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Abstract. Unlike in the case of Fibonacci and Lucas numbers, there is a paucity of literature
dealing with summation identities involving the Padovan and Perrin numbers. In this paper, we
derive various summation identities for these numbers, including binomial and double binomial
identities. Our results derive from the rich algebraic properties exhibited by the zeros of the
characteristic polynomial of the Padovan/Perrin sequence.

1 Introduction
The Padovan numbers, P,, are defined by

P,=P,2+P,3(n>3), B=P=P=1, (1.1)
and the Perrin numbers, Q,,, by

Qn = Qn—Q + Qn—3 (n > 3)a QO = 37 Ql = 0, QQ =2. (1.2)

Both sequences (P,) and (Q,,) can be extended to negative indices by writing the recurrence
relations as P, = P, 3 — P41 and Q,, = Q13 — Q41 and replacing n with —n, thus obtaining

P, = Pf(n73) - P,(n,”, an = Qf(n73) - C27(7171) . (1.3)

It is possible to access the negative subscript numbers without using the recurrence relation (1.3).
‘We have (see Theorem 1.5)
P, =P, 3= Py ¢P.s

and
ZQ—TL = Q%L - QZn .

Compared to the related Fibonacci and Lucas sequences, there is a dearth of literature on Padovan
and Perrin sequences. We mention Shannon et. al. [3] and Yilmaz and Taskara [6]. Useful
information is contained in the Mathworld articles [4, 5] and the Mathpages [2] article on these
numbers. The purpose of this paper is to present binomial summation identities such as

[n/2] .
. n (n—j
S 1P (") B = 1@y = P,
=0

and

[n/2] .
(=17 n—
S (") Pornss = (0 B Pacs = BoPaa).
j=0

We will also derive double binomial summation identities such as

ln/2)n=2g < n (n—3\(n—-2j ~
Z Z (_l)j+k( ' ) < k )QZZJkpqmwk = QpnPy — Ppnyq -

j=0 k=0 n=IN
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Finally, we will derive ordinary summation identities such as the sum of Padovan numbers and
Perrin numbers with subscripts in arithmetic progression:

Poniptq — Py Py Pp4
Ppn+p+q+l - Pq+l Pp—2 -1 Pp—3
- Ppn+p+q71 - qul Pp74 Pp75 -1
Z Ppjrq = )
= Ppa—1 P, Pyy
P,y P,o—1 P,
Py_3 Poy P,os—1
Qpniptq — Qq Pps Py
Qpn+p+q+1 - Qq+1 Pp72 -1 Pp73
- Qanerrq—l - Qq—l Pp—4 Pp—5 -1
Z ij+q = )
j=0 Py — 1 Py3 Py
Poi Pys—1 Py;
P, 3 P,y P, s—1

and the generating function of Padovan numbers with subscripts in arithmetic progression:

Py —yPp_3 —yPp4
Pori —yPp2+1  —yPps
= j qul _pr74 _pr75 +1
Z Ppjrqy’ =
=0 _prfZ +1 _pr73 —pr,4
—yPp_ —yPpa+1 —yPp3
—pr,3 —pr,4 —pr75 +1

Here and throughout this paper, | - | denotes matrix determinant.

Throughout this paper, we denote by «, 3 and +, the zeros of the characteristic polynomial,

23 — x — 1, of the Padovan sequence.

1.1 Algebraic properties of «, 3 and ~

Vieta’s formulas give

a+B=-y, af=1/y, af+ay+pfy=-1, (1.4)

from which we also infer
o+ =" =2/y =42, (1.5)
(=B =1-3/y=4-37, (1.6)
B+ fa=-1=ab(a+p), (1.7
(=B =" =3y (1.8)

and

a/f+pBla=y—1. (1.9)

The following result is readily established by mathematical induction.

