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Abstract In this paper, we introduce and solve the following p-radical functional equation

f
(

p
√
axp + byp

)
= af(x) + bf(y),

with a, b ∈ Q∗+ and p ∈ N2. We also investigate some stability and hyperstability results for this
equation in 2-Banach spaces using the fixed point approach.

1 Introduction

Throughout this paper, we will denote the set of natural numbers by N, the set of real numbers
by R and R+ = [0,∞) the set of nonnegative real numbers. By Nm, m ∈ N, we will denote the
set of all natural numbers greater than or equal to m.

The notion of linear 2-normed spaces was introduced by S. Gähler [23],[24] in the middle of
1960s. We need to recall some basic facts concerning 2-normed spaces and some preliminary
results.

Definition 1.1. Let X be a real linear space with dimX > 1 and ‖., .‖ : X ×X −→ [0,∞) be a
function satisfying the following properties:

(i) ‖x, y‖ = 0 if and only if x and y are linearly dependent,

(ii) ‖x, y‖ = ‖y, x‖,

(iii) ‖λx, y‖ = |λ|‖x, y‖,

(iv) ‖x, y + z‖ ≤ ‖x, y‖+ ‖x, z‖,

for all x, y, z ∈ X and λ ∈ R. Then the function ‖., .‖ is called a 2-norm on X and the pair
(X, ‖., .‖) is called a linear 2-normed space. Sometimes the condition (4) called the triangle
inequality.

Example 1.2. For x = (x1, x2), y = (y1, y2) ∈ X = R2, the Euclidean 2-norm ‖x, y‖R2 is
defined by

‖x, y‖R2 = |x1y2 − x2y1| .

Lemma 1.3. Let (X, ‖., .‖) be a 2-normed space. If x ∈ X and ‖x, y‖ = 0, for all y ∈ X , then
x = 0.

Definition 1.4. A sequence {xk} in a 2-normed space X is called a convergent sequence if there
is an x ∈ X such that

lim
k→∞

‖xk − x, y‖ = 0,

for all y ∈ X . If {xk} converges to x, write xk −→ x with k −→∞ and call x the limit of {xk}.
In this case, we also write limk→∞ xk = x.
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Definition 1.5. A sequence {xk} in a 2-normed space X is said to be a Cauchy sequence with
respect to the 2-norm if

lim
k,l→∞

‖xk − xl, y‖ = 0,

for all y ∈ X . If every Cauchy sequence in X converges to some x ∈ X , then X is said to be
complete with respect to the 2-norm. Any complete 2-normed space is said to be a 2-Banach
space.

Now, we state the following results as lemma (See [29] for the details).

Lemma 1.6. Let X be a 2-normed space. Then,

(i)
∣∣‖x, z‖ − ‖y, z‖∣∣ ≤ ‖x− y, z‖ for all x, y, z ∈ X ,

(ii) if ‖x, z‖ = 0 for all z ∈ X , then x = 0,

(iii) for a convergent sequence xn in X ,

lim
n−→∞

‖xn, z‖ =
∥∥∥ lim
n−→∞

xn, z
∥∥∥

for all z ∈ X .

The concept of stability for a functional equation arises when defining, in some way, the class
of approximate solutions of the given functional equation, one can ask whether each mapping
from this class can be somehow approximated by an exact solution of the considered equation.
Namely, when one replaces a functional equation by an inequality which acts as a perturbation
of the considered equation. The first stability problem of functional equation was raised by S.
M. Ulam [33] in 1940. This included the following question concerning the stability of group
homomorphisms.
Let (G1, ∗1) be a group and let (G2, ∗2) be a metric group with a metric d(., .). Given ε > 0,
does there exists a δ > 0 such that if a mapping h : G1 → G2 satisfies the inequality

d
(
h(x ∗1 y), h(x) ∗2 h(y)

)
< δ

for all x, y ∈ G1, then there exists a homomorphism H : G1 → G2 with

d
(
h(x), H(x)

)
< ε

for all x ∈ G1?
The first affirmative partial answer to the Ulam’s problem for Banach spaces was provided by
D. H. Hyers [26]. The result of Hyers was generalizable. Namely, it was generalized by T. Aoki
[10] for additive mappings and by Th. M. Rassias [30] for linear mappings by considering an
unbounded Cauchy difference. In 1994, P. Găvruţa [25] introduced the generalization of the Th.
M. Rassias theorem was obtained by replacing the unbounded Cauchy difference by a general
control function in the spirit of Th. M. Rassias’ approach.

It is trivial to prove the following lemma:

Lemma 1.7. Let X and Y be two linear spaces and f : X → Y be a function satisfies the
equation

f(ax+ by) = af(x) + bf(y) (1.1)

for all x, y ∈ X where a, b ∈ R∗+. Then we have two cases as follows:

(i) If a+ b = 1, then f is additive.

