,V ) + g(X,U)S(Y, V )

−g(Y, V )S(U,X) + g(X,V )S(U, Y )].

Putting X = U = ξ in (4.3) and using (2.4),(2.10), (2.12) and (2.13), we obtain

(1 + LS)[S(Y, V ) + (n− 1)g(Y, V )] = 0. (4.4)

We may conclude that either LS = −1 or, the manifold is an Einstein manifold of the form

S(Y, V ) = −(n− 1)g(Y, V ). (4.5)

Hence, we state the following lemma:

Lemma 4.1. A Ricci-pseudo-symmetric para-Sasakian manifold (Mn, g) is an Einstein manifold
with LS 6= −1.

A Ricci-pseudo-symmetric para-Sasakian manifold (Mn, g) admits Ricci soliton. Then by
virtue of (3.3) and (4.5), we obtain

λ = n− 1.

Therefore, λ is positive. Hence we can state the following result:

Theorem 4.2. A Ricci soliton (g, ξ, λ) in a Ricci-pseudo-symmetric para-Sasakian manifold
(Mn, g) is expanding provided LS 6= −1.

5 Ricci solitons in W3-Ricci pseudo-symmetric para-Sasakian manifolds

Consider a W3-Ricci pseudo-symmetric para-Sasakian manifold. Then from the definition 2.2,
we have

(W3(X,Y ) · S)(U, V ) = fQ(g, S)(X,Y ;U, V ),

which implies that

(W3(X,Y ) · S)(U, V ) = f((X ∧g Y ) · S)(U, V ). (5.1)
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This equation can be written as

−S(W3(X,Y )U, V )− S(U,W3(X,Y )V ) (5.2)

= f [−S((X ∧g Y )U, V )− S(U, (X ∧g Y )V )].

With the help of (2.27) and (2.18), we get from (5.2)

−S(W3(X,Y )U, V )− S(U,W3(X,Y )V ) (5.3)

= f [−g(Y,U)S(X,V ) + g(X,U)S(Y, V )

−g(Y, V )S(U,X) + g(X,V )S(U, Y )].

Putting X = U = ξ in (5.3) and using (2.4), (2.13), (2.20) and (2.21), we obtain

(2 + f)[S(Y, V ) + (n− 1)g(Y, V )] = 0. (5.4)

We may conclude that either f = −2 or, the manifold is an Einstein manifold of the form

S(Y, V ) = −(n− 1)g(Y, V ). (5.5)

Hence, we state the following lemma:

Lemma 5.1. AW3-Ricci-pseudo-symmetric para-Sasakian manifold (Mn, g) is an Einstein man-
ifold with f 6= −2.

Let a W3-Ricci-pseudo-symmetric para-Sasakian manifold (Mn, g) admits Ricci soliton.
Then from (3.3) and (5.5), we obtain

λ = n− 1.

Therefore, λ is positive. Hence we can state the following:

Theorem 5.2. A Ricci soliton (g, ξ, λ) in W3-Ricci-pseudo-symmetric para-Sasakian manifold
(Mn, g) is expanding provided f 6= −2.

6 Ricci solitons in W3-pseudo-symmetric para-Sasakian manifolds

Consider a W3-pseudo-symmetric para-Sasakian manifold. Then from definition 2.4, we have

R ·W3 = LW3Q(g,W3),

which implies that

(R(X,Y ) ·W3)(U, V )W = LW3((X ∧g Y ) ·W3)(U, V )W. (6.1)

Using (2.26) and (2.18) in (6.1), we have

R(X,Y )W3(U, V )W −W3(R(X,Y )U, V )W − (6.2)

W3(U,R(X,Y )V )W −R(U, V )W3(X,Y )W

= LW3 [(X ∧g Y )W3(U, V )W −W3((X ∧g Y )U, V )W
−W3(U, (X ∧g Y )V )W −W3(U, V )(X ∧g Y )W ].

