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Abstract In the present work we estimate of deviations of periodic functions from linear
operators constructed on basis of its Fourier series in terms of the best approximation of these
functions in Morrey space. Specifically, we study the problem of the effect of metric of space on
order of change of deviations.

1 Introduction

Let T denote the interval [0, 2π]. Let Lp(T), 1 ≤ p <∞ be the Lebesgue space of all measurable
2π−periodic functions defined on T such that

‖f‖p :=
(
T |f(x)|

p
dx
) 1
p <∞.

The Morrey spaces Lp,λ0 (T) for a given 0 ≤ λ ≤ 2 and p ≥ 1,we define as the set of
functions f ∈ Lploc (T) such that

‖f‖Lp,λ0 (T) :=

{
sup
I

1

|I|1−
λ
2
I

|f (t)|p dt

} 1
p

<∞,

where the supremum is taken over all intervals I ⊂ [0, 2π].Note that Lp,λ0 (T) becomes a Banach
spaces, λ = 2 coincides with Lp (T) and for λ = 0 with L∞ (T) . If 0 ≤ λ1 ≤ λ2 ≤ 2, then
Lp,λ1

0 (T) ⊂ Lp,λ2
0 (T) . Also, if f ∈ Lp,λ0 (T) , then f ∈ Lp (T) and hence f ∈ L1 (T) .The

Morrey spaces, were introduced by C. B. Morrey in 1938. The properties of these spaces have
been investigated intensively by several authors and together with weighted Lebesgue spaces
Lpω play an important role in the theory of partial equations, in the study of local behavior of
the solitions of elliptic differential equations and describe local reqularity more precisely than
Lebesgue spaces Lp. The detailed information about properties of the Morrey spaces can be
found in [11-13], [17], [22 ], [31], [32], [40], [42], [44]. and [47].

In what follows byLp,λ (T) we denote the closure of the linear supspace ofLp,λ0 (T) functions,
whose shifts are continuous in Lp,λ0 (T) .

Let

a0

2
+
∞∑
k=1

Ak(x; f), Ak(x; f) := ak(f) cos kx+ bk(f) sin kx (1.1)

be the Fourier series of the function f ∈ L1(T), where ak(f) and bk(f) are Fourier coefficients
of the function f. The nth partial sums of the series (1) is defined as:
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Sn (x; f) =
a0

2
+

n∑
k=1

Ak(x; f).

We consider the sequence of the functions {λk(r)} defined in the set E of the number line,
satisfying the conditions that

λ0(r) = 1, lim
r−→r0

λν(r) = 1

for an arbitrary fixed ν = 0, 1, 2, ...
For an arbitrary r ∈ E and for every function f ∈ Lp,λ (T) , 0 ≤ λ ≤ 2 and p ≥ 1 the series

U( f ; x ;λ) =
a0

2
+
∞∑
k=1

λk(r) Ak(x; f) (1.2)

converges in the space Lp,λ (T) , 0 ≤ λ ≤ 2 and p ≥ 1
For each linear operator Ur( f ; x ; λ) we set

Rr(f ; λ)Lp,λ(T) := ‖f − Ur(f ; x; λ)‖Lp,λ(T) .

Let r = 0, 1, 2, ..., if we substitute the followings

λν(r) =

{
1− ν

r+1 , 0 ≤ ν ≤ r,
0, ν > r,

(1.3)

λν(r) =

{
1− νk

(r+1)k
, 0 ≤ ν ≤ r,

0, ν > r,
(1.4)

where k ≥ 1,
λν(r) = rν , (ν = 0, 1, 2, ...), (0 ≤ r < 1) (1.5)

into (1.2) we obtain Fejér means, Zygmund means of order k and Abel-Poisson means of the
series (1.1) respectively.

We denote by En(f)Lp,λ(T)the best approximation of f ∈ Lp,λ(T) , 0 ≤ λ ≤ 2 and p ≥ 1 by
trigonometric polynomials of degree not exceeding n, i.e.,

En(f)Lp,λ(T) = inf
{
‖f − Tn‖Lp,λ(T) : Tn ∈ Πn

}
,

where Πn denotes the class of trigonometric polynomials of degree at most n.
We use the constants c, c1, c2, ... (in general, different in different relations) which depend

only on the quantities that are not important for the questions of interest.
Note that the density of polynomials is an indispensable condition in approximation prob-

lems. Therefore, the polynomials are dense in Morrey spaces Lp,λ (T) , 0 < λ ≤ 2 and 1
< p <∞.