(ii) If a+ b 6= 1, then f is Jensen-additive.

In this paper, we achieve the general solutions of the following p-radical functional equation:

f
(

p
√
axp + byp

)
= af(x) + bf(y), p ∈ N2 (1.2)

with a, b ∈ Q∗+. We also discuss the generalized Hyers-Ulam-Rassias stability problem in 2-
Banach spaces by using Brzdȩk’s fixed point approach.
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2 Brzdȩk’s fixed point theorem

Recently, J. Brzdȩk [16] showed that Raissias’ result [32] can be significantly improved and
he presented and proved in [14] the fixed point theorem for a nonlinear operator in metric
spaces. He used this result to study the Hyers-Ulam stability of some functional equations in
non-Archimedean metric spaces. In 2011, J. Brzdȩk and K. Ciepliński obtained the fixed point
result in arbitrary metric spaces as follows:

Theorem 2.1. [14] Let X be a nonempty set, (Y, d) be a complete metric space, and Λ : Y X →
Y X be a non-decreasing operator satisfying the hypothesis

lim
n→∞

Λδn = 0

for every sequence {δn}n∈N in Y X with

lim
n→∞

δn = 0.

Suppose that T : Y X → Y X is an operator satisfying the inequality

d
(
T ξ(x), T µ(x)

)
≤ Λ

(
∆(ξ, µ)

)
(x), ξ, µ ∈ Y X , x ∈ X, (2.1)

where ∆ : Y X × Y X → RX
+ is a mapping which is defined by

∆(ξ, µ)(x) := d
(
ξ(x), µ(x)

)
ξ, µ ∈ Y X , x ∈ X. (2.2)

If there exist functions ε : X → R+ and ϕ : X → Y such that

d
(
(T ϕ)(x), ϕ(x)

)
≤ ε(x) (2.3)

and
ε∗(x) :=

∑
n∈N0

(
Λ

nε
)
(x) <∞ (2.4)

for all x ∈ X , then the limit
lim

n→∞

(
(T nϕ)

)
(x) (2.5)

exists for each x ∈ X . Moreover, the function ψ ∈ Y X defined by

ψ(x) := lim
n→∞

(
(T nϕ)

)
(x) (2.6)

is a fixed point of T with
d
(
ϕ(x), ψ(x)

)
≤ ε∗(x) (2.7)

for all x ∈ X .

After that, J. Brzdȩk [15] gave the fixed point result by applying Theorem 2.1 as follows:

Theorem 2.2. [15] Let X be a nonempty set, (Y, d) be a complete metric space, f1, ..., fr :
X → X and L1, ..., Lr : X → R+ be given mappings. Suppose that T : Y X → Y X and
Λ : RX

+ → RX
+ are two operators satisfying the conditions

d
(
T ξ(x), T µ(x)

)
≤

r∑
i=1

Li(x)d
(
ξ
(
fi(x)

)
, µ
(
fi(x)

))
(2.8)

for all ξ, µ ∈ Y X , x ∈ X and

Λδ(x) :=
r∑

i=1

Li(x)δ
(
fi(x)

)
, δ ∈ RX

+ , x ∈ X. (2.9)

If there exist functions ε : X → R+ and ϕ : X → Y such that

d
(
T ϕ(x), ϕ(x)

)
≤ ε(x) (2.10)
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and

ε∗(x) :=
∞∑
n=0

(
Λ

nε
)
(x) <∞ (2.11)

for all x ∈ X , then the limit (2.5) exists for each x ∈ X . Moreover, the function (2.6) is a fixed
point of T with (2.7) for all x ∈ X .

Then by using this theorem, J. Brzdȩk [15] improved, extended and complemented several
earlier classical stability results concerning the additive Cauchy equation. Over the last few
years, many mathematicians have investigated various generalizations, extensions and applica-
tions of the Hyers-Ulam stability of a number of functional equations (see, for instance, [1]-[5],
[17], [18] and references therein); in particular, the stability problem of the radical functional
equations in various spaces was proved in [7]-[9], [21, 22, 27, 28].

Recently, an analogue of Theorem 2.2 in 2-Banach spaces was given in [6].

