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Abstract The paper deals with the study of Ricci solitons on para-Sasakian manifolds sat-
isfying pseudo-symmetry curvature conditions. First, we investigate Ricci solitons in Ricci-
pseudosymmetric para-Sasakian manifolds. Next, we consider Ricci solitons in W3-Ricci-pseudo-
symmetric para-Sasakian manifolds. Moreover, we investigate Ricci solitons in Ricci general-
ized pseudo-symmetric para-Sasakian manifold. Finally, we prove that Ricci solitons in para-
Sasakian manifolds satisfying the curvature condition () - R = 0, is expanding and an example
is given to verify the theorem.

1 Introduction

The concept of Ricci solitons was introduced by Hamilton [8]. They are natural generalizations
of Einstein metrics, which have been a significant subject of intense study in differential geom-
etry and geometric analysis. Ricci solitons also correspond to special solutions of Hamilton’s
Ricci flow [7] and often arise as limits of dilations of singularities in the Ricci flow. The Ricci
flow is an evolution equation for metrics on a Riemannian manifold defined as follows:
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A Ricci soliton emerges as the limit of the solutions of the Ricci flow. A solution to the Ricci
flow is called Ricci soliton if it moves only by a one-parameter group of diffeomorphism and
scaling. A Ricci soliton is a generalization of an Einstein metric and is defined on a Riemannian
manifold (M, g). A Ricci soliton is a triple (g, V, A) with g a Riemannian metric, V is a potential
vector field and A a real scalar so that the following equation is satisfied:

(t) — _2Rij .

Lyg+2S+2\g =0, (1.1)

where Ly is the Lie derivative along the vector field V, S is the Ricci tensor of M. A Ricci
soliton is said to be shrinking, steady or expanding according to A negative, zero and positive,
respectively. During the last two decades, the geometry of Ricci solitons has become a subject of
growing interest for many mathematicians. The study of the Ricci solitons in contact geometry
has begun with the work of Sharma [17], Nagaraja et al. [13] and others extensively studied
Ricci solitons in contact metric manifolds. For details we refer to [1, 2, 3, 5, 9, 14, 21].

In 1976, Sato [16] introduced the notion of almost paracontact structure (¢, &, A) on a dif-
ferentiable manifold. This structure is an analogue of the almost contact structure. An almost
contact manifold is always odd-dimensional but an almost paracontact manifold could be of even
dimension as well. Takahashi [18] defined almost contact manifolds (in particular, Sasakian
manifolds) equipped with an associated pseudo-Riemannian metric.

In 1985, Kaneyuki and Williams [10] defined the notion of almost paracontact structure on
a pseudo-Riemannian manifold of dimension (2n + 1). Later, Zamkovoy [22] showed that any
almost paracontact structure admits a pseudo-Riemannian metric with signature (n + 1,n).
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The paper is organized as follows: In Section 2, we recall some basic formulas on para
Sasakian manifolds and we give some basic definitions of pseudo-symmetry curvature conditions
and notions used in this study. In Section 3, we give a brief account on Ricci solitons on para-
Sasakian manifolds. Next, in Section 4, we consider a Ricci soliton in Ricci-pseudo-symmetric
para-Sasakian manifold and prove that the Ricci soliton is expanding provided Lg # —1. Sec-
tion 5 deals with a Ricci soliton in W3-Ricci-pseudo-symmetric para-Sasakian manifold and
prove that the Ricci soliton is expanding provided f # —2. We discuss a Ricci soliton in W3-
pseudo-symmetric para-Sasakian manifold and prove that the Ricci soliton is expanding pro-
vided Ly, # —1 in Section 6. In the next Section, we study Ricci solitons in Ricci generalized
pseudo-symmetric para-Sasakian manifold, it is shown that the Ricci soliton is expanding pro-
vided nLr # 1. Finally, we have pointed out that Ricci solitons in para-Sasakian manifolds
satisfying the curvature condition @) - R = 0, is expanding and we give an example of a Ricci
soliton on a 5-dimensional para-Sasakian manifold to verify some results.

