
Palestine Journal of Mathematics

Vol. 11(1)(2022) , 608–612 © Palestine Polytechnic University-PPU 2022

Matrix characterization of Asymptotically Probability
Equivalent for Measurable Functions

Rabia SAVAŞ
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Abstract In this article, we put forward new ideas of asymptotically equivalent functions in
probability and asymptotic regular matrices in probability. Two nonnegative real-valued function
f(s) and g(s), measurable on (1,∞) are said to be asymptotically probability equivalent if for
every ε > 0,

lim
s
P

(∣∣∣∣f(s)g(s)
− 1
∣∣∣∣ < ε

)
= 1

Also, we examine bivariate function transformation of asymptotically equivalent in probability
for measurable functions.

1 Introduction

The definitions of asymptotically equivalent sequences and asymptotic regular matrices which
preserve the asymptotic equivalence of two nonnegative number sequences were presented by
Pobyvanets [3] and new ways of comparing rates of convergence was introduced by Fridy [1].
Furthermore, the definitions for asymptotically statistical equivalent sequences and asymptoti-
cally statistical regular matrices was presented by Patterson [4] and this concept was deal with
probability theory by Patterson and Savas [5].

In order to present the main results, we first consider some definitions.

Definition 1.1. [1] For y = (yr) in ĺ, where ĺ =
{
yr :

∞∑
r=1
|yr| <∞

}
, the "remainder sequence"

[Ry] is defined to be (Rmy) where, for each m ∈ N,

Rmy :=
∞∑
m

|yr| .

Definition 1.2. [5] Two nonnegative sequences y = (yr) and z = (zr) are said to be asymptoti-
cally equivalent in probability if

lim
r
P

(∣∣∣∣yrzr − 1
∣∣∣∣ < ε

)
= 1.

(denoted by y probability∼ z)

The main goal of this paper is to introduce the ideas of asymptotically probability equivalent
and asymptotically regular in probability by using g(s) and h(s) two nonnegative real-valued
Lebesgue measurable functions on (1,∞) instead of sequences. In addition, we shall also prove
some of inclusion theorems.

2 Main Definitions

In this section, we will present useful main definitions. Let us note the following notations:
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Lf =

{
g(s) :

∞∫
1
|g(s)| ds <∞

}
,

DA =

{
g(s) : lim

t

∞∫
1
τ(t, s)g(s)ds exists, where τ(t, s) is a bivariate function

}
,

P fδ = {The class of all real valued lebesgue measurable functions such that g(s) ≥ δ > 0 for all s} ,
and
P f0 = {The class of all real valued measurable functions which have at most a finite number of zero values}.

Definition 2.1. Let g(s) be a real-valued function which is measurable on (1,∞). If g(s) is a
Lf , then we denote the remainder function given by

Rt (g) :=
∞∫
t

|g(s)| ds.

Definition 2.2. Let g(s) be a real-valued function which is measurable on (1,∞), ifRt(τ(t, s)g(s))
is a Lf , then we denote the remainder function given by

Rt(τ(t, s)g(s)) :=
∞∫
t

|ϕg(s)| ds

when (ϕg)t =
∞∫
1
τ(t, s)g(s)ds, in short (ϕg)t.

Definition 2.3. Two nonnegative real-valued function g(s) and h(s), measurable on (1,∞) are
said to be asymptotically equivalent if

lim
s

g(s)

h(s)
= 1

(denoted by g F∼ h).

Definition 2.4. Two nonnegative real-valued function g(s) and h(s), measurable on (1,∞) are
said to be asymptotically probability equivalent of multiple ξ provided that for every ε > 0,

lim
s
P

(∣∣∣∣ g(s)h(s)
− ξ
∣∣∣∣ < ε

)
= 1

(denoted by g probability∼ h), and simply asymptotically probability equivalent if ξ = 1.

Definition 2.5. A bivariate function ϕ = τ (t, s) is asymptotically regular in probability provided

that ϕg probability∼ ϕh whenever g probability∼ h, g(s) ∈ P f0 , and h(s) ∈ P fδ for δ > 0.

3 Main Results

In the following theorem, we present necessary and sufficient conditions on the entries of a
summability bivariate functions to ensure that the bivariate function transformation will conserve
asymptotically equivalent in probability of multiple ξ for Lebesgue measurable functions.

Theorem 3.1. If ϕ = τ (t, s) is a bivarite function that maps bounded functions g(s) into Lf ,
then the followings are equivalent:

(i) If g(s) and h(s) are bounded functions such that g probability∼ h, g(s) ∈ P f0 , and h(s) ∈ P fδ
for some δ > 0, then

Rt(ϕg)
probability∼ Rt(ϕh).
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(ii)

lim
t→∞

P


∣∣∣∣∣∣∣∣

∞∫
m=t

τ(m, p)dm

∞∫
m=t

∞∫
n=1

τ(m,n)dndm
< ε

∣∣∣∣∣∣∣∣
 = 1 for each p and ε > 0.