Theorem 2.3. [6] Let X be a nonempty set,
(
Y, ‖·, ·‖

)
be a 2-Banach space, g : X → Y be a

surjective mapping and let f1, ..., fr : X → X and L1, ..., Lr : X → R+ be given mappings.
Suppose that T : Y X → Y X and Λ : RX×X

+ → RX×X
+ are two operators satisfying the

conditions

∥∥T ξ(x)− T µ(x), g(z)∥∥ ≤ r∑
i=1

Li(x)
∥∥∥ξ(fi(x))− µ(fi(x)), g(z)∥∥∥ (2.12)

for all ξ, µ ∈ Y X , x, z ∈ X and

Λδ(x, z) :=
r∑

i=1

Li(x)δ
(
fi(x), z

)
, δ ∈ RX×X

+ , x, z ∈ X. (2.13)

If there exist functions ε : X ×X → R+ and ϕ : X → Y such that∥∥∥T ϕ(x)− ϕ(x), g(z)∥∥∥ ≤ ε(x, z) (2.14)

and

ε∗(x, z) :=
∞∑
n=0

(
Λ

nε
)
(x, z) <∞ (2.15)

for all x, z ∈ X , then the limit
lim

n→∞

(
(T nϕ)

)
(x) (2.16)

exists for each x ∈ X . Moreover, the function ψ : X → Y defined by

ψ(x) := lim
n→∞

(
(T nϕ)

)
(x) (2.17)

is a fixed point of T with ∥∥ϕ(x)− ψ(x), g(z)∥∥ ≤ ε∗(x, z) (2.18)

for all x, z ∈ X .

3 Solution of equation (1.2)

In this section, we give the general solution of functional equation (1.2). The next theorem can
be derived from [[20], Corollary 2.3 and Proposition 2.4(a)]. However, for the convenience of
readers we present it with a direct proof.

Theorem 3.1. Let Y be a linear space. A function f : R → Y satisfies the functional equation
(1.2) if and only if

f(x) = F (xp), x ∈ R, (3.1)

with some additive function F : R→ Y .
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Proof. Indeed, It is not hard to check without any problem that if f : R→ Y satisfies (3.1), then
it is a solution to (1.2). On the other hand, if f : R → Y is a solution of (1.2), then we consider
the following two cases:
Case 1: p is even:
We write F0(x) = f( p

√
x), for x ∈ [0,+∞), then from (1.2) we obtain

F0(ax+ by) = f( p
√
ax+ by)

= af( p
√
x) + bf( p

√
y)

= aF0(x) + bF0(y)

for all x, y ∈ [0,+∞). Substituting x = y = 0 in (1.2) to obtain f(0) = 0 since a+ b 6= 1 and
f(0) 6= 0 when a+ b = 1. Setting x = −x in (1.2), we obtain

f
(

p
√
axp + byp

)
= af(−x) + bf(y) (3.2)

for all x, y ∈ R. If we compare (1.2) with (3.2), we obtain that f is even. So, f(−x) = f(x) =
F0(xp), for all x ∈ [0,+∞). Now, it is enough to observe that there is an additive F : R → Y
with F (x) = F0(x) for all x ∈ [0,+∞).

Case 2: p is odd:
By a similar method in case 1, we can write F (x) = f( p

√
x), for all x ∈ R. Then, we get that

there exists an additive F : R → Y with F (x) = F0(x) for all x ∈ R. This completes the
proof.

4 Approximation of the p-radical functional equation (1.2)

In the following two theorems, we use Theorem 2.3 to investigate the generalized Hyers-Ulam
stability of the p-radical functional equation (1.2) in 2-Banach spaces.
Hereafter, we assume that

(
Y, ‖·, ·‖

)
is a 2-Banach space.

Theorem 4.1. Let h1, h2 : R2 → R+ be two functions such that

U :=
{
n ∈ N : αn :=

1
a
λ1(a+ bnp)λ2(a+ bnp) +

b

a
λ1(n

p)λ2(n
p) < 1

}
6= φ, (4.1)

where
λi(n) := inf {t ∈ R+ : hi(nxp, z) ≤ t hi(xp, z), x, z ∈ R} (4.2)

for all n ∈ N, where i = 1, 2. Assume that f : R→ Y satisfies the inequality∥∥f ( p
√
axp + byp

)
− af(x)− bf(y), g(z)

∥∥ ≤ h1(x
p, z)h2(y

p, z) (4.3)

for all x, y, z ∈ R where g : X → Y is a surjective mapping. Then there exists a unique function
F : R→ Y that satisfies the equation (1.2) such that∥∥f(x)− F (x), g(z)∥∥ ≤ λ0h1(x

p, z)h2(x
p, z) (4.4)

for all x, z ∈ R, where

λ0 := inf
n∈U

{
λ2(np)

a
(
1− λ1(a+ bnp)λ2(a+ bnp)− λ1(np)λ2(np)

)} .
Proof. Replacing y with mx, where x ∈ R and m ∈ N, in inequality (4.3) we get∥∥f ( p

√
(a+ bmp)xp

)
− af(x)− bf(mx), g(z)

