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Abstract. In this paper we introduce and study a new subclass of meromorphically uniformly
convex functions with positive coefficients defined by a differential operator and obtain coeffi-
cient estimates, growth and distortion theorem, radius of convexity, integral transforms, convex
linear combinations, convolution properties and δ−neighborhoods for the class σ(α, s, b).

1 Introduction

Let S be denote the class of all functions f(z) of the form

f(z) = z +
∞∑
m=2

amz
m (1.1)

which are analytic and univalent in U = {z : z ∈ C and |z| < 1} normalized by f(0) = 0 and
f ′(0) = 1. Denote by S∗(γ) and K(γ), 0 ≤ γ < 1 the subclasses of functions in S that are
starlike and convex functions of order α respectively. Analytically f ∈ S∗(γ) if and only if f is
of the form (1.1) and satisfies

<
{
zf ′(z)

f(z)

}
> γ, z ∈ U.

Similarly, f ∈ K(γ) if and only if f is of the form (1.1) and satisfies

<
{

1 +
zf ′′(z)

f ′(z)

}
> γ, z ∈ U.

Also denote by T the subclasses of S consisting of functions of the form

f(z) = z −
∞∑
m=2

amz
m, am ≥ 0 (1.2)

introduced and studied by Silverman [19], let T ∗(γ) = T ∩ S∗(γ), CV (γ) = T ∩ K∗(γ). The
classes T ∗(γ) and K∗(γ) posses some interesting properties and have been extensively studied
by Silverman [19] and others. In 1991, Goodman [10, 11] introduced an interesting subclass
uniformly convex (uniformly starlike) of the class CV of convex functions (ST starlike functions)
denoted by UCV (UST). A function f(z) is uniformly convex (uniformly starlike) in U if f(z)
in CV (ST) has the property that for every circular arc γ contained in U with center ξ also in U,
the arc f(γ) is a convex arc (starlike arc) with respect to f(ξ).

Motivated by Goodman [10, 11], Ronning [16, 17] introduced and studied the following
subclasses of S. A function f ∈ S is said to be in the class Sp(γ, k) uniformly k−starlike
functions if it satisfies the condition

<
(
zf ′(z)

f(z)
− γ
)
> k

∣∣∣∣zf ′(z)f(z)
− 1
∣∣∣∣ , 0 ≤ γ < 1, k ≥ 0, z ∈ U (1.3)
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and is said to be in the class UCV (γ, k), uniformly k−convex functions if it satisfies the condi-
tion

<
(

1 +
zf ′′(z)

f ′(z)
− γ
)
> k

∣∣∣∣zf ′′(z)f ′(z)

∣∣∣∣ , 0 ≤ γ < 1, k ≥ 0, z ∈ U. (1.4)

Indeed it follows from (1.3) and (1.4) that

f ∈ UCV (γ, k)⇔ zf ′ ∈ Sp(γ, k). (1.5)

Further Ahuja et al. [1], Bharathi et al. [4], Murugusundaramoorthy et al. [15] and others have
studied and investigated interesting properties for the classes Sp(γ, k) and UCV (γ, k).

Let Σ denote the class of functions of the form

f(z) = z−1 +
∞∑
m=1

amz
m, am ≥ 0 (1.6)

which are analytic in the punctured open disk U∗ = {z : z ∈ C, 0 < |z| < 1} = U \ {0}.
Let f, g ∈ Σ, where f is given by (1.6) and g is defined by

g(z) = z−1 +
∞∑
m=1

bmz
m.

Then the Hadamard product (or convolution) f ∗ g of the functions f and g is defined by

(f ∗ g)(z) = z−1 +
∞∑
m=1

ambmz
m = (g ∗ f)(z).

Let Σs,Σ
∗(γ) and Σk(γ) (0 ≤ γ < 1) denote the subclasses of Σ that are meromorphic

univalent, meromorphically starlike functions of order γ and meromorphically convex functions
of order γ respectively. Analytically, f ∈ Σ∗(γ) if and only if f is of the form (1.6) and satisfies

−<
(
zf ′(z)

f(z)

)
> γ, z ∈ U.

Similarly, f ∈ Σk(γ) if and only if f is of the form (1.6) and satisfies

−<
(

1 +
zf ′′(z)

f ′(z)

)
> γ, z ∈ U

and similar other classes of meromorphically univalent functions have been extensively studied
by (for example) Altintas et al. [2], Aouf [3] and Mogra et al. [14].