2 Preliminaries

An n-dimensional differentiable manifold M is called almost paracontact manifold with the
almost paracontact structure (¢, £, n7) consisting of a (1, 1)-tensor field ¢, a vector field £ and an
I-form 7 satisfying the following conditions [10]:

PP =I-n®E nE) =1, ¢=0, nop=0, 2.1

where I denote the identity transformation. If an n-dimensional almost paracontact manifold M
with an almost paracontact structure (¢, £, n) admits a pseudo-Riemannian metric g such that

9(6X,8Y) = —g(X,Y) +n(X)n(Y), (2.2)

then we say that M is an almost paracontact metric manifold with an almost paracontact metric
structure (¢, ¢, 7, g) and such a metric g is called compatible metric [22]. From (2.2), it can be
easily seen that

g(X7 (bY) = _g(¢X7 Y)» (2.3)

9(X, &) =n(X). 24
The fundamental 2-form & of an almost paracontact structure (¢, &, n, g) is defined by

CI)(Xv Y) = g(X, ¢Y)a

for all tangent vector fields X, Y. If dyp = ®, then the manifold M (¢, &, 7, g) is called a para-
contact metric manifold associated to the metric g, where X,Y, Z € TM™; TM is the set of
all differentiable vector fields on M. Here the paracontact metric structure is normal and the
structure is called para-Sasakian [22]. Equivalently, a paracontact metric structure (¢, £, 1, g) is
para-Sasakian if

for any X,Y € TM", where V is Levi—Civita connection of g. From the above equation, it
follows that

Vx&=—-0¢X. (2.6)
In an n-dimensional para-Sasakian manifold, the following relations hold:

R(X,§)Y = g(X,Y)§ —n(Y)X, (2.10)
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R(X,Y)E=n(X)Y —n(Y)X, 2.11)
R Y)E =Y —n(Y)E, (2.12)
S(X,8) = —(n = Dn(X), (2.13)
5(6.6) = —(n—1), (2.14)

for any vector fields X, Y, Z, W € T'M", where R is the Riemannian curvature tensor, S is the
Ricci tensor and @ is the Ricci operator defined by g(QX,Y) = S(X,Y). We define endomor-
phisms R(X,Y) and X A4 Y by

R(X,Y)Z =VxVyZ - VyVxZ - VixyZ, (2.15)
and
(X M Y)Z = A(Y, 2)X — A(X, 2)Y, (2.16)
respectively [6], where XY, Z € TM", A is the symmetric (0, 2)-tensor, R is the Riemannian
curvature tensor of type (1,3) and V is the Levi-Civita connection. For a (0, k)-tensor field T,
k > 1;0n (M™,g), we define the tensors R - T and Q(g,T) by
(R(X,Y) T)(X1, X2, X3, e, X3 2.17)
= —T(R(X,Y)X), X2, X3, oo, X))
~T(X1, R(X,Y) X2, X3, e, X1)
e = T(X1, X2, X, oo, R(X,Y) X0),

and

Qg, T) (X1, X2, X3, ... Xy X, Y) (2.18)
= —T((XNY)X1, X5, X3,...... , X&)
—T(X1,(X N\ Y) X5, X5, ...... , Xk)
— e —T (X1, X2, X3, ... (X AgY)Xg),
respectively [20].
In 1973 Pokhariyal [15] introduced the notion of a new curvature tensor, denoted by W3 and

studied its relativistic significance. The Wj-curvature tensor of type (1,3) on a para-Sasakian
manifold is defined by:

Wi(X,Y)Z = R(X,Y)Z + [9(Y, 2)QX — S(X, Z)Y], (2.19)

L
(n—1)

Then in a para-Sasakian manifold, W3 satisfies the following relations:

W3(&,Y)Z =2[n(2)Y - g(Y, Z)¢], (2.20)
W3(¢,Y)§ = 2[Y —n(Y)¢], (2.21)
Ws(¢,£)Z = 0. (2.22)

Definition 2.1. A para-Sasakian manifold (M™, g) is said to be Ricci-pseudo-symmetric if the
tensors R - S and Q(g, S) are linearly dependent. This is equivalent to

R-S=LsQg,S), (2.23)

holding on the set Us = {x € M : S # 0 at =}, where Lg is some function on Ug. [20]
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Definition 2.2. A para-Sasakian manifold (M™, g) is said to be W3-Ricci-pseudo-symmetric if
the tensors W3 - S and Q(g, S) are linearly dependent. This is equivalent to

W5 -8 = fQ(g,9), (2.24)
holding on the set Us = {z € M : S # 0 at =}, where f is some function on Ug.