∥∥ ≤ h1(x
p, z)h2(m

pxp, z)

and ∥∥1
a
f

(
p

√
(a+ bmp)xp

)
− b

a
f(mx)− f(x), g(z)

∥∥ ≤ 1
a
h1(x

p, z)h2(m
pxp, z) (4.5)
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for all x, z ∈ R. For each m ∈ N, we define the operator Tm : Y R → Y R by

Tmξ(x) :=
1
a
ξ

(
p

√
(a+ bmp)xp

)
− b

a
ξ(mx), ξ ∈ Y R, x ∈ R. (4.6)

Further put

εm(x, z) :=
1
a
h1(x

p, z)h2(m
pxp, z), x, z ∈ R, (4.7)

and observe that

εm(x, z) =
1
a
h1(x

p, z)h2(m
pxp, z) ≤ 1

a
λ2(m

p)h1(x
p, z)h2(x

p, z), x, z ∈ R,m ∈ N. (4.8)

Then the inequality (4.5) takes the form∥∥f(x)− Tmf(x), g(z)∥∥ ≤ εm(x, z), x, z ∈ R. (4.9)

Furthermore, for every x, z ∈ R, ξ, µ ∈ Y R, we obtain∥∥∥Tmξ(x)− Tmµ(x), g(z)∥∥∥ = ∥∥∥1
a
ξ

(
p

√
(a+ bmp)xp

)
− b

a
ξ(mx)

− 1
a
µ

(
p

√
(a+ bmp)xp

)
+
b

a
µ(mx), g(z)

∥∥∥
≤ 1
a

∥∥∥(ξ − µ)( p

√
(a+ bmp)xp

)
, g(z)

∥∥∥+ b

a

∥∥∥(ξ − µ)(mx), g(z)∥∥∥.
This brings us to define the operator Λm : RR×R

+ → RR×R
+ by

Λmδ(x, z) :=
1
a
δ

(
p

√
(a+ bmp)xp, z

)
+
b

a
δ(mx, z), δ ∈ RR×R

+ , x, z ∈ R. (4.10)

For eachm ∈ N, the above operator has the form described in (2.13) with f1(x) =
p
√
(a+ bmp)xp,

f2(x) = mx and L1(x) =
1
a , L2(x) =

b
a for all x ∈ R. By induction, we will show that for each

x, z ∈ R, n ∈ N0, and m ∈ U we have

(
Λ

n
mεm

)
(x, z) ≤ 1

a
λ2(m

p)αn
mh1(x

p, z)h2(x
p, z) (4.11)

where

αm =
1
a
λ1(a+ bmp)λ2(a+ bmp) +

b

a
λ1(m

p)λ2(m
p).

From (4.7) and (4.8), we obtain that the inequality (4.11) holds for n = 0. Next, we will assume
that (4.11) holds for n = k, where k ∈ N. Then we have(
Λ

k+1
m εm

)
(x, z) = Λm

((
Λ

k
mεm

)
(x, z)

)
=

1
a

(
Λ

k
mεm

)(
p

√
(a+ bmp)xp, z

)
+
b

a

(
Λ

k
mεm

)
(mx, z)

≤ 1
a2λ2(m

p)αk
mh1((a+ bmp)xp, z)h2((a+ bmp)xp, z)

+
b

a2λ2(m
p)αk

mh1(m
pxp, z)h2(m

pxp, z)

≤ 1
a
λ2(m

p)αk
m

(1
a
λ1(a+ bmp)λ2(a+ bmp) +

b

a
λ1(m

p)λ2(m
p)
)
h1(x

p, z)h2(x
p, z)

=
1
a
λ2(m

p)αk+1
m h1(x

p, z)h2(x
p, z)
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for all x, z ∈ R, m ∈ U . This shows that (4.11) holds for n = k + 1. Now we can conclude that
the inequality (4.11) holds for all n ∈ N0. Hence, we obtain

ε∗m(x, z) =
∞∑
n=0

(
Λ

n
mεm

)
(x, z)

≤
∞∑
n=0

1
a
λ2(m

p)αn
mh1(x

p, z)h2(x
p, z)

=
λ2(mp)h1(xp, z)h2(xp, z)

a(1− αm)
<∞

for all x, z ∈ R, m ∈ U . Therefore, according to Theorem 2.3 with ϕ = f and X = R and using
the surjectivity of g, we get that the limit

Fm(x) := lim
n→∞

(
T n
mf
)
(x)

exists for each x ∈ R and m ∈ U , and∥∥f(x)− Fm(x), g(z)
∥∥ ≤ λ2(mp)h1(xp, z)h2(xp, z)

a(1− αm)
, x, z ∈ R, m ∈ U . (4.12)