The following we recall a general Hurwitz-Lerch Zeta function φ(z, s, a) defined by (see
[21], p. 121)

φ(z, s, a) =
∞∑
m=0

zm

(m+ a)s

for a ∈ C \ Z−0 , s ∈ C when |z| < 1; <(s) > 1 when |z| = 1, where Z−0 = Z \ {N}, Z =
{0,±1,±2, · · · }, N = {1, 2, 3, · · · }.

Several interesting properties and characteristics of the Hurwitz-Lerch Zeta function φ(z, s, a)
can be found in the recent investigation by (for example ) Choi and Srivastava [5], Ferreira and
Lopez [6], Garg et al. [7], Lin and Srivastava [12], Luo and Srivastava [13], Srivastava et al.
[22], Ghanim [8] and others.

By making use of Hurwitz-Lerch Zeta function φ(z, s, a), Srivastava and Attiya [20] recently
introduced and investigated the integral operator

Js,bf(z) = z +
∞∑
m=2

(
1 + b

k + b

)s
amz

m, (b ∈ C \ Z−0 , s ∈ C, z ∈ U).

Motivated essentially by the above mentioned Srivastava-Atiya operator Js,b, we now intro-
duce the linear operator

Ws,b : Σ→ Σ
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defined, in terms of the Hardmard product ( or convolution), by

Ws,bf(z) = Θs,b(z) ∗ f(z), (b ∈ C \ Z−0 ∪ {1}, s ∈ C, f ∈ Σ, z ∈ U∗), (1.7)

where for convenience,

Θs,b(z) = (b− 1)s
[
φ(z, s, b)− b−s + 1

z(b− 1)s

]
, z ∈ U∗.

It can be easily be seen from (1.7) that

Ws,bf(z) =
1
z
+
∞∑
m=1

L(m, s, b)amz
m, (1.8)

where L(m, s, b) =

(
b− 1
b+m

)s
.

Indeed, the operatorWs,b can be defined for b ∈ C \ Z−0 ∪ {1}, where

Ws,0f(z) = lim
b → 0

{Ws,bf(z)}.

We observe that
W0,bf(z),

and

W1,γ =
γ − 1
zγ

z∫
0

tγ−1f(t)dt, <(γ) > 1.

Furthermore, from the definition (1.8), we find that

Ws+1,bf(z) =
b− 1
zb

z∫
0

tb−1Ws,bf(t)dt, <(b) > 1. (1.9)

Differentiating both sides of (1.9) with respect to z, we get the following useful relationship:

z (Ws+1,bf)
′
(z) = (b− 1)Ws,bf(z)− bWs+1,bf(z).

Now, we define a new subclass σ(α, s, b) of Σ.

Definition 1.1. For −1 ≤ α < 1, we let σ(α, s, b) be the subclass of Σ consisting of the form
(1.6) and satisfying the analytic criterion

−<
{
z(Ws,bf(z))′

Ws,bf(z)
+ α

}
>

∣∣∣∣z(Ws,bf(z))′

Ws,bf(z)
+ 1
∣∣∣∣ , (1.10)

Ws,bf(z) is given by (1.8) .

The main object of this paper is to study some usual properties of the geometric function
theory such as coefficient bounds, growth and distortion properties, radius of convexity, convex
linear combination and convolution properties, integral operators and δ−neighbourhoods for the
class σ(α, s, b).

2 Coefficient inequality

In this section we obtain the coefficient bounds of function f(z) for the class σ(α, s, b).

Theorem 2.1. A function f(z) of the form (1.6) is in σ(α, s, b) if

∞∑
m=1

L(m, s, b)[2m+ 3− α] |am| ≤ (1− α), − 1 ≤ α < 1. (2.1)
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Proof. It sufficient to show that∣∣∣∣z(Ws,bf(z))′

Ws,bf(z)
+ 1
∣∣∣∣+ <{z(Ws,bf(z))′

Ws,bf(z)
+ 1
}
≤ (1− α).

We have
∣∣∣∣z(Ws,bf(z))′

Ws,bf(z)
+ 1
∣∣∣∣+ <{z(Ws,bf(z))′

Ws,bf(z)
+ 1
}

≤2
∣∣∣∣z(Ws,bf(z))′

Ws,bf(z)
+ 1
∣∣∣∣

≤
2
∞∑
m=1

L(m, s, b)(m+ 1)|am||zm|

1
|z| −

∞∑
m=1

L(m, s, b)|am||zm|
.