The problems of approximation theory in the weighted and non-weighted Morrey spaces have
been investigated by several authors (see, for example, [3-7], [17], [18], [20] and [33] ).

In the present paper we investigate the problems of estimating the deviation of the functions
from the linear operators constructed on the basis of its Fourier series in terms of the best ap-
proximation of these functions in Morrey spaces. Obtained results show that the estimates of
Rr(f ; λ)Lp,λ(T) depends on both the rate of decrease of the sequence

{
En(f)Lp,λ(T)

}
and in

some cases the metric of the considered space. This is valid for the upper and lower estimates of
the quantity Rr(f ; λ)Lp,λ(T). The similar problems of the approximation theory in the different
spaces were investigated in [1], [2], [8-10],[14-16 ], [23-29 ],[34-36 ], [38], [39], [41], [43], [45],
[46] and [48].
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2 Main Results

Using the proof method in Marcinkiewicz- Multiplier Therem in weighted Lebesgue spaces [30,
Theorem 2] , the following theorem can be prowed in Morrey spaces Lp,λ (T) , 0 < λ ≤ 2 and
1 < p <∞.

Theorem 2.1. Let a sequence χk satisfy the conditions

|χk| ≤ c1,

2j−1∑
k=2j−1

|χk − χk+1| ≤ c2 (2.1)

where A > 0 does not depend on k and j. If f ∈ Lp,λ (T) , 0 < λ ≤ 2 and 1 < p <∞ has the
Fourier series

a0

2
+
∞∑
k=1

Ak(x; f)

there exists a function F ∈ Lp,λ (T) , 0 < λ ≤ 2 and 1 < p <∞ with the Fourier series

λ0a0

2
+
∞∑
k=1

λkAk(x; f)

and

‖ F ‖Lp,λ(T)≤ c3 ‖ f ‖Lp,λ(T), (2.2)

where c3 > 0 does not depend on f ∈ Lp,λ (T) , 0 < λ ≤ 2 and 1 < p <∞.
Also, using the proof scheme developed in [30, Theorem 1] and [37] we can prove the follow-

ing theorem related to the Littlewood -Paley inequality in the Morrey Spaces Lp,λ (0, 2π) , 0 <
λ ≤ 2 and 1 < p <∞.

Theorem 2.2. Let f ∈ Lp,λ (T) , 0 < λ ≤ 2 and 1 < p < ∞. Then there exist constants
c4 > 0 and c5 > 0 such that

c4 ‖ f ‖Lp,λ(T)≤‖

 ∞∑
j=0

∣∣∣∣∣∣
2j−1∑
k=2j−1

Ak(x, f)

∣∣∣∣∣∣
2


1
2

‖Lp,λ(T)≤ c5 ‖ f ‖Lp,λ(T) . (2.3)

Our main results are the following.
Theorem 2.3. Let {λν(r)} be an arbitrary triangular matrix
(r = 0, 1, 2, 3, ...; λ0(r) = 1; λν(r) = 0, ν > r) . Let f ∈ Lp,λ (T) , 0 < λ ≤ 2 and 1

< p <∞ then the following inequality holds:

Rr(f ; λ)Lp,λ(T) ≤ c6{(1 +Kr)Er(f)Lp,λ(T) +
m−1∑
v=0

δ(2ν+1; r) E2ν−1(f)Lp,λ(T)

+δ(r; r) E2m(f)Lp,λ(T), } (2.4)

where 2m ≤ r < 2m+1, c6 is a constant not depending on r,

Kr =
2
π

π

0

∣∣∣∣∣∣12 +
r∑
ν=1

λν(r) cos νθ

∣∣∣∣∣∣ dθ,

δ(µ; r) =π
0

∣∣∣∣∣1− λµ(r)2
+

µ−1

−
∑
ν=1

{1− λν(r)} cos νθ

∣∣∣∣∣ dθ, µ ≤ r. (2.5)
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Proof.We consider the trigonometric polynomial

Tr(x) =
r∑
ν=o

(αν cos νx+ βν sin νx).