Definition 2.3. A para-Sasakian manifold (M™, g) is said to be Ricci generalized pseudo-symmetric
if the tensors R - R and Q(S, R) are linearly dependent. This is equivalent to

R-R = LpQ(S,R), (2.25)
holding on the set U = {x € M : R # 0 at 2}, where Ly is some function on Ug. [20]

A very important subclass of this class of manifolds realizing the condition is

R-R=Q(S,R).

Every three dimensional manifold satisfies the above equation identically. Other examples
are the semi-Riemannian manifolds (M, g) admitting a non-zero 1-form w such that the equality
w(X)R(Y, Z)+w(Y)R(Z, X)+w(Z)R(X,Y) = 0, holds on M. The condition R-R = Q(S, R)
also appears in the theory of plane gravitational waves.

Furthermore, we define the tensors R - Rand R - S on (M", g) by

(R(X,Y) -R)(U V)W (2.26)
= R(X,Y)R(U, V)W — R(R(X,Y)U,V)W
—R(U,R(X,Y)V)W — R(U,V)R(X, Y)W,
and
respectively [4]. Recently, Kowalczyk [11] studied semi-Riemannian manifolds satisfying Q(S, R) =
0 and Q(S,g) = 0, where S and R are the Ricci tensor and curvature tensor respectively.

Definition 2.4. A para-Sasakian manifold (M™, g) is said to be Wi-pseudo-symmetric if the
tensors R - W3 and Q(g, W3) are linearly dependent. This is equivalent to

R-W3 = Lw,Q(g, W3), (2.28)
holding on the set Uy, = {z € M : W3 # 0 at z}, where Lyy, is some function on Uyy,.

A Riemannian manifold or pseudo-Riemannian manifold is said to be Ricci semi-symmetric
if R(X,Y) - S = 0, where S denotes the Ricci tensor of type (0,2). A general classification of
these manifolds has been worked out by Mirzoyan [12]. An example of a curvature condition of
a semi-symmetry type is the following:

Q-R=0,

where @ is the Ricci operator of type (1,1) and S(X,Y) = g(QX,Y).
A natural extension of such curvature conditions from curvature conditions of pseudo-symmetry
type. The curvature condition () - R = 0 have been studied by Verstraelen et al. in [19].

3 Ricci solitons in para-Sasakian manifolds

Let (g, &, A) be a Ricci soliton in an n-dimensional para-Sasakian manifold M. From (1.1), we
have
(L.g)(X,Y) +25(X,Y) 4+ 2Xg(X,Y) =0, 3.1

forany X,Y € TM", where L, is the Lie derivative operator along the vector field £, S is the
Ricci tensor field of the metric g and A is real constant. On a para-Sasakian manifold M, from
(2.6) and the skew-symmetric property of ¢, we obtain

(L g)(X,Y) =g(VxEY) +g(X,VyE) =0. (3.2)



RICCI SOLITONS ON PARA-SASAKIAN MANIFOLDS 587

By virtue of (3.2) in (3.1), we get
S(X,Y)=-N\g(X,Y). (3.3)
Thus the pair (M, g,&,A) is an Einstein one. Ricci soliton is called shrinking, steady or
expanding according as )\ is negative, zero or positive, respectively by [9].
4 Ricci solitons in Ricci pseudo-symmetric para-Sasakian manifolds

In this section, we consider a Ricci pseudo-symmetric para-Sasakian manifold. Then from the
definition 2.1, we have

(R(X,Y) - S)(U,V) = LsQ(g, $)(X, YU, V),
which implies that
(R(X,Y)-S)(U,V)=Ls((X Ny Y)-S)(U,V). 4.1)
With the help of (2.27) and (2.18), we get from (4.1)

—S(R(X,Y)U,V) — S(U,R(X,Y)V) 4.2)
= Ls[-S((X A, Y)U,V) = S(U, (X Ay Y)V)).