Letting z → 1 along the real axis, we obtain

≤
2
∞∑
m=1

L(m, s, b)(m+ 1)|am|

1−
∞∑
m=1

L(m, s, b)|am|
.

The above expression is bounded by (1− α) if

∞∑
m=1

L(m, s, b)[2m+ 3− α] |am| ≤ (1− α).

Hence the theorem is completed.

Corollary 2.2. Let the function f(z) defined by (1.6) be in the class σ(α, s, b). Then

am ≤
(1− α)

∞∑
m=1

(L(m, s, b)[2m+ 3− α]
, (m ≥ 1).

Equality holds for the function of the form

fm(z) =
1
z
+

(1− α)
L(m, s, b)[2m+ 3− α]

zm.

3 Distortion Theorems

In this section we obtain the sharp for the distortion theorems of the form (1.6).

Theorem 3.1. Let the function f(z) defined by (1.6) be in the class σ(α, s, b). Then for 0 < |z| =
r < 1,

1
r
− (1− α)
L(1, s, b)[5− α]

r ≤ |f(z)| ≤ 1
r
+

(1− α)
L(1, s, b)[5− α]

r (3.1)

with equality for the function

f(z) =
1
z
+

(1− α)
L(1, s, b)[5− α]

z, at z = r, ir. (3.2)

Proof. Suppose f(z) is in σ(α, s, b). In view of Theorem 2.1, we have

L(1, s, b)[5− α]
∞∑
m=1

am ≤
∞∑
m=1

L(m, s, b)[2m+ 3− α] ≤ (1− α)
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which evidently yields
∞∑
m=1

am ≤ 1−α
L(1,s,b)[5−α] . Consequently, we obtain

|f(z)| =

∣∣∣∣∣1z +
∞∑
m=1

amz
m

∣∣∣∣∣ ≤
∣∣∣∣1z
∣∣∣∣+ ∞∑

m=1

am|z|m

≤ 1
r
+ r

∞∑
m=1

am

≤ 1
r
+

1− α
L(1, s, b)[5− α]

r.

Also, |f(z)| =

∣∣∣∣∣1z +
∞∑
m=1

amz
m

∣∣∣∣∣ ≥
∣∣∣∣1z
∣∣∣∣− ∞∑

m=1

am|z|m

≥ 1
r
− r

∞∑
m=1

am

≥ 1
r
− 1− α
L(1, s, b)[5− α]

r.

Hence the result (3.1) follows.

Theorem 3.2. Let the function f(z) defined by (1.6) be in the class σ(α, s, b). Then for 0 < |z| =
r < 1,

1
r2 −

1− α
L(1, s, b)[5− α]

≤ |f ′(z)| ≤ 1
r2 +

1− α
L(1, s, b)[5− α]

.

The result is sharp, the extremal function being of the form (3.2).

Proof. From Theorem 2.1, we have

L(1, s, b)[5− α]
∞∑
m=1

mam ≤
∞∑
m=1

L(m, s, b)[2m+ 3− α] ≤ (1− α)

which evidently yields
∞∑
m=1

mam ≤ 1−α
L(1,s,b)[5−α] .

Consequently, we obtain

|f ′(z)| ≤

∣∣∣∣∣ 1
r2 +

∞∑
m=1

mamr
m−1

∣∣∣∣∣
≤ 1
r2 +

∞∑
m=1

mam

≤ 1
r2 +

(1− α)
L(1, s, b)[5− α]

.

Also, |f ′(z)| ≥

∣∣∣∣∣ 1
r2 −

∞∑
m=1

mamr
m−1

∣∣∣∣∣
≥ 1
r2 −

∞∑
m=1

mam

≥ 1
r2 +

(1− α)
L(1, s, b)[5− α]

.

This completes the proof.
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4 Class preserving integral operators

In this section we consider the class preserving integral operator of the form (1.6) .

Theorem 4.1. Let the function f(z) defined by (1.6) be in the class σ(α, s, b). Then

f(z) = cz−c−1

z∫
0

tcf(t)dt =
1
z
+
∞∑
m=1

c

c+m+ 1
amz

m, c > 0 (4.1)

belongs to the class σ[δ(α, s, b, c)], where

δ(α, s, b, c) =
L(1, s, b)(5− α)(c+ 2)− c(1− α)
L(1, s, b)(5− α)(c+ 2) + c(1− α)

. (4.2)

The result is sharp for f(z) = 1
z +

(1−α)
L(1,s,b)[5−α]z.