To prove that Fm satisfies the functional equation (1.2), just prove the following inequality∥∥T n
mf
(

p
√
axp + byp

)
− aT n

mf(x)− bT n
mf(y), g(z)

∥∥ ≤ αn
mh1(x

p, z)h2(y
p, z) (4.13)

for every x, y, z ∈ R, n ∈ N0, and m ∈ U . Since the case n = 0 is just (4.3), take k ∈ N and
assume that (4.13) holds for n = k and every x, y, z ∈ R, m ∈ U . Then, for each x, y, z ∈ R and
m ∈ U , we get

∥∥T k+1
m f

(
p
√
axp + byp

)
− aT k+1

m f(x)− bT k+1
m f(y), g(z)

∥∥ = ∥∥1
a
T k
mf

(
p

√
(a+ bmp)(axp + byp)

)
− b
a
T k
mf
(
m p
√
axp + byp

)
− T k

mf

(
p

√
(a+ bmp)xp

)
+ bT k

mf(mx)

− b
a
T k
mf

(
p

√
(a+ bmp)yp

)
+
b2

a
T k
mf(my), g(z)

∥∥
≤ 1
a

∥∥T k
mf

(
p

√
(a+ bmp)(axp + byp)

)
− aT k

mf

(
p

√
(a+ bmp)xp

)
− bT k

mf

(
p

√
(a+ bmp)yp

)
, g(z)

∥∥
+
b

a

∥∥T k
mf
(
m p
√
axp + byp

)
− aT k

mf(mx)− bT k
mf(my), g(z)

∥∥
≤ 1
a
αk
mh1((a+ bmp)xp, z)h2((a+ bmp)yp, z) +

b

a
αk
mh1(m

pxp, z)h2(m
pyp, z)

≤ αk
m

(1
a
λ1(a+ bmp)λ2(a+ bmp) +

b

a
λ1(m

p)λ2(m
p)
)
h1(x

p, z)h2(y
p, z)

= αk+1
m h1(x

p, z)h2(y
p, z).

Thus, by induction, we have shown that (4.13) holds for every x, y, z ∈ R, n ∈ N0, and m ∈ U .
Letting n→∞ in (4.13), we obtain the equality

Fm

(
p
√
axp + byp

)
= aFm(x) + bFm(y), x, y ∈ R,m ∈ U . (4.14)

This implies that Fm : R→ Y , defined in this way, is a solution of the equation

F (x) =
1
a
F

(
p

√
(a+ bmp)xp

)
− b

a
F (mx), x ∈ R,m ∈ U . (4.15)
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Next, we will prove that each function F : R→ Y satisfiesnthe equation (1.2)and the following
inequality ∥∥f(x)− F (x), g(z)∥∥ ≤ L h1(x

p, z)h2(x
p, z), x ∈ R (4.16)

with some L > 0, is equal to Fm for each m ∈ U . To this end, we fix m0 ∈ U and F : R → Y
satisfying (4.16). From (4.12), for each x, z ∈ R, we get

∥∥F (x)− Fm0(x), g(z)
∥∥
≤
∥∥F (x)− f(x), g(z)∥∥+ ∥∥f(x)− Fm0 , g(z)

∥∥
≤ L h1(x

p, z)h2(x
p, z) + ε∗m0

(x, z)

≤ L0 h1(x
p, z)h2(x

p, z)
∞∑
n=0

αn
m0
, (4.17)

where

L0 := (1− αm0)L+
1
a
λ2(m

p
0) > 0

and we exclude the case that h1(xp, z) ≡ 0 or h2(xp, z) ≡ 0 which is trivial. Observe that F and
Fm0 are solutions to equation (4.15) for all m ∈ U . Next, we show that, for each j ∈ N0, we
have ∥∥F (x)− Fm0(x), g(z)

∥∥ ≤ L0 h1(x
p, z)h2(x

p, z)
∞∑
n=j

αn
m0
, x, z ∈ R. (4.18)

The case j = 0 is exactly (4.17). We fix k ∈ N and assume that (4.18) holds for j = k. Then, in
view of (4.17), for each x, z ∈ R, we get

∥∥F (x)− Fm0(x), g(z)
∥∥ = ∥∥1

a
F

(
p

√
(a+ bmp

0)x
p

)
− b

a
F (m0x)

− 1
a
Fm0

(
p

√
(a+ bmp

0)x
p

)
+
b

a
Fm0(m0x), g(z)

∥∥
≤ 1
a

∥∥F ( p

√
(a+ bmp

0)x
p

)
− Fm0

(
p

√
(a+ bmp

0)x
p

)
, g(z)