We obtain

Rr(f ; λ)Lp,λ(T) =

∥∥∥∥∥∥∥f(x)−
r∑
ν=0

λν(r)Aν(x; f)

∥∥∥∥∥∥∥
Lp,λ(T)

≤ ‖f(x)− Tr(x)‖Lp,λ(T) +

∥∥∥∥∥∥Tr(x)−
r∑
ν=0

λν(r)(αν cos νx+ βν sin νx)

∥∥∥∥∥∥
Lp,λ(T)

+

∥∥∥∥∥∥∥
r∑
ν=0

λν(r)Aν(x; f)−
r∑
ν=0

(αν cos νx+ βν sin νx)λν(r)

∥∥∥∥∥∥∥
Lp,λ(T)

= ‖f(x)− Tr(x)‖Lp,λ(T) +Rr(Tr;λ)Lp,λ(T)

+

∥∥∥∥∥∥ 1
π

2π

0
{f(x+ θ)− Tr(x+ θ}

1
2
+

r∑
ν=1

λν(r) cos νθ

 dθ

∥∥∥∥∥∥
Lp,λ(T)

.

Then from the last inequality we conclude that

Rr(f, λ)Lp,λ(T) ≤ ‖f(x)− Tr(x)‖Lp,λ(T) (1 +Kr) +Rr(Tr;λ (2.6)

where

Kr =
2
π

π

0

∣∣∣∣∣∣12 +
r∑
ν=1

λν(r) cos νθ

∣∣∣∣∣∣ dθ.
By [46 ] the identity

n∑
ν=1

{1− λν(r)} (αν cos νx+ βν sin νx) =
2
π
Tn(x+ θ) cosnθBn(r, θ)dθ, (2.7)

holds, where λ0(r) = 1 and

Tn(x) =
n∑
ν=o

(αν cos νx+ βν sin νx).

Bn(r, θ) =
1− λn(r)

2
+
n−1∑
ν=0

(1− λn−ν(r)) cos νθ.

Let f ∈ Lp,λ (T) , 0 < λ ≤ 2 , 1 < p < ∞ and let Tn ∈ Πn (n = 0, 1, 2, ...) be the
polynomial of best approximation to f , i. e.

En(f)Lp,λ(T) = ‖f(x)− Tn(x)‖Lp,λ(T) .

We set

ρk(ν; r;x) =
1
π

2π

0
Tk(x+ θ)

ν∑
µ=1

{1− λµ(r)} cosµθ, (0 ≤ k ≤ ν ≤ r), (2.8)

The following equalities holds:

Rr(Tr;λ)
Lp,λ(T)

= ‖ρr(r; r;x)‖
Lp,λ(T)

,
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ρ0(2; r;x) = 0, ρk(ν; r;x) = 0, ρk(k; r;x) = 0, (ν > k).

We suppose that the number m ∈ N satisfies condition 2m ≤ r < 2m+1. Then we obtain

Rr(Tr;λ)Lp,λ(T) ≤ ‖ρ2(2; r;x)− ρ0(2; r;x)‖Lp,λ(T)

+
m−1∑
µ=1

∥∥ρ2µ+1(2µ+1; r;x)− ρ2µ(2µ+1; r;x)
∥∥
Lp,λ(T)

+ ‖ρr(r; r;x)− ρ2m(r; r;x)‖Lp,λ(T) . (2.9)

Use of (2.7) and (2.8) gives us∥∥ρ2µ+1(2µ+1; r;x)− ρ2µ(2µ+1; r;x)
∥∥
Lp,λ(T)

=

∥∥∥∥∥∥ 1
π

2π

0
{T2µ+1(x+ θ)− T2µ(x+ θ)}

2m+1∑
j=1

{1− λj(r)} cos jθdθ

∥∥∥∥∥∥
Lp,λ(T)

=

∥∥∥∥∥ 2
π

2π

0
{T2µ+1(x+ θ)− T2µ(x+ θ)} cos 2µ+1θB2µ+1(r; θ)

∥∥∥∥∥
Lp,λ(T)

(2.10)

≤ c7δ(2µ+1; r)E2µ(f)Lp,λ(T).