Proof. Suppose f(z) = 1
z +

∞∑
m=1

amz
m is in σ(α, s, b). We have

f(z) = cz−c−1

z∫
0

tcf(t)dt =
1
z
+
∞∑
m=1

c

c+m+ 1
amz

m, c > 0.

It is sufficient to show that
∞∑
m=1

m+ δ

1− δ
c

c+m+ 1
am ≤ 1. (4.3)

Since f(z) is in σp(α), we have

∞∑
m=1

L(m, s, b)[2m+ 3− α]
1− α

|am| ≤ 1. (4.4)

Thus (4.3) will be satisfied if

(m+ δ)

(1− δ)
c

(c+m+ 1)
≤ L(m, s, b)[2m+ 3− α]

1− α
, for each m.

Solving for δ, we obtain

δ ≤ L(m, s, b)[2m+ 3− α](c+m+ 1)−mc(1− α)
L(m, s, b)[2m+ 3− α](c+m+ 1) + c(1− α)

= G(m). (4.5)

Then G(m+ 1)−G(m) > 0, for each m.
Hence G(m) is increasing function of m, since G(1) = L(1,s,b)(5−α)(c+2)−c(1−α)

L(1,s,b)(5−α)(c+2)+c(1−α) .

The result follows.

Theorem 4.2. If the function f(z) = 1
z+

∞∑
m=1

amz
m is in σ(α, s, b) then f(z) is meromorphically

convex of order δ (0 ≤ δ < 1) in |z| < r = r(α,m, s, b, δ), where

r(α,m, s, b, δ) = inf
n≥1

{
(1− δ)L(m, s, b)[2m+ 3− α]

(1− α)m(m+ 2− δ)

} 1
m+1

.

The result is sharp.

Proof. Let f(z) be in σ(α, s, b). Then, by Theorem 2.1, we have

∞∑
m=1

L(m, s, b)[2m+ 3− α]|am| ≤ (1− α). (4.6)
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It is sufficient to show that
∣∣∣2 + zf ′′(z)

f ′(z)

∣∣∣ ≤ (1−δ) for |z| < r = r(α, δ),where r(α, δ) is specified
in the statement of the theorem. Then

∣∣∣∣2 +
zf ′′(z)

f ′(z)

∣∣∣∣ =
∣∣∣∣∣∣∣∣
∞∑
m=1

m(m+ 1)amzm−1

−1
z2 +

∞∑
m=1

mamzm−1

∣∣∣∣∣∣∣∣ ≤
∞∑
m=1

m(m+ 1)am|z|m+1

1−
∞∑
m=1

mam|z|m+1
.

This will be bounded by (1− δ) if

∞∑
m=1

m(m+ 2− δ)
1− δ

am|z|m+1 ≤ 1. (4.7)

By (4.6), it follows that (4.7) is true if

m(m+ 2− δ)
1− δ

|z|m+1 ≤ L(m, s, b)[2m+ 3− α]
1− α

|am|, m ≥ 1

or |z| ≤
{
(1− δ)L(m, s, b)[2m+ 3− α]

(1− α)m(m+ 2− δ)

} 1
m+1

. (4.8)

Setting |z| = r(α,m, s, b, δ) in (4.8), the result follows.
The result is sharp for the function

fm(z) =
1
z
+

(1− α)
L(m, s, b)[2m+ 3− α]

zm, m ≥ 1.

5 Convex linear combinations and convolution properties

In this section we obtain sharp for f(z) is meromorphically convex of order δ and necessary and
sufficient condition for f(z) is in the class σ(α, s, b). And also proved that convolution is in the
class σ(α, s, b).

Theorem 5.1. Let f0(z) = 1
z and fm(z) = 1

z + (1−α)
L(m,s,b)[2m+3−α]z

m, m ≥ 1. Then f(z) =

1
z +

∞∑
m=1

amz
m is in the class σ(α, s, b) if and only if it can be expressed in the form f(z) =

ω0f0(z) +
∞∑
m=1

ωmfm(z), where ω0 ≥ 0, ωm ≥ 0,m ≥ 1 and ω0 +
∞∑
m=1

ωm = 1.

Proof. Let f(z) = ω0f0(z) +
∞∑
m=1

ωmfm(z) with ω0 ≥ 0, ωm ≥ 0,m ≥ 1 and ω0 +
∞∑
m=1

ωm = 1.