∥∥
+
b

a

∥∥F (m0x)− Fm0(m0x), g(z)
∥∥

≤ L0
1
a
h1((a+ bmp

0)x
p, z)h2((a+ bmp

0)x
p, z)

∞∑
n=k

αn
m0

+
b

a
L0 h1(m

p
0x

p, z)h2(m
p
0x

p, z)
∞∑

n=k

αn
m0

= L0

(1
a
h1((a+ bmp

0)x
p, z)h2((a+ bmp

0)x
p, z)

+
b

a
h1(m

p
0x

p, z)h2(m
p
0x

p, z)
) ∞∑

n=k

αn
m0

≤ L0 αm0h1(x
p, z)h2(x

p, z)
∞∑

n=k

αn
m0

= L0 h1(x
p, z)h2(x

p, z)
∞∑

n=k+1

αn
m0
.
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This shows that (4.18) holds for j = k+1. Now we can conclude that the inequality (4.18) holds
for all j ∈ N0. Now, letting j →∞ in (4.18), we get

F = Fm0 . (4.19)

Thus, we have also proved that Fm = Fm0 for each m ∈ U , which (in view of (4.12)) yields

∥∥f(x)− Fm0(x), g(z)
∥∥ ≤ λ2(mp)h1(xp, z)h2(xp, z)

a(1− αm)
, x, z ∈ R, m ∈ U . (4.20)

This implies (2.2) with F = Fm0 and (4.19) confirms the uniqueness of F .

By a similar way we can prove the following theorem.

Theorem 4.2. Let h : R2 → R+ be a function such that

U := {n ∈ N : βn := λ(a+ bnp) + λ(np) < 1} 6= φ, (4.21)

where
λ(n) := inf {t ∈ R+ : h(nxp, z) ≤ t h(xp, z), x, z ∈ R} (4.22)

for all n ∈ N. Assume that f : R→ Y satisfies the inequality∥∥f ( p
√
axp + byp

)
− af(x)− bf(y), g(z)

∥∥ ≤ h(xp, z) + h(yp, z) (4.23)

for all x, y, z ∈ R where g : X → Y is a surjective mapping. Then there exists a unique function
F : R→ Y that satisfies the equation (1.2) such that∥∥f(x)− F (x), g(z)∥∥ ≤ λ0h(x

p, z) (4.24)

for all x, z ∈ R, where

λ0 := inf
n∈U

{
1 + λ(np)

a
(
1− λ(a+ bnp)− λ(np)

)} .
Proof. Replacing in (4.23) x by mx, where x ∈ R and m ∈ N, we get

∥∥1
a
f

(
p

√
(a+ bmp)xp

)
− b

a
f(mx)− f(x), g(z)

∥∥ ≤ 1
a

(
1 + λ(mp)

)
h(xp, z) (4.25)

for all x, z ∈ R. For each m ∈ N, we define

Tmξ(x) :=
1
a
ξ

(
p

√
(a+ bmp)xp

)
− b

a
ξ(mx), ξ ∈ Y R, x ∈ R, (4.26)

Λmδ(x, z) :=
1
a
δ

(
p

√
(a+ bmp)xp, z

)
+
b

a
δ(mx, z), δ ∈ RR×R

+ , x, z ∈ R, (4.27)

εm(x, z) :=
1
a

(
1 + λ(mp)

)
h(xp, z), x, z ∈ R. (4.28)

As in Theorem 4.1 we observe that (4.25) takes form∥∥f(x)− Tmf(x), g(z)∥∥ ≤ εm(x, z), x, z ∈ R (4.29)

and Λm has the form described in (2.13) and (2.12) is valid for every ξ, µ ∈ Y R, x, z ∈ R. It is
not hard to show that(

Λ
n
mεm

)
(x, z) ≤ 1

a

(
1 + λ(mp)

)
h(xp, z)

(
λ(mp) + λ(a+ bmp)

)n
(4.30)
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for all x, z ∈ R and n ∈ N0. Therefore

ε∗m(x, z) =
∞∑
n=0

(
Λ

n
mεm

)
(x, z)

≤
∞∑
n=0

1
a

(
1 + λ(mp)

)
h(xp, z)

(
λ(mp) + λ(a+ bmp)

)n
=

(
1 + λ(mp)

)
h(xp, z)

a
(
1− λ(mp)− λ(a+ bmp)

) <∞
for all x, z ∈ R and m ∈ U . Also the remaining reasonings are analogous as in the proof of
Theorem 4.1.