Using (2.16) in (4.2), yields

—S(R(X,Y)U,V) - S(U,R(X,Y)V) “4.3)
= Lg[-g(Y,U)S(X,V)+g(X,U)S(Y,V)
—g(Y, V)S(U7X) +9(X7 V)S(U7 Y)]

Putting X = U = £ in (4.3) and using (2.4),(2.10), (2.12) and (2.13), we obtain

(1+Ls)[S(Y, V) + (n—1)g(Y, V)] = 0. (4.4)
We may conclude that either Lg = —1 or, the manifold is an Einstein manifold of the form
SY,V)=—(n-1)g(Y,V). (4.5

Hence, we state the following lemma:

Lemma 4.1. A Ricci-pseudo-symmetric para-Sasakian manifold (M", g) is an Einstein manifold
with Lg 75 —1.

A Ricci-pseudo-symmetric para-Sasakian manifold (M™, g) admits Ricci soliton. Then by
virtue of (3.3) and (4.5), we obtain
A=n-—1

Therefore, A is positive. Hence we can state the following result:

Theorem 4.2. A Ricci soliton (g,&,\) in a Ricci-pseudo-symmetric para-Sasakian manifold
(M™, g) is expanding provided Lg # —1.

5 Ricci solitons in W3-Ricci pseudo-symmetric para-Sasakian manifolds

Consider a W3-Ricci pseudo-symmetric para-Sasakian manifold. Then from the definition 2.2,
we have
(W3(X,Y) - S)(U,V) = fQ(g, 9)(X,Y U, V),

which implies that

(W3(X,Y)-9)(U, V) = F(X Ay Y) - S)(U, V). (5.1
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This equation can be written as
—S(W3(X,Y)U,V) — S(U,W3(X,Y)V) (5.2)
= fI=S((X Ay YU, V) = S(U, (X Ay Y)V).
With the help of (2.27) and (2.18), we get from (5.2)
—S(W3(X,Y)U, V) — S(U,W3(X,Y)V) (5.3)
= fl=g(VU)S(X, V) +g(X,U)S(Y, V)
—g(Y,V)S(U, X) + g(X,V)S(U,Y)].

Putting X = U = £ in (5.3) and using (2.4), (2.13), (2.20) and (2.21), we obtain

2+ NSV V) +(n—1)g(Y, V)] =0. (5.4)
We may conclude that either f = —2 or, the manifold is an Einstein manifold of the form
Sy, V) =—(n-1)gY,V). (5.5

Hence, we state the following lemma:

Lemma 5.1. A W3-Ricci-pseudo-symmetric para-Sasakian manifold (M™, g) is an Einstein man-
ifold with | # —2.

Let a W3-Ricci-pseudo-symmetric para-Sasakian manifold (M",g) admits Ricci soliton.
Then from (3.3) and (5.5), we obtain
A=n—1.

Therefore, ) is positive. Hence we can state the following:

Theorem 5.2. A Ricci soliton (g,&, \) in Wi-Ricci-pseudo-symmetric para-Sasakian manifold
(M™, g) is expanding provided [ # —2.