Then

f(z) = ω0f0(z) +
∞∑
m=1

ωmfm(z)

=
1
z
+
∞∑
m=1

ωm
(1− α)

L(m, s, b)[2m+ 3− α]
zm.

Since
∞∑
m=1

L(m, s, b)[2m+ 3− α]
(1− α)

× ωm
(1− α)

L(m, s, b)[2m+ 3− α]

=
∞∑
m=1

ωm = 1− ω0 ≤ 1.

By Theorem 2.1, f(z) is in the class σ(α, s, b).
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Conversely suppose that the function f(z) is in the class σ(α, s, b). Then

am ≤
(1− α)

L(m, s, b)[2m+ 3− α]
zm,m ≥ 1.

Now ωm =
∞∑
m=1

L(m, s, b)[2m+ 3− α]
(1− α)

am and ω0 = 1−
∞∑
m=1

ωm.

It follows that f(z) = ω0f0(z) +
∞∑
m=1

ωmfm(z).

This completes the proof of the theorem.

For the functions f(z) = 1
z +

∞∑
m=1

amz
m and g(z) = 1

z +
∞∑
m=1

bmz
m belongs to Σ, we denoted

by (f ∗ g)(z) the convolution of f(z) and g(z) and defined as

(f ∗ g)(z) = 1
z
+
∞∑
m=1

ambmz
m.

Theorem 5.2. If the function f(z) = 1
z +

∞∑
m=1

amz
m and g(z) = 1

z +
∞∑
m=1

bmz
m are in the class

σ(α, s, b) then (f ∗ g)(z) is in the class σ(α, s, b).

Proof. Suppose f(z) and g(z) are in σ(α, s, b). By Theorem 2.1, we have

∞∑
m=1

L(m, s, b)[2m+ 3− α]
(1− α)

am ≤ 1

and
∞∑
m=1

L(m, s, b)[2m+ 3− α]
(1− α)

bm ≤ 1 .

Since f(z) and g(z) are regular are in U, so is (f ∗ g)(z). Further more

∞∑
m=1

L(m, s, b)[2m+ 3− α]
(1− α)

ambm

≤
∞∑
m=1

{
L(m, s, b)[2m+ 3− α]

(1− α)

}2

ambm

≤

( ∞∑
m=1

L(m, s, b)[2m+ 3− α]
(1− α)

am

)( ∞∑
m=1

L(m, s, b)[2m+ 3− α]
(1− α)

bm

)
≤1.

Hence, by Theorem 2.1, (f ∗ g)(z) is in the class σ(α, s, b).

6 Neighborhoods for the class σ(α, s, b, γ)

In this section we define the δ−neighborhood of a function f(z) and establish a relation between
δ−neighborhood and σ(α, s, b, γ) class of a function.

Definition 6.1. A function f ∈ Σ is said to in the class σ(α, s, b, γ) if there exists a function
g ∈ σ(α, s, b) such that ∣∣∣∣f(z)g(z)

− 1
∣∣∣∣ < (1− γ), z ∈ U, 0 ≤ γ < 1. (6.1)
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Following the earlier works on neighborhoods of analytic functions by Goodman [9] and
Ruschweyh [18], we defined the δ−neighborhood of a function f ∈ Σ by

Nδ(f) =

{
g ∈ Σ | g(z) = 1

z
+
∞∑
m=1

bmz
m :

∞∑
m=1

m|am − bm| ≤ δ

}
. (6.2)

Theorem 6.2. If g ∈ σ(α, s, b) and

γ = 1− δL(1, s, b)[5− α]
L(1, s, b)[5− α] + α− 1

(6.3)

then Nδ(g) ⊂ σ(α, s, b, γ).

Proof. Let f ∈ Nδ(g). Then we find from (6.2) that

∞∑
m=1

m|am − bm| ≤ δ (6.4)

which implies the coefficient of inequality
∞∑
m=1
|am − bm| ≤ δ, m ∈ N.

Since g ∈ σ(α, s, b), we have
∞∑
m=1

bm = 1−α
L(1,s,b)(5−α) .

So that ∣∣∣∣f(z)g(z)
− 1
∣∣∣∣ <

∞∑
m=1
|am − bm|

1−
∞∑
m=1

bm

≤ δL(1, s, b)[5− α]
L(1, s, b)[5− α] + α− 1

= 1− γ,

provided γ is given by (6.3).
Hence, by Definition, f ∈ σ(α, s, b, γ) for γ given by (6.3), which completes the proof of theo-
rem.
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