The following theorem concerns the η-hyperstability of (1.2) in 2-Banach spaces. Namely,
We consider functions f : R→ Y fulfilling (1.2) approximately, i.e., satisfying the inequality∥∥f ( p

√
axp + byp

)
− af(x)− bf(y), g(z)

∥∥ ≤ η(x, y, z), x, y, z ∈ R, (4.31)

with η : R3 → R+ is a given mapping. Then we find a unique function F : R → Y satisfies the
equation (1.2) which is close to f . Then, under some additional assumptions on η, we prove that
the conditional functional equation (1.2) is η-hyperstable in the class of functions f : R → Y ,
i.e., each f : R→ Y satisfying inequality (4.31), with such η, must fulfil equation (1.2).

Theorem 4.3. Let h1, h2 and U be as in Theorem 4.1. Assume that{
limn→∞ λ1(n)λ2(n) = 0,
limn→∞ λ2(n) = 0.

(4.32)

Then every f : R→ Y satisfying (4.3) is a solution of (1.2).

Proof. Suppose that f : R → Y satisfies (4.3). Then, by Theorem 4.1, there exists a mapping
F : R→ Y satisfies (1.2) and

‖f(x)− F (x), g(z)‖ ≤ λ0h1(x
p, z)h2(x

p, z) (4.33)

for all x, z ∈ R, where g : X → Y is a surjective mapping and

λ0 := inf
n∈U

{
λ2(np)

a
(
1− λ1(a+ bnp)λ2(a+ bnp)− λ1(np)λ2(np)

)} .
Since, in view of (4.32), λ0 = 0. This means that f(x) = F (x) for all x ∈ R, whence

f
(

p
√
axp + byp

)
= af(x) + bf(y), x, y ∈ R

which implies that f satisfies the functional equation (1.2) on R.

5 Some particular cases

According to above theorems, we derive some particular cases from our main results.

Corollary 5.1. Let h1, h2 : R2 → (0,∞) be as in Theorem 4.1 such that

lim
n→∞

inf sup
x,z∈R

h1
(
(a+ bnp)xp, z

)
h2
(
(a+ bnp)xp, z

)
+ h1(npxp, z)h2(npxp, z)

h1(xp, z)h2(xp, z)
= 0. (5.1)

Assume that f : R → Y satisfies (1.2). Then there exist a unique function F : R → Y satisfies
the equation (1.2) and a unique constant κ ∈ R+ with∥∥f(x)− F (x), g(z)∥∥ ≤ κ h1(x

p, z)h2(x
p, z), x, z ∈ R, (5.2)

where g : X → Y is a surjective mapping.
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Proof. By the definition of λi(n) in Theorem 4.1, we observe that

λ1(n
p)λ2(n

p) = sup
x,z∈R

h1(npxp, z)h2(npxp, z)

h1(xp, z)h2(xp, z)

≤ sup
x,z∈R

h1
(
(a+ bnp)xp, z

)
h2
(
(a+ bnp)xp, z

)
+ h1(npxp, z)h2(npxp, z)

h1(xp, z)h2(xp, z)
(5.3)

and

λ1(a+ bnp)λ2(a+ bnp) = sup
x,z∈R

h1
(
(a+ bnpxp, z)

)
h2
(
(a+ bnpxp, z)

)
h1(xp, z)h2(xp, z)

≤ sup
x,z∈R

h1
(
(a+ bnp)xp, z

)
h2
(
(a+ bnp)xp, z

)
+ h1(npxp, z)h2(npxp, z)

h1(xp, z)h2(xp, z)
(5.4)

Combining inequalities (5.3) and (5.5), we get

λ1(n
p)λ2(n

p) + λ1(a+ bnp)λ2(a+ bnp)

≤ 2 sup
x,z∈R

h1
(
(a+ bnp)xp, z

)
h2
(
(a+ bnp)xp, z

)
+ h1(npxp, z)h2(npxp, z)

h1(xp, z)h2(xp, z)
. (5.5)

Write

γn := sup
x,z∈R

h1
(
(a+ bnp)xp, z

)
h2
(
(a+ bnp)xp, z

)
+ h1(npxp, z)h2(npxp, z)

h1(xp, z)h2(xp, z)
.

From (5.1), there is a subsequence {γnk
} of a sequence {γn} such that limk→∞ γnk

= 0, that is,

lim
k→∞

sup
x,z∈R

h1
(
(a+ bnpk)x

p, z
)
h2
(
(a+ bnpk)x

p, z
)
+ h1(n

p
kx

p, z)h2(n
p
kx

p, z)

h1(xp, z)h2(xp, z)
= 0. (5.6)

From (5.5) and (5.6), we find that

lim
k→∞

λ1(a+ bnpk)λ2(a+ bnpk) + λ1(n
p
k)λ2(n

p
k) = 0. (5.7)

This implies that
lim
k→∞

λ1(n
p
k)λ2(n

p
k) = 0

and hence

lim
k→∞

λ2(n
p
k)

a
(
1− λ1(a+ bnpk)λ2(a+ bnpk)− λ1(n

p
k)λ2(n

p
k)
) = lim

k→∞

λ2(n
p
k)

a
:= κ

which means that λ0 defined in Theorem 4.1 is equal to κ.