6 Ricci solitons in W;-pseudo-symmetric para-Sasakian manifolds
Consider a W3-pseudo-symmetric para-Sasakian manifold. Then from definition 2.4, we have
R-W3 = Lw,Q(g,W3),
which implies that
(R(X,Y) - Wa)(U, V)W = Ly, ((X A, Y) - W3)(U, V)W. (6.1)
Using (2.26) and (2.18) in (6.1), we have
R(X,Y)YW3(U, V)W — W3(R(X,Y)U, V)W — (6.2)
Wi(U, R(X,Y)V)W — R(U,V)W3(X, Y)W
= L, [(X Ay Y)W3(U, V)W — W3((X A, YU, V)W
—W3(U, (X Ay Y)V)W —W3(U,V)(X A, Y)W
By virtue of (2.16) and (6.2), we find
R(X,Y)YW3(U, V)W — W3(R(X,Y)U, V)W (6.3)
—W3(U, R(X,Y)V)W — Ws(U,V)R(X, Y)W
= Lw[g(Y,W3(U,V)W)X — g(X, W3(U,V)W)Y
—g(Y,U)W3(X, Y)W + g(X, U)W3(Y, V)W
—g(Y,V)W3(U, X)W + g(X, V)W3(U, Y)W
—g(Y,W)W3(U, V)X + g(X, W)W3(U, V)Y].
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Putting X = U = £ in (6.3) and using (2.9), (2.12), (2.19), (2.20), (2.21) and (2.22), we
obtain

—2g(V,W)Y — W5(Y, V)W + 2g(Y, W)V (6.4)
= Lw[29(V.W)Y + W3(Y, V)W = 29(Y, W)V],

i.e.,
(14 L) [W3(Y, V)W +2g(V, W)Y = 2g(Y, W)V] = 0. 6.5)
Taking inner product with Z of (6.5) and using (2.19), we find
1
(L+ Lw ) {g(R(Y, V)W, Z) + m[g(va W)S(Y, z) (6.6)
—S(YW)g(V. Z)] +29(V.W)g(Y, Z) = 29(Y,W)g(V, Z)}
= 0.
Let {e;}, 7 = 1,2,.....,n be an orthonormal basis of the tangent space at any point of the

manifold. Then putting V' = W = ¢; in (6.6) and taking summation over 1 < i < n, we have

(1+ Lw,)[S(Y, Z) + g(Y, Z)] = 0. 6.7)
We may conclude that either Ly, = —1 or, the manifold is an Einstein manifold of the form
S(Y,Z) = —g(Y, 2). (6.8)

Hence, we state the following lemma:

Lemma 6.1. A W3-pseudo-symmetric para-Sasakian manifold (M™, g) is an Einstein manifold
with Ly, # —1.

Let a Wi-pseudo-symmetric para-Sasakian manifold (M", g) admits Ricci soliton. Then
from equations (3.3) and (6.8), we obtain

A=1.

Therefore, ) is positive. Hence we have the following:

Theorem 6.2. A Ricci soliton (g, &, \) in Wi-pseudo-symmetric para-Sasakian manifold (M™, g)
is expanding provided Ly, # —1.

7 Ricci solitons in Ricci generalized pseudo-symmetric para-Sasakian
manifolds

Consider a Ricci generalized pseudo-symmetric para-Sasakian manifold. Then from the defini-
tion 2.3, we have
R-R=LgrQ(S,R),

which implies that
(R(X,Y)-R)(U V)W = Lr((X As Y) - R)(U,V)W. (7.1)
Using (2.26) and (2.18) in (7.1), we have
R(X,Y)R(U, V)W — R(R(X,Y)U, V)W (7.2)
—R(U,R(X,Y)V)W — R(U,V)R(X, Y)W
= Lr[(XAsY)R(U, V)W — R(X As Y)U, V)W
—R(U,(X As Y)V)W — R(U,V)(X As Y)W,
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by virtue of (2.16) and (7.2), we obtain

R(X,Y)R(U,V)W — R(R(X,Y)U, V)W (1.3)
—R(U,R(X,Y)V)W — R(U,V)R(X,Y)W
= Lp[S(Y,R(U,V)W)X — S(X, R(U,V)W)Y
—S(Y,U)R(X, Y)W + S(X,U)R(Y,V)W
—S(Y,V)R(U, X)W + S(X,V)R(U,Y)W
—S(Y,W)R(U,V)X + S(X,W)R)(U,V)Y].