Lemma 1.1. The following identities hold for any integer n:
a" =a’P,_4+aP, 3+ P,_s, P1
B" =3Py s+ BPu_3+ Prs Pla

and
Y =4 Pog + Pz + Py_s. Plc



PADOVAN AND PERRIN NUMBERS SUMMATION 635

Proof. To prove identity P1, we first note that using the recurrence relations (1.1) and (1.3), P1
holds, straightforwardly, for n = 0 and n = 1. Now assume that P1 holds for a positive integer
k, so that

I, == ok = Ozzpk_4 4+ aPr_3+ Py_s.

We wish to prove that I, = [xi1and [y = I_(;4y).
Assuming I, multiplying both sides by «, we have

okl = a3Pk,4 + asz,3 + aP_5
=(a+1)Py_g+ &?Py_3+ aPj_s
=a’Py_3+ a(Py_a+ Py_s) + Py
=a?P, 3 +aPy o+ Ppy
= &?Pljos1)—4 + @Py1)—3 + Pesi)—s -
Thus, I, = I;,,. Now, for any non-negative integer k,
Ipi=a*=a’P_y_4+aP__3+ P_j_s.
Assuming I_;, and multiplying both sides by a~! gives
a ) =P 4+ P 3+a P s,
Since a~! = o? — 1, identity (1.20), we have
a B — P 4+ Py s+ (0®—1)P_j_s
=a’P_j_s+aP_j_4+ (P_j_3 — P_j_s)
=a’P_ys+aP 4+ Py ¢
= ?P_(4i1)—a4 + OP_(i1)—3 + P_(y1)s -
Thus, I = I_(;1). The proof of P1 is complete. O

Standard techniques for solving difference equations give

Qn=0a"+p8"+~", (1.10)
which we shall often employ in the useful form
a"+ 68" =Q, —". (1.11)

Adding the identities in Lemma 1.1, we have
Qn :an+ﬂn+’7n :QZPn74+Qan73+3Pn757

which allows us to express the Perrin numbers in terms of the Padovan numbers:

Qn=2P,_4+3P,_s. (1.12)
From identity (1.5) and Lemma 1.1, we also have
o+ B = =Py 4 — yPu3+ 2P, . (1.13)
Lemma 1.1 gives
a" =" = (a7 = B*)Pys+ (@ — B) Py 3; (1.14)
so that N .
o =—Pp4+ Pp3. (1.15)
a—p

Squaring (1.14) and making use of (1.6) and (1.8) gives
(" = B") = (Pp_y =3P} _3)v" — (3P} _4 + 2P, 4Py 3)y +4P5 3+ 6P, 3P, 4. (1.16)
Since P,_4 = P,,_» — P,,_s, identity (1.12) can also be written as
Qn=2P, 2+ P,_s. 1.17)

From (1.17) and Lemma 1.1 we have



636 Kunle Adegoke

Lemma 1.2. The following identities hold for any integer n.:
2am"? + an ! = aan +aQni1 + Qn_1, Pld

28™2 4+ 5" = B2Qu 4 BQuit + Qni

and
2'Yn+2 + 'Ynil = ’Yan + ’YQnJrl + Qn—1-

Presently, we derive more algebraic properties of «, 5 and ~.
Since « is a zero of 23 — x — 1, we have

at+1l=a; (1.18)

so that
A —a=1=ala-1)(a+1)=1,

from which we get

a—1=1/a* by(l.18), (1.19)
and
o —1=1/a. (1.20)
We also write identity (1.19) as
dtl=a. (1.21)

On account of identity (1.19), identity (1.9) is

a/B+pla=1/4", (1.22)

which also implies
1/ +1/6%=1/>. (1.23)

Addition and subtraction of (1.18) and (1.19) give
ol +1=20° (1.24)

and
al —1=2a", (1.25)

while, upon multiplication, (1.24) and (1.25) give
a*—1=4a°. (1.26)

Identities (1.18) — (1.26), excluding (1.22) and (1.23), can be collected into the following
lemma.