By virtue of (2.16) and (6.2), we find

R(X,Y )W3(U, V )W −W3(R(X,Y )U, V )W (6.3)

−W3(U,R(X,Y )V )W −W3(U, V )R(X,Y )W

= LW3 [g(Y,W3(U, V )W )X − g(X,W3(U, V )W )Y

−g(Y, U)W3(X,Y )W + g(X,U)W3(Y, V )W

−g(Y, V )W3(U,X)W + g(X,V )W3(U, Y )W

−g(Y,W )W3(U, V )X + g(X,W )W3(U, V )Y ].
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Putting X = U = ξ in (6.3) and using (2.9), (2.12), (2.19), (2.20), (2.21) and (2.22), we
obtain

−2g(V,W )Y −W3(Y, V )W + 2g(Y,W )V (6.4)

= LW3 [2g(V,W )Y +W3(Y, V )W − 2g(Y,W )V ],

i.e.,
(1 + LW3)[W3(Y, V )W + 2g(V,W )Y − 2g(Y,W )V ] = 0. (6.5)

Taking inner product with Z of (6.5) and using (2.19), we find

(1 + LW3){g(R(Y, V )W,Z) +
1

(n− 1)
[g(V,W )S(Y,Z) (6.6)

−S(Y.W )g(V,Z)] + 2g(V,W )g(Y,Z)− 2g(Y,W )g(V,Z)}
= 0.

Let {ei}, i = 1, 2, ....., n be an orthonormal basis of the tangent space at any point of the
manifold. Then putting V =W = ei in (6.6) and taking summation over 1 6 i 6 n, we have

(1 + LW3)[S(Y,Z) + g(Y,Z)] = 0. (6.7)

We may conclude that either LW3 = −1 or, the manifold is an Einstein manifold of the form

S(Y,Z) = −g(Y, Z). (6.8)

Hence, we state the following lemma:

Lemma 6.1. A W3-pseudo-symmetric para-Sasakian manifold (Mn, g) is an Einstein manifold
with LW3 6= −1.

Let a W3-pseudo-symmetric para-Sasakian manifold (Mn, g) admits Ricci soliton. Then
from equations (3.3) and (6.8), we obtain

λ = 1.

Therefore, λ is positive. Hence we have the following:

Theorem 6.2. A Ricci soliton (g, ξ, λ) inW3-pseudo-symmetric para-Sasakian manifold (Mn, g)
is expanding provided LW3 6= −1.

7 Ricci solitons in Ricci generalized pseudo-symmetric para-Sasakian
manifolds

Consider a Ricci generalized pseudo-symmetric para-Sasakian manifold. Then from the defini-
tion 2.3, we have

R ·R = LRQ(S,R),

which implies that

(R(X,Y ) ·R)(U, V )W = LR((X ∧S Y ) ·R)(U, V )W. (7.1)

Using (2.26) and (2.18) in (7.1), we have

R(X,Y )R(U, V )W −R(R(X,Y )U, V )W (7.2)

−R(U,R(X,Y )V )W −R(U, V )R(X,Y )W
= LR[(X ∧S Y )R(U, V )W −R((X ∧S Y )U, V )W
−R(U, (X ∧S Y )V )W −R(U, V )(X ∧S Y )W ],
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by virtue of (2.16) and (7.2), we obtain

R(X,Y )R(U, V )W −R(R(X,Y )U, V )W (7.3)

−R(U,R(X,Y )V )W −R(U, V )R(X,Y )W
= LR[S(Y,R(U, V )W )X − S(X,R(U, V )W )Y

−S(Y,U)R(X,Y )W + S(X,U)R(Y, V )W

−S(Y, V )R(U,X)W + S(X,V )R(U, Y )W

−S(Y,W )R(U, V )X + S(X,W )R)(U, V )Y ].

Taking X = U = ξ in (7.3) and using (2.9), (2.10), (2.11), (2.12) and (2.13), we have

−g(V,W )Y + g(V,W )η(Y )ξ −R(Y, V )W (7.4)

+η(Y )η(W )V − g(V,W )η(Y )ξ

−η(W )η(Y )V + g(Y,W )V

= LR[η(W )S(Y, V )ξ − (n− 1)g(V,W )Y

−(n− 1)R(Y, V )W + (n− 1)g(Y,W )η(V )ξ

−S(Y,W )V + S(Y,W )η(V )ξ

+(n− 1)g(V, Y )η(W )ξ].