Taking X = U = £ in (7.3) and using (2.9), (2.10), (2.11), (2.12) and (2.13), we have

—g(V.W)Y + g(V.W)n(Y)E - R(Y, V)W (7.4)
+n(Y)n(W)V — g(V, W)n(Y)§
—n(Win(Y)V +g(Y, W)V
= Lgh(W)S(Y,V)§ — (n—1)g(V,W)Y
—(n = DR, V)W + (n — 1)g(Y, W)n(V)¢
=S, W)V + S(Y,W)n(V)¢
+(n = Dg(V.Y)n(W)E].

Taking the inner product with Z of (7.4), we get

—g(V.W)g(Y, W) — g(R(Y, V)W, Z) + g(Y,W)g(V, Z) (7.5)
= Lgr[SY.V)n(W)n(Z) - (n — 1)g(V.W)g(Y, Z)

—(n = Dg(RY, V)W, Z) + (n — 1)g(Y, W)n(V)n(Z)

—S(Y,W)g(V,Z2) + S(Y,W)n(V)n(Z)

+(n = Dg(V.Y )n(W)n(Z)].

Let {e;}, i = 1,2,.....,n be an orthonormal basis of the tangent space at any point of the
manifold. Then putting V =W = ¢; in (7.5) and taking summation over 1 < ¢ < n, we obtain

S(Y,Z)+ (n—1)g(Y,Z) =nLg[S(Y,Z) + (n—1)g(Y, Z)], (7.6)
ie.,
(1 =nLg)[S(Y,Z) + (n—1)g(Y, Z)] = 0. (7.7)
We may conclude that either Lp = % or, the manifold is an Einstein manifold of the form

S(Y.2) = —(n—1)g(Y. 2). (7.8)
Hence, we state the following lemma:

Lemma 7.1. A Ricci generalized pseudosymmetric para-Sasakian manifold (M", g) is an Ein-
stein manifold with L # %

Let a Ricci generalized pseudosymmetric para-Sasakian manifold (M", g) admits Ricci soli-
ton. Then by virtue of (3.3) and (7.8), we have

A=n—1.
Therefore, ) is positive. Hence we can state the following result:

Theorem 7.2. A Ricci soliton (g,&,)\) in Ricci generalized pseudosymmetric para-Sasakian
manifold (M™, g) is expanding provided L # %
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8 Ricci solitons in para-Sasakian manifolds satisfying the curvature
condition ) - R = 0

This section is devoted to study Ricci solitons in para-Sasakian manifolds satisfying the curvature
condition ) - R = 0.
Let us consider a para-Sasakian manifold satisfying the curvature condition @ - R = 0, i.e.,
(@ R)(X,Y)Z =0,
for all vector fields X,Y and Z € TM". This is equivalent to
Q(R(X,Y)Z) - R(QX,Y)Z — R(X,QY)Z — R(X,Y)QZ = 0. 8.1)

Putting X = Z = £ in (8.1),we obtain

Q(R(EY)E) — R(QE,Y)E — R(§, QY )E — R(&,Y)QE=0. (8.2)
Using (2.12) in (8.2), we have
—n(Y)Q€ — R(QE,Y)E +n(QY)E — R(E,Y)QE = 0. (8.3)
Taking the inner product with £ of (8.3), we get
Now from (2.7), we obtain
9(R(Q€,Y)E,€) =0, (8.5)
and
9(R(§,Y)QE, &) = —(n— I)n(Y) — S(Y, ). (8.6)
Using (2.13), (8.5) and (8.6) in (8.4), we have
S(Y, &) = —(n—n(Y). (8.7)

Taking Y = £ in (3.3), we obtain

by virtue of (8.7) and (8.8), we get
A=n-—1.

Therefore, ) is positive. Hence we can state the following result:

Theorem 8.1. A Ricci soliton (g, &, \) in para-Sasakian manifold (M™, g) satisfying the curva-
ture condition QQ - R = 0, is expanding.