Lemma 1.3. The following identities hold for any integer m, for each set of values of a, b, ¢, d,
e, f and g given in Table 1:

aam+c + baerd — fam+e , (127)

a/@m+c + b6m+d — fﬁere (128)
and

a,ym-kc + b"}/m+d — f,ym+e ) (129)

The observation that if a, b, ¢, d, e and f are rational numbers and \ and \? are linearly
independent irrational numbers, then aX+bA+ec=d\ 2 +e)+ fifandonlyifa =d,b=¢e
and ¢ = f leads to the following properties.
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a b c d e f a b c d e f
Set 1: 1 -1 1 -1 =2 1 Set 9: 1 1 1 -6 -1 2
Set 2: 1 -1 1 -2 -1 1 Set 10: 2 1 2 =2 5 1
Set 3: 1 1 -1 =2 1 1 Set 11: 1 -1 5 -2 2 2
Set 4: 1 1 -2 3 1 Set 12: 1 -2 5 2 =2 1
Set 5: 1 -1 3 2 =2 1 Set 13: 1 -1 7 =7 2 4
Set 6: 1 -1 3 -2 2 1 Set 14: 1 -4 7 2 =7 1
Set 7: 2 -1 -1 1 -6 1 Set 15: 1 4 -7 2 7 1
Set 8: 2 -1 -1 -6 1 1

Table 1. Coefficients of the algebraic equations satisfied by the roots of the Padovan-Perrin
characteristic equation.

Lemma 1.4. If a, b, ¢, d, e and f are rational numbers, then:

ac* +batc=do’+ea+f < a=db=candc=f, P2
af*+bf+c=df*+ef+f < a=db=candc=f, P3
P +by+c=dy*+ey+f <= a=db=candc=f, P4
a e d d+f a d d+ f e a
b d+f e d+e b e d+e d+f b
2
+ ba + c d f e c f e d c
aa2 ate o 4+ ot ’
do” +ea+ f d+f e d d+f e d d+f e d
d+e d+f e d+e d+f e d+e d+f e
e d f e d f e d f
P5
for d, e, f not all zero; with similar expressions for 5 and 7.
Upon setting a = 0 = b and c = 1, property P5 gives
1 e —d?— fd 5 2 —ef P+ 2fd+ f2—ed— €
3 = a+ a+ .
do* +ea + f d+f e d d+f e d d+f e d
d+e d+f e d+e d+f e d+e d+f e
e d f e d f e d f
P6
From P6, by setting d = 0 and f = 0, in turn, we have
1 2 22
= c a? — cf o+ foe P7
60é+f f3762f+63 f3*€2f+€3 f3762f+63
and
1 er —d? 2 d? d? —ed — €
= a” + a—+ . P8
do? +ea e+ d3 —ed? e+ d3 — ed? e+ d? — ed?
A note on notation
Let F' be any expression of the form
Fi= fa’ + fia+ fo, (1.30)

where f>, f1 and fj are rational numbers. Every such F' can be considered a vector with com-
ponents f>, fi and fy in a three-dimensional vector space with basis vectors {1, a,a?}. We
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introduce the notation: (F),> = f2, (F), = f1 and (F),0 = fo. Thus, the F in (1.30) can be
written
F=(F),a*+(F),a+(F), . (1.31)

Similarly, if G := g% + 918 + go and H := hyy? + hy7y + hg Where g2, g1, go and hy, hy, hg are
rational numbers, then,

G=(@)p B+ (G)s B+ (G (1.32)
and

H=(H),v+ (H), v+ (H) (1.33)
so that (F))_;, j € {0,1,2}, denotes the o component of F, ... etc. Thus, for example, from

identities P1, P5 and P6, we can write

(@)oo= Pua, (™), =Pu3, (a")0=P.s, (P9)

o o o
QU
Q. + o
K'\_'
S~ 0 X

(aa2+ba+c) _ (P10)
do?+ea+ f) d+ f e d
d+e d+f e
e d f
and
( 1 ) _ e —d?— fd (P11
do?+ea+f) d+f e d |’
d+e d+f e
e d f