Taking the inner product with Z of (7.4), we get

−g(V,W )g(Y,W )− g(R(Y, V )W,Z) + g(Y,W )g(V,Z) (7.5)

= LR[S(Y, V )η(W )η(Z)− (n− 1)g(V,W )g(Y,Z)

−(n− 1)g(R(Y, V )W,Z) + (n− 1)g(Y,W )η(V )η(Z)

−S(Y,W )g(V,Z) + S(Y,W )η(V )η(Z)

+(n− 1)g(V, Y )η(W )η(Z)].

Let {ei}, i = 1, 2, ....., n be an orthonormal basis of the tangent space at any point of the
manifold. Then putting V =W = ei in (7.5) and taking summation over 1 6 i 6 n, we obtain

S(Y, Z) + (n− 1)g(Y, Z) = nLR[S(Y,Z) + (n− 1)g(Y,Z)], (7.6)

i.e.,
(1− nLR)[S(Y, Z) + (n− 1)g(Y,Z)] = 0. (7.7)

We may conclude that either LR = 1
n or, the manifold is an Einstein manifold of the form

S(Y,Z) = −(n− 1)g(Y,Z). (7.8)

Hence, we state the following lemma:

Lemma 7.1. A Ricci generalized pseudosymmetric para-Sasakian manifold (Mn, g) is an Ein-
stein manifold with LR 6= 1

n .

Let a Ricci generalized pseudosymmetric para-Sasakian manifold (Mn, g) admits Ricci soli-
ton. Then by virtue of (3.3) and (7.8), we have

λ = n− 1.

Therefore, λ is positive. Hence we can state the following result:

Theorem 7.2. A Ricci soliton (g, ξ, λ) in Ricci generalized pseudosymmetric para-Sasakian
manifold (Mn, g) is expanding provided LR 6= 1

n .
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8 Ricci solitons in para-Sasakian manifolds satisfying the curvature
condition Q · R = 0

This section is devoted to study Ricci solitons in para-Sasakian manifolds satisfying the curvature
condition Q ·R = 0.

Let us consider a para-Sasakian manifold satisfying the curvature condition Q ·R = 0, i.e.,

(Q ·R)(X,Y )Z = 0,

for all vector fields X,Y and Z ∈ TMn. This is equivalent to

Q(R(X,Y )Z)−R(QX,Y )Z −R(X,QY )Z −R(X,Y )QZ = 0. (8.1)

Putting X = Z = ξ in (8.1),we obtain

Q(R(ξ, Y )ξ)−R(Qξ, Y )ξ −R(ξ,QY )ξ −R(ξ, Y )Qξ = 0. (8.2)

Using (2.12) in (8.2), we have

−η(Y )Qξ −R(Qξ, Y )ξ + η(QY )ξ −R(ξ, Y )Qξ = 0. (8.3)

Taking the inner product with ξ of (8.3), we get

−η(Y )S(ξ, ξ)− g(R(Qξ, Y )ξ, ξ) + η(QY )− g(R(ξ, Y )Qξ, ξ) = 0. (8.4)

Now from (2.7), we obtain
g(R(Qξ, Y )ξ, ξ) = 0, (8.5)

and
g(R(ξ, Y )Qξ, ξ) = −(n− 1)η(Y )− S(Y, ξ). (8.6)

Using (2.13), (8.5) and (8.6) in (8.4), we have

S(Y, ξ) = −(n− 1)η(Y ). (8.7)

Taking Y = ξ in (3.3), we obtain

S(X, ξ) = −λη(Y ), (8.8)

by virtue of (8.7) and (8.8), we get
λ = n− 1.

Therefore, λ is positive. Hence we can state the following result:

Theorem 8.1. A Ricci soliton (g, ξ, λ) in para-Sasakian manifold (Mn, g) satisfying the curva-
ture condition Q ·R = 0, is expanding.

9 Example

We consider 5-dimensional manifoldM , whereM = {(x1, x2, y1, y2, z) ∈ R5}, where (x1, x2, y1, y2, z)
are standard coordinates in R5. Let e1, e2, e3, e4, e5 be linearly independent frame fields on M
given by

e1 =
∂

∂x1
, e2 =

∂

∂x2
, e3 =

∂

∂y1
, e4 =

∂

∂y2
,

e5 = x1
∂

∂x1
+ x2

∂

∂x2
+ y1

∂

∂y1
+ y2

∂

∂y2
+

∂

∂z
.