9 Example

We consider 5-dimensional manifold M, where M = {(z1,22,y1,%2,2) € R*}, where (x1, 22, y1, y2, 2)
are standard coordinates in R>. Let ey, ey, 3, e4, es5 be linearly independent frame fields on M
given by

0 0 0 0
el = 781,] ’62 = 78:172 5 63 = 7ayl 764 = 73y27
0 0 0 0
€5 =T e + xz—axz + i Em + yzfay2 =+ 2%

Let g be a Riemannian metric defined by

gleiej) = lifi=j
— 0ifi£j i =1,23,45
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Let 7 be the 1-form defined by n(X) = g(X,es) V X € x(M), where x (M) be the set of all
C>° —vector fields defined on M. Let ¢ be (1, 1) tensor field defined by

pe| = e, pey = €2, pe3 = €3, pey = ey, pes = 0.
Then using the linearity of ¢ and g, we have
nles) =1,6°X = X —n(X)es,

9(6X, 9Y) = g(X,Y) = n(X)n(Y),
for any vector fields X, Y on x(M). Thus for es = &, the structure (¢, &, n, g) defines an almost
contact metric structure on M. [4]
Let V be the Levi-Civita connection with respect to metric g and R be the curvature tensor
of the metric g. Then, we have

[617 62] =0, [617 63] =0, [617 64} =0, [617 65} = €1,
le2,e3] =0, [e3,e4] = 0, [e2,e4] = 0, [e2, €5] = €2,

[e3, es5] = €3, [eq, e5] = ea.
The Riemannian connection V of the metric tensor g is given by Koszul’s formula which is

29(VxY,Z) = X{g(Y,2)} +Y{9(2,X)} - Z{g(X,Y)}
—9(X, [Y, Z]) +9(Y, [2, X]) + 9(Z, [X, Y]).

Taking es = £ and using Koszul’s formula, we obtain

Ve,el = —e€s3, Velez == 07 Ve]€3 == 0, Vel€4 == 07 Velej = €1,
Veer = 0,Vger =—es5,Vee3 =0,Ve,eq =0,V e5 = ey,
Ve3€1 = 0, Ve3€2 = 07 V€363 = —€s, Ve364 = 07 Ve3€5 = €3,
Ve461 = O, V€4€2 = 07 Ve4e3 = O, Ve484 = —€j, Ve465 = €4,
Veer = 0,Veer =0,Vee3=0,Vees =0,Vees =0.

From the above, it can be easily seen that es = £, (o, £, 7, g) is a para-Sasakian structure on
M. Hence, M(y,&,n,g) is a 5-dimensional para-Sasakian manifold. [4]
Also, the Riemannian curvature tensor R is given by

R(X,Y)Z =VxVyZ ~VyVxZ —VxyZ

With the help of above results, we can verify the following results:

R(e1,ex)er = ez, R(er,e2)ea = —eq, R(er,e3)e; = e3, R(er,e3)es = —ey,
R(er,es)er = eq, R(er,eq)eq = —ey, R(el,es)el = e5, R(e1,es)es = —ey,
R(ep,e3)ex = e3, R(ez,e3)e3 = —ez, R(ez,eq)en R(ez, ea)eq = —ea,
R(ep,e5)ex = es, R(ez,es)es = —ea, R(e3,e4)e3 = eu, R(e3,eq)eq = —e,
R(es,es)es = es, R(es,es)es = —e3, R(es,es5)eq = es, R(eq, e5)es =

The definition of Ricci tensor in 5-dimensional manifold implies that
5
S(X,Y) =" g(R(es, X)Y, e;).
i=1
Using the components of the curvature tensor in the above equation, we get the following :
5(61,61) = —4, S(ez,ez) = —4, 8(63,63) = —4,5(64,64) = —4, 5(65,65) = —4.
That is,
S(X,Y) =—4¢(X,Y).

Hence, the manifold is an Einstein manifold. With the help of the above expression of the
Ricci tensor it can be easily verified that the manifold satisfies (3.3) for A = 4, this implies that
A > 0, that is the Ricci soliton in 5-dimensional para-Sasakian manifold is expanding. Therefore,
Theorem 8.1 is verified for 5-dimensional case.
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