Theorem 1.5. For all integers n, we have

P_,=P> ;- P, ¢P,_g (1.34)
and
2Q-n = @5 — Qon - (1.35)
Proof. We have
(0= (o
a? an o ’
which by P1 and P2 gives
P 4= Py 3—Pr y— PuaPus :P573_P72174_Pn74pn75
Pn74 + Pn75 Pn73 Pn74 Pn72 Pn73 Pn74 ’
Pn—3 + Pn—4 Pn—4 + Pn—S Pn—3 Pn—] Pn—2 Pn—3
Pn73 Pn74 Pn75 Pn73 Pn74 Pn75

in which the numerator factors into Pﬁ_a — P,,_, P,,_4 while the determinant in the denominator
evaluates to 1 for all n; and hence identity (1.34).
Squaring (1.10) gives
Q%L —_ aZn 4 6271 + ,72n 4 zﬂn,yn 4 zan,yn + zanﬁn
— aZn 4 ﬁZn + 7271, +2a—n + 26—71, + 2,}/—n7
Qan 2Q-n

from which (1.35) follows. O
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Theorem 1.6. The following identities hold for integers p and n.:
Q—an - Pp—n = Qan+7’L - Pp+2n (1.36)

and
PpP7n73 - Pp+1P7n74 = Pp+n+1Pn74 - Pp+nPn73 . (1.37)

Proof. Set x = o and y = (3 in the identity
xfn + yfn — ($y)7n(ln + yn) ,
multiply through by v7** and make use of identity (1.11) to obtain
Qin,yp+4 _ ,_yp—n+4 — Qn,yp+n+4 _ ,yp+2n+4
from which identity (1.36) follows upon use of the v version of property P9.

Set x = « and y = f in the identity

" — yfn " — yn

multiply through by 47 and make use of identity (1.15) to obtain
VPP — PP,y =P, —APtntp, g
which then yields identity (1.37). O

Corollary 1.7. Let A € {p : P, = 0}, that is A € {—17,—-8,—4, -3, —1}. Then the following
identities hold for any integer n:

P_y = Prpian — QniaPoyon, (1.38)
PnJr)\Q—n = P2n+)\Qn - P3n+)\ (139)
Q—n = ann 7Q'IL—1PTL—27P271,—23 (140)
P)\+1P—n = P)\+n—4pn—7 - P>\+n—3pn—8 (1.41)
and
P/\—IP—n = P)\+n—3pn—7 - P>\+7L—4P7z,—6- (142)

Lemma 1.8. The following identities hold for integers r, s and t, s # 0:
(0" +B"") 2 = QuPios — Prisa (1.43)

and
Py 3P4 — Py 4P 3 P4 0

P _oP._4— P, 3P._3 —P,_3 Py

T _ 8" Pi_4Pr_4— Pi_s5P,_; 0 —Ps_
<a 67t> _ | iabra = Pishs 3 (1.44)
s —=p5" ) —Ps 3 P,y 0
Py 4 —1s-3 Py 4
Psf4 0 —1s-3
Proof. Using identity (1.11), we have
(ar + Br),yt — (Q’I" _ ’YT)’Yt — Qr,yt _ ,)/7‘+t’
from which identity (1.43) follows when we use properties P1c and P10.
By (1.15),
Oér_ﬁr t CJ—BT O[—ﬂ t 7t+1Pr74_fYtPr73 (145)

a—f as—ﬁsv APy —P3
from which identity (1.44) follows upon application of properties P1c and P10. O

as_ﬁs’y -
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Lemma 1.9. Let a and b be rational numbers and f and g functions of o. The o components
(+) s have the following composition rules:

(af)ai =a(f)ai (1.46)
(af + bg)aj =a (f)aj +0b (g)aj ) (1.47)
(f9) a2 = (Hao (@ + (a2 (Dao + (g (9o + (a2 (9)ae 5 R1

(fDa =N 9o+ (Na(@ao+ (Haz (@)a + (o (@az + (a2 (9)ae R2
and

(f9)a0 = (flas(9)a0 + (fla(9)az + (f)a2(9)a - R3
Theorem 1.10. The following identity holds for integers m and n.:

Pm+n =PnP, s+ Pm+an—3 + Pm+2Pn—4 .