Let g be a Riemannian metric defined by

g(ei, ej) = 1 if i = j

= 0 if i 6= j, i, j = 1, 2, 3, 4, 5
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Let η be the 1-form defined by η(X) = g(X, e5) ∀ X ∈ χ(M), where χ(M) be the set of all
C∞−vector fields defined on M . Let φ be (1, 1) tensor field defined by

φe1 = e1, φe2 = e2, φe3 = e3, φe4 = e4, φe5 = 0.

Then using the linearity of φ and g, we have

η(e5) = 1, φ2X = X − η(X)e5,

g(φX, φY ) = g(X,Y )− η(X)η(Y ),

for any vector fields X,Y on χ(M). Thus for e5 = ξ, the structure (ϕ, ξ, η, g) defines an almost
contact metric structure on M . [4]

Let ∇ be the Levi-Civita connection with respect to metric g and R be the curvature tensor
of the metric g. Then, we have

[e1, e2] = 0, [e1, e3] = 0, [e1, e4] = 0, [e1, e5] = e1,

[e2, e3] = 0, [e3, e4] = 0, [e2, e4] = 0, [e2, e5] = e2,

[e3, e5] = e3, [e4, e5] = e4.

The Riemannian connection ∇ of the metric tensor g is given by Koszul’s formula which is

2g(∇XY, Z) = X{g(Y,Z)}+ Y {g(Z,X)} − Z{g(X,Y )}
−g(X, [Y,Z]) + g(Y, [Z,X]) + g(Z, [X,Y ]).

Taking e5 = ξ and using Koszul’s formula, we obtain

∇e1e1 = −e5,∇e1e2 = 0,∇e1e3 = 0,∇e1e4 = 0,∇e1e5 = e1,

∇e2e1 = 0,∇e2e2 = −e5,∇e2e3 = 0,∇e2e4 = 0,∇e2e5 = e2,

∇e3e1 = 0,∇e3e2 = 0,∇e3e3 = −e5,∇e3e4 = 0,∇e3e5 = e3,

∇e4e1 = 0,∇e4e2 = 0,∇e4e3 = 0,∇e4e4 = −e5,∇e4e5 = e4,

∇e5e1 = 0,∇e5e2 = 0,∇e5e3 = 0,∇e5e4 = 0,∇e5e5 = 0.

From the above, it can be easily seen that e5 = ξ, (ϕ, ξ, η, g) is a para-Sasakian structure on
M . Hence, M(ϕ, ξ, η, g) is a 5-dimensional para-Sasakian manifold. [4]

Also, the Riemannian curvature tensor R is given by

R(X,Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z.

With the help of above results, we can verify the following results:

R(e1, e2)e1 = e2, R(e1, e2)e2 = −e1, R(e1, e3)e1 = e3, R(e1, e3)e3 = −e1,

R(e1, e4)e1 = e4, R(e1, e4)e4 = −e1, R(e1, e5)e1 = e5, R(e1, e5)e5 = −e1,

R(e2, e3)e2 = e3, R(e2, e3)e3 = −e2, R(e2, e4)e2 = e4, R(e2, e4)e4 = −e2,

R(e2, e5)e2 = e5, R(e2, e5)e5 = −e2, R(e3, e4)e3 = e4, R(e3, e4)e4 = −e3,

R(e3, e5)e3 = e5, R(e3, e5)e5 = −e3, R(e4, e5)e4 = e5, R(e4, e5)e5 = −e4.

The definition of Ricci tensor in 5-dimensional manifold implies that

S(X,Y ) =
5∑

i=1

g(R(ei, X)Y, ei).

Using the components of the curvature tensor in the above equation, we get the following :

S(e1, e1) = −4, S(e2, e2) = −4, S(e3, e3) = −4, S(e4, e4) = −4, S(e5, e5) = −4.

That is,
S(X,Y ) = −4g(X,Y ).

Hence, the manifold is an Einstein manifold. With the help of the above expression of the
Ricci tensor it can be easily verified that the manifold satisfies (3.3) for λ = 4, this implies that
λ > 0, that is the Ricci soliton in 5-dimensional para-Sasakian manifold is expanding. Therefore,
Theorem 8.1 is verified for 5-dimensional case.
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