Proof. The definition for asymptotically equivalent in probability of multiple ξ can be defined
as the following

lim
s
P

(∣∣∣∣ g(s)h(s)
− ξ
∣∣∣∣ < ε

)
= 1

This implies that
lim
s
P ((ξ − ε)h(m) < g(m) ≤ (ξ + ε)h(m)) = 1. (3.1)

We now consider the following

Rt(ϕg)

Rt(ϕh)
≤

N−1∫
1
g(n)

∞∫
m=t

sup
0≤n≤N−1

τ(m,n)dmdn

∞∫
t

∞∫
1
τ(m,n)h(n)dndm

+

∞∫
t

∞∫
N

τ(m,n)g(n)dndm

∞∫
t

∞∫
1
τ(m,n)h(n)dndm

and we consider lower bound as follows:

Rt(ϕg) =

∞∫
t

∞∫
1

τ(m,n)dndm

≤
∞∫
m=t

inf
0≤n≤N−1

τ(m,n)dmdn

N−1∫
1

g(n) +

∞∫
m=t

∞∫
N

τ(m,n)dndm.

From (3.1) we are granted the following

Rt(ϕg)

Rt(ϕh)
≤

N−1∫
n=1

g(n)
∞∫
m=t

sup
0≤n≤N−1

τ(m,n)dmdn

δ
∞∫
m=t

∞∫
1
τ(m,n)dndm

+ (ξ + ε) in probability

and

Rt(ϕg)

Rt(ϕh)
≥


N−1∫
n=1

g(n)dn

sup
n
h(n)



∞∫
m=t

(
inf

0≤n≤N−1
τ(m,n)

)
dm

∞∫
m=t

∞∫
n=1

τ(m,n)dndm

+ (ξ + ε)

−


(ξ − ε)

N−1∫
1
h(n)dn

δ



∞∫
m=t

(
max

0≤n≤N−1
τ(m,n)

)
dm

∞∫
m=t

∞∫
1
τ(m,n)dndm

 in probability.

Therefore, from the last two equations we get the following

lim
t
P

(∣∣∣∣Rt(ϕg)Rt(ϕh)
− ξ
∣∣∣∣ < ε

)
= 1

Hence,
Rt(ϕg)

probability∼ Rt(ϕh).

For the second part of this theorem, we consider the following two functions,
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g(m) :=

{
0,m ≤ p;
1, otherwise

where p ∈ Z+ and h(m) = 1 for all m. These two functions imply as follows:

Rt(ϕg) =

∞∫
m=t

∞∫
n=p+1

τ(m,n)dndm

=

∞∫
m=t

∞∫
n=1

τ(m,n)dndm−
∞∫
m=t

p∫
n=1

τ(m,n)dndm.

Therefore

lim inf
t

Rt(ϕg)

Rt(ϕh)
≤ 1− lim sup

t→∞

∞∫
m=t

τ(m, p)dm

∞∫
m=t

∞∫
n=1

τ(m,n)dndm

Since each nonconstant element of the last inequality has statistically limit zero, We have the
following

lim
t
P

(∣∣∣∣Rt(ϕg)Rt(ϕh)
− 1
∣∣∣∣ < ε

)
= 0.

Theorem 3.2. In order for bivariate function A = τ (t, s) to be asymptotically probability regu-
lar it is necessary and sufficient that for each fixed positive integer s0

1.
s0∫
1
τ(m, t)dm is bounded for each m.

2.

lim
t
P


∣∣∣∣∣∣∣∣
s0∫
t=1
τ(m, t)dm

∞∫
1
τ(m, t)dm

< ε

∣∣∣∣∣∣∣∣
 = 1

Proof. The necessary part of above theorem is similarly established as necessary part of the
previous theorem. To construct the sufficient part, let ε > 0, g probability∼ h, g(s) ∈ P f0 and
h(s) ∈ P fδ for some δ > 0, we can write

P ((ξ − ε)h(m+ α) ≤ g(m+ α) ≤ (ξ + ε)h(m+ α)) = 1. (3.2)

Let us consider the following

(ϕg)t
(ϕh)t

=

α∫
t=1
τ(m, t)g(t)dt+

∞∫
t=α+1

τ(m, t)g(t)dt

α∫
t=1
τ(m, t)h(t)dt+

∞∫
t=α+1

τ(m, t)h(t)dt

=

α∫
t=1
τ(m,t)g(t)dt

∞∫
t=α+1

τ(m,t)h(t)dt
+

∞∫
t=α+1

τ(m,t)g(t)dt

∞∫
t=α+1

τ(m,t)h(t)dt

α∫
t=1
τ(m,t)h(t)dt

∞∫
t=α+1

τ(m,t)h(t)dt
+ 1
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Inequality (3.2) implies that

lim
m=t

P


∣∣∣∣∣∣∣∣∣
∞∫

t=α+1
τ(m, t)g(t)dt

∞∫
t=α+1

τ(m, t)h(t)dt
− ξ

∣∣∣∣∣∣∣∣∣ < ε

 = 1.

Since g(s) ∈ P f0 , h(s) ∈ P
f
δ , and condition (2) holds we obtain the following

lim
t
P


∣∣∣∣∣∣∣∣∣

α∫
t=1
τ(m, t)g(t)dt

∞∫
t=α+1

τ(m, t)h(t)dt

∣∣∣∣∣∣∣∣∣ < ε

 = 1,

and

lim
t
P


∞∫
t=1
τ(m, t)h(t)dt

∞∫
t=α+1

τ(m, t)h(t)dt
< ε

 = 1.

Thus

lim
t
P

(∣∣∣∣ (ϕg)t(ϕh)t
− ξ
∣∣∣∣ < ε

)
= 1.

This implies that (ϕg) probability∼ (ϕh) whenever g probability∼ h, g ∈ P f0 and h ∈ P fδ for some
δ > 0.
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