Proof. Set f = o™ and g = o™ in R3, use P9 and note also that oo™ = o™, O

2 Summation identities

In this section, we will derive various summation identities involving the Padovan and Perrin
numbers. Both summation identities not involving binomial coefficients as well as identities that
involve binomial coefficients will be obtained.

2.1 Summation identities not involving binomial coefficients

In §2.1 — §2.1, summation identities involving Padovan and Perrin numbers but not containing
binomial coefficients will be derived.

Sums of Padovan and Perrin numbers with subscripts in arithmetic progression

Setting x = P in the geometric sum identity
Z ) = ro -7 2.1)
x—1

and multiplying through by a9 gives

n
pntpqtd _ qt+4
pi+a+s _ & 2.2
o = . .
2% Py (2.2)
=

Thus, we have

i (apj+q+4) , = (Ppntprq — Pq)a2 + (Ppntptat1 = Pyr1)a + Pongprq—1 — Py—1 ;
@ PI,,_4OZ2 + Pp_304 + Pp_s —1 o2

§=0
2.3)
and hence, by P10,
Poniprqg — Py Pp_s Ppa
Ppn+p+q+1 - Pq+1 Pp72 -1 Pp73
- Poiprg—1 — P11 Pos Pp5—1
prﬁq _ pntptq q [2 P ' 2.4)
0 P,_,—1 P,_3 P4
P,y P,y -1 P,_3

Py3 Ppy P,s5—1
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Using (2.1) and P1d, a similar calculation for the Perrin numbers yields

Qpniptq = Qq Py_3 Py
Qpn+p+q+l - Qq+1 Pp72 -1 prf')
n oo — Qo P, P, s—1
> Quitg = ke B B B 2.5)
=0 Pp72 -1 Pp73 Pp74
P, P,_r—1 P,_3
P, 3 P,y P,s—1
In particular we have
> Pitg=Puigis— Pyia (2.6)
§=0
and
D Qg = Qnigis — Qqia- 2.7
§=0
Generating functions for Padovan and Perrin numbers with indices in arithmetic
progression
Setting x = yaP in the identity
d al=—— (2.8)
: l—x
7=0
and multiplying through by a9 gives
i aPitatyi attt — Pyo? + Pyt Py . (2.9)
= l—ary —yPy_40® —yPy 3o —yP,_s+1
Thus, by property P10, we have
Py —ybBp3 —yPp4
Pq+1 _prfZ +1 _pr73
e , P,_ —yP,_ —yP,_5+1
Y Pojray’ = (S (2.10)
i=0 _prfl +1 _pr73 _pr74
7pr—l 7pr—2 +1 7ypp—3
—yPp—3 —yPp—a —yPps+1
Similarly,
Qq —yPy—3 —yPp4
Qq+1 _prfl +1 _pr73
i . _ —yP,_ —yP,_5+1
> Qe = AWt Vs : @11
=0 —yPp o +1 —yPp3 —yPp—4
_prfl _pr72 +1 _pr73
—yPp3 —yPpa4 —yPps+1

Exponential generating functions for Padovan and Perrin numbers with indices in
arithmetic progression