By a similar method, we can prove the following corollary where κ = 1
a .

Corollary 5.2. Let h : R2 → (0,∞) be as in Theorem 4.2 such that

lim
n→∞

inf sup
x,z∈R

h
(
(a+ bnp)xp, z

)
+ h(npxp, z)

h(xp, z)
= 0. (5.8)

Assume that f : R → Y satisfies (1.2). Then there exist a unique function F : R → Y satisfies
the equation (1.2) such that∥∥f(x)− F (x), g(z)∥∥ ≤ 1

a
h(xp, z), x, z ∈ R, (5.9)

where g : X → Y is a surjective mapping.
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Corollary 5.3. Let θ ≥ 0, r ≥ 0, s, t ∈ R such that s+ t < 0. Suppose that f : R→ Y such that
f(0) = 0 and satisfies the inequality∥∥f ( p

√
axp + byp

)
− af(x)− bf(y), g(z)

∥∥ ≤ θ|x|ps |y|pt |z|r, x, y, z ∈ R\{0} (5.10)

such that g : X → Y is a surjective mapping with |a| > 1 and |b| > 1, where p is odd, or f is
even function satisfies (5.10) where p is even integer. Then f satisfies (1.2) on R.

Proof. The proof follows from Theorem 4.1 by defining
h1, h2 : R2 → R+ by h1(x, z) = θ1|x|s|z|r1 and h2(y, z) = θ2|y|t|z|r2 , with θ1, θ2, r1, r2 ∈ R+

and s, t,∈ R such that θ1θ2 = θ, r1 + r2 = r and s+ t < 0.
For each n ∈ N, we have

λ1(n) = inf {t ∈ R+ : h1(nx
p, z) ≤ t h1(x

p, z), x, z ∈ R}
= inf {t ∈ R+ : θ1|nxp|s|z|r1 ≤ t θ1|xp|s|z|r1 , x, z ∈ R\{0}}
= ns.

Also, we have λ2(n) = nt for all n ∈ N. Clearly, we can find n0 ∈ N such that

λ1(a+ bnp)λ2(a+ bnp) + λ1(n
p)λ2(n

p) = (a+ bnp)s+t + (np)s+t < 1, n ≥ n0. (5.11)

According to Theorem 4.1, there exists a unique function F : R→ Y satisfies the equation (1.2)
such that ∥∥f(x)− F (x), g(z)∥∥ ≤ θλ0h1(x

p, z)h2(x
p, z) (5.12)

for all x, z ∈ R, where

λ0 := inf
n≥n0

{
λ2(np)

a
(
1− λ1(a+ bnp)λ2(a+ bnp)− λ1(np)λ2(np)

)} .
On the other hand, Since s+ t < 0, one of s, t must be negative. Assume that t < 0. Then{

limn→∞ λ1(n)λ2(n) = limn→∞ ns+t = 0,
limn→∞ λ2(n) = limn→∞ nt = 0.

(5.13)

Thus by Theorem 4.3, we get the desired results.

The next corollary prove the hyperstability results for the inhomogeneous radical functional
equation.

Corollary 5.4. Let θ, s, t, r ∈ R such that θ ≥ 0 and s + t < 0. Assume that G : R2 → Y and
f : R→ Y satisfy the inequality∥∥f ( p

√
axp + byp

)
− af(x)− bf(y)−G(x, y), g(z)

∥∥ ≤ θ|x|ps |y|pt |z|r, x, y, z ∈ R\{0}
(5.14)

such that g : X → Y is a surjective mapping, where p is odd, or f is even function satisfies
(5.14) where p is even integer. If the functional equation

f
(

p
√
axp + byp

)
= af(x) + bf(y) +G(x, y), x, y ∈ R\{0} (5.15)

has a solution f0 : R→ Y , then f is a solution to (5.15).

Proof. From (5.14) we get that the function K : R→ Y defined by K := f − f0 satisfies (5.10).
Consequently, Corollary 5.3 implies that K is a solution to radical functional equation (1.2).
Therefore,

f
(

p
√
axp + byp

)
− af(x)− bf(y)−G(x, y) = K

(
p
√
axp + byp

)
+ f0

(
p
√
axp + byp

)
− aK(x)− af0(x)− bK(y)− bf0(y)−G(x, y)

= 0, x, y ∈ R\{0}.

which means f is a solution to (5.15).
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[24] S. Gähler, Linear 2-normiete Räumen, Math. Nachr. 28, 1-43 (1964).
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