The relations (2.9) and (2.10) imply that

Rr(Tr;λ)Lp,λ(T) ≤ c8δ(2; r)E0(f)Lp,λ(T) +
m−1∑
µ=1

δ(2µ+1; r)E2µ(f)Lp,λ(T)

+δ(r; r)E2m(f)Lp,λ(T). (2.11)

According to [46 ] Kr ≤ c9. The inequalities (2.6) and (2.11) immediately yield (2.4).2

Corollary 2.4. Suppose that the conditions of Theorem 2.3. are satisfied.
1. Let λν(r), ν = 0, 1, 2, ... be a system of numbers defined by relations (1.3). Then the

following inequality holds:

Rr(f ; λ)Lp,λ(T) ≤
c10

r + 1
r

ν=0
Eν(f)Lp,λ(T). (2.12)

2. Let λν(r), ν = 0, 1, 2, ..be a system of numbers defined by relations (1.4). Then the
following inequality holds:

Rr(f ; λ)Lp,λ(T) ≤
c11

(r + 1)k
r

ν=0
(ν + 1)k−1Eν(f)Lp,λ(T), (2.13)

Proof. If we put

λν(r) = 1− νk

(ν + 1)k
, (0 ≤ ν ≤ r) and λν(r) = 0, ν > r

in the inequality (2.7) we obtain

n∑
ν=1

νk(αν cos νx+ βν sin νx)

=
2nk

π

2π

0
Tn(x+ θ) cosnθ

1
2
+
n−1∑
ν=1

(1− ν

n
)k cos νθ

 dθ. (2.14)
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Taking account of (2.14) we have∥∥∥∥∥∥
n∑
ν=1

νk(αν cos νx+ βν sin νx)

∥∥∥∥∥∥
Lp,λ(T)

≤ c12n
k ‖Tn(x)‖Lp,λ(T) .

If we put

λ2µ+1(r) = 1− 2(µ+1)

(r + 1)k

in (2.5) we get

δ(2µ+1; r) = π
0

∣∣∣∣∣∣∣
1− λ2µ+1(r)

2
+

2µ+1∑
ν=1

{1− λ2µ+1−ν(r)} cos νθ

∣∣∣∣∣∣∣ dθ

=
2(µ+1)k

(r + 1)k

π

0

∣∣∣∣∣∣∣
1
2
+

2µ+1−1∑
ν=1

(1− ν

2µ+1 )
k cos νθ

∣∣∣∣∣∣∣ dθ
≤ c13

2(µ+1)k

(r + 1)k
. (2.15)

Consideration of (2.15) and (2.4) gives us the inequalities (2.12) and (2.13) of Corollary 2.4.2

Theorem 2.5. Let f ∈ Lp,λ (T) , 0 < λ ≤ 2 , 1 < p <∞ and γ = max {2, p}. then for the
system of numbers defined by (4) the following inequality holds:

Rr(f ; λ)Lp,λ(T) ≥
c14

(r + 1)k
{
r
ν=1ν

kγ−1Eγν (f)Lp,λ(T)
} 1
γ ,

where c13 is a constant depending on p, λ and k.
Proof. We suppose that the number m ∈ N satisfies condition 2m ≤ n < 2m+1. From
En(f)Lp,λ(T) ↓ 0 we get

σn,k,γ :=

 νkγ−1

(n+ 1)kγ

n∑
ν=1

Eγν (f)Lp,λ(T)


1
γ

≤


m+1∑
ν=0

2ν+1−1∑
µ=2ν

µkγ−1

(n+ 1)kγ
Eγn(f)Lp,λ(T)


1
γ

≤


m+1∑
ν=0

2νγk

(n+ 1)kγ
Eγ2ν (f)Lp,λ(T)


1
γ

.

By [21] the inequality

‖f(x)− Sn(x, f)‖Lp,λ(T) ≤ c15En(f)Lp,λ(T) (2.16)

holds. Then taking account of (2.3) we obtain

σn,k,γ ≤


m+1∑
ν=0

2νγk

(n+ 1)kγ

∥∥∥∥∥∥
∞∑

µ=2ν
Aµ(x; f)

∥∥∥∥∥∥
γ

Lp,λ(T)


1
γ

≤


m+1∑
ν=0

2νγk

(n+ 1)kγ

∥∥∥∥∥∥∥
( ∞∑
µ=ν

∆
2
µ+1

) 1
2
∥∥∥∥∥∥∥
γ

Lp,λ(T)


1
γ

(2.17)
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Let γ = 2 and 1 < p ≤ 2. Using Minkowski’s inequality we find that

σn,k,2 ≤ c16


m+1∑
ν=0

2νγk

(n+ 1)kγ

∥∥∥∥∥∥∥
( ∞∑
µ=ν

∆
2
µ+1

) 1
2
∥∥∥∥∥∥∥

2

Lp,λ(T)


1
2

≤

∥∥∥∥∥∥
(
m+1∑
ν=0

22νk

(n+ 1)2k

∞∑
µ=ν

∆
2
µ+1

) 1
2
∥∥∥∥∥∥
Lp,λ(T)

.