In addition to the ordinary generating functions of the Padovan and Perrin numbers, given
in (2.10) and (2.11), it turns out that the exponential generating functions of these numbers
are also readily obtained and have rather simple forms as presented in Theorem 2.1.
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Theorem 2.1. The following identities hold for integers p and q:

o alte’y o 1
Pojvg ; i
Z Pitayi - | gatdBty g (2.12)

il /73
=0 23 AR S A |
and
o | et atHe™y o 1
Z pJ+q J — \/72% (25q+2+ﬂq71)6[3’)y g 1 (2.13)
§=0 : (27+2 +,yq—1)evpy |
Proof. By Taylor series expansion and P1 we have
4 oty > am+4+4y1
! Y= Z 4!
§=0
P,y NP1y’ N Pirg 1y’
_ 2 PJ+q pItq+ pj+q
=a 27],! +a§7j! +§7j! :
J J J
Thus,
a®e®™V = o A(p,q) + aB(p,q) + C(p,q), (2.14)
where 4
Alp,q) = f: Prjiay’ (2.15)
b,q) = : ! .
7=0
and
> pP. J X Pl
B(p.q) =Y 2 C(pq) =y ~reld
i i
Similar calculations give
By = 52 A(p,q) + 8B(p,q) + C(p,q) (2.16)
and
YTV = 2 A(p,q) +B(p,q) + C(p.q).- 2.17)

Solving (2.14), (2.16) and (2.17) simultaneously for A, B and C, Crammer’s rule gives

A(p,q) = Aa/A,
where
a2 a1
A=|p3> B 1 |=1iVv23
Yoyl
and
alted™ o 1
Ay =| prtiefv g1
ity 4]

The proof of (2.13) is similar. We start with

o ,
. . J
(20772 4 a¥*2)e”y = 3 ( (2aPita+2 4 grita-1yY

!
3=0 I

and make use of property P1d. O



PADOVAN AND PERRIN NUMBERS SUMMATION

643

Weighted Padovan and Perrin summation

Replacing = with 2 /y in identity (2.1) gives
(:L’ _ y) Zyrfjl,j _ yrfnzn+l _ yr+1 ’
§=0

for integers r and n and arbitrary z and y.

(2.18)

Theorem 2.2. The following identities hold for integers m, n and r, for each set of values of a,

b, ¢, d and e given in the table:

n
bfnJrl Z an_JPm+d+(m+c)r—4+(e—c)j
=0

= fn+lP(m+c)r+(e—c)n+m+e—4 - an+1P(m+c)('r+l)—4

and
bfn+1 Z an_ij+d+(m+c)r74+(efc)j
=0

— f7L+] Q(m+c)r+(efc)n+m+ef4 - an+lQ(m+6)(r+l>74 :

Proof. With identity (1.27) in mind, set x = fa™ "¢ and y = aa™"¢ in identity (2.18).

In particular, we have

bfn+1 Z an_ij+d+(m+c)n74+(efc)j
=0

4— anJrl

= " Pose)nsn) Plmte)(nt1)—4

and
bfnJrl z anijQm+d+(m+c)n—4+(e—c)j
=0

= " Qunte)ni1)—a — A" Quneynri)—a -

(2.19)

(2.20)

221

(2.22)

Here are explicit examples, with the indicated set of values of a, b, ¢, d, e and f as read from the

table on page 637.

Set I: Z Pm+(m+l)r—5—3j = P(m+l)(r+l)—4 - P(m+l)r—3n+m—6 ’
=0

Z Qut(mi1)r—5-3j = Qm+1)(r+1)-4 — Q(m+1)r—3ntm—6 »
=0

Set 7: ZzniijJr(m—l)r—?a—Sj = 2n+lp(m—l)(r+l)—4 = Pl 1)r—5n+m—10+
§=0

Z 2n7ij+(m—l)r—3—5j = 2n+1Q(m—l)(r+l)—4 = Q(m—1)r—5ntm-10>
=0

n

Set 10: Z 2nijpm+(m+2)r—6+3j = P(m+2)r+3n+m+l - 2n+lp(m+2)(r+l)—4 )
=0

(2.23)