By Abel’s transformation we obtain

σn,k,2 ≤ c17

∥∥∥∥∥∥∥
 m∑
ν=0

22νk

(n+ 1)2k∆
2
ν+1 +

22(m+1)k

(n+ 1)2k

∞∑
µ=m+1

∆
2
µ+1

 1
2

∥∥∥∥∥∥∥
Lp,λ(T)

≤ c18

∥∥∥∥∥∥∥
 m∑
ν=0

2νk

(n+ 1)2k∆
2
ν+1

 1
2

∥∥∥∥∥∥∥
Lp,λ(T)

+ c19

∥∥∥∥∥∥∥
 ∞∑
µ=m+1

∆
2
µ+1

 1
2

∥∥∥∥∥∥∥
Lp,λ(T)

.(2.18)

Taking the relations (2.3) and (2.16) into account we get

∥∥∥∥∥∥∥
 ∞∑
µ=m+1

∆
2
µ+1

 1
2

∥∥∥∥∥∥∥
Lp,λ(T)

≤ c20

∥∥∥∥∥∥
∞∑

µ=2m+1

Aµ(x; f)

∥∥∥∥∥∥
Lp,λ(T)

≤ c21En(f)Lp,λ(T). (2.19)

Then the inequalities (2.18) and (2.19) imply that

σn,k,γ ≤ c22

∥∥∥∥∥∥∥
 m∑
ν=0

22νk

(n+ 1)2k∆
2
ν+1

 1
2

∥∥∥∥∥∥∥
Lp,λ(T)

+ c23En(f)Lp,λ(T).

Note that system of multipliers

λµ =
2νk

µk(n+ 1)k
(2ν ≤ µ ≤ 2ν+1 − 1, ν = 1, 2, ..., 2m+1 − 1), λµ = 0 (µ ≥ 2m+1)

satisfies the conditions (2.1). Then from inequality (2.2) we conclude that

σn,k ≤ c24

∥∥∥∥∥∥
∣∣∣∣∣∣
n∑
µ=0

µk

(n+ 1)k
Aµ(x; f)

∣∣∣∣∣∣
∥∥∥∥∥∥
Lp,λ(T)

+ c25En(f)Lp,λ(T) ≤ c26Rn(f ;λ)Lp,λ(T).

Let 2 ≤ p <∞ and γ = p. Using (2.17) we get
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σn,k,p ≤


m+1∑
ν=0

2νpk

(n+ 1)kp

∥∥∥∥∥∥
∞∑

µ=2ν
Aµ(x; f)

∥∥∥∥∥∥
p

Lp,λ(T)


1
p

≤


m+1∑
ν=0

2νpk

(n+ 1)kp

∥∥∥∥∥∥∥
( ∞∑
µ=ν

∆
2
µ+1

) 1
2
∥∥∥∥∥∥∥
p

Lp,λ(T)


1
p

≤ c27


∥∥∥∥∥∥
m+1∑
ν=0

2νk

(n+ 1)k

( ∞∑
µ=ν

∆
2
µ+1

) 1
2

∥∥∥∥∥∥
p

Lp,λ(T)


1
p

≤ c28


∥∥∥∥∥∥
(
m+1∑
ν=0

22νk

(n+ 1)2k

∞∑
µ=ν

∆
2
µ+1

) 1
2
∥∥∥∥∥∥
Lp,λ(T)

 .

Further, using the same Abel’s transformation and reasoning as in the case 1 < p ≤ 2 we have

σn,k,p ≤ c29Rn(f ;λ)Lp,λ(T).

Proof of Theorem 2.5 is completed.2

Theorem 2.6. Let f ∈ Lp,λ (T) , 0 < λ ≤ 2, 1 < p <∞ and γ = max {2, p} , then for the
system of numbers defined by (1.5) the following inequality holds:

Rr(f ; λ)Lp,λ(T) ≥ c30 (1− r)
{
∞
ν=0r

ν (ν + 1)γ−1
Eγν (f)Lp,λ(T)

} 1
γ

,

where c30 is a constant depending on p and λ.
Proof of Theorem 2.6 is similar to proof of Theorem 2.5.
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