(2.24)

(2.25)

(2.26)

(2.27)
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Z 2n_ij+(m+2)r—6+3j = Q(m+2)r+3n+m+l - 2n+1Q(m,+2)(r+l)—4 . (2.28)
=0

Further summation identities can be obtained from the following identities:

n

Y Y ty) =y @y -y ! (2.29)
=0
and .
(13 _ y) erijj _ xr+1 _ xrfnynJrl ) (2.30)
=0

Identity (2.29) is obtained by replacing « with « + y in identity (2.18) while identity (2.30) is
obtained by interchanging x and y in identity (2.18).

Sums of certain products of Padovan and Perrin numbers

Since
n n
§ :yTL—JxJ — E :ij"—J’
j:O j:()

identity (2.18) implies

1 n ) Y Y mn-‘rl _ yn+1
32 (ay) (@M oy ) = (2.31)
=0 Ty
Theorem 2.3. The following identities hold for integers p, q and n:
Ppn+3p+q - Pq72pn P)3p73 P3p74
Ppn+3p+q+l - Pq—an+l P3p—2 -1 P3p—3
iP Q ( )= Ppn+3p+q71 - Pq72pn71 P3p74 P3p75 -1
q—pJj n—2j) —
= P Py,_0—1 Ps,_3 Psp_y4
P3, Py 2—1 Py
P3,_3 Py Pypos—1
Pq+1Pp7L+p—4 - Pqu7L+p—3 Pp—4 0
2 Pq+2Ppn+p74 - PqulenerfS _Pp73 Pp74
4 Pqppn+p—4 - Pq—lppn+p—3 0 —4p-3
—Ip-3 Pp_4 0

Pp—4 —1p-3 Pp—4

P,y 0 —P,3
(2.32)
Proof. Set x = oP, y = PP in identity (2.31) and make use of Lemma 1.8. O

A particular case is

Z quan72j = I'n4q+2 — Pq72n71 - 2(Pq+1-Pn73 - Pan72) . (233)

J=0

2.2 Binomial summation identities

Binomial summation identities involving the Padovan and Perrin numbers will be derived in §2.2
and §2.2. These will be facilitated by variations on the standard binomial theorem and the Waring
identity and its dual.



PADOVAN AND PERRIN NUMBERS SUMMATION 645

Identities from the binomial formula
With identity (1.27) in mind; substitute 2 = aa™*¢ and y = ba™*% in the binomial formula

Z <7;> oy = (z+y)", (2.34)
=0

multiply through by a”** and make use of properties P1 and P9 to obtain the following result:

Theorem 2.4, The identity

Z <]>ajb 7]P(m+d)n+p+(c d)j f Pm+e)n+pa
=0

holds for non-negative integer n, arbitrary integers m and p, and values of a, b, ¢, d and e as
given in Table 1.

The corresponding Perrin version of the identity of Theorem 2.4 is

“ n
Z < >a’jbn 7Q m~+d)n+p+(c—d)j f Q (m+e)n+p - (235)
=0\
Here are some explicit examples from Theorem 2.4 and sets of values from Table 1:
Set I: Z < > (m—1)n+p+2j — (_l)np(m72)n+pa (2.36)
n /n
Z (_I)J (]) Q(mfl)n+p+2j = (_l)nQ(m72)n+p ) (2.37)
j=o
Set 4: Z ( ) (m—=2)n+p+4; — P(m+3)n+p ) (2.38)
n n
Z ,7 Q(m—Z)n+p+4j = Q(m+3)n+p7 (239)
j=o
Set 7: Z ( >2 P(m+l)n+p 25 = (71)np(m—6)n+p7 (2.40)
n /n .
Z (_I)J (j>2jQ(m+l)n+p—2j = (_l)nQ(m—6)n+p ) (2.41)
j=o
Set 10: Z 27 ( > (m—=2)n+p+45 — P(m+5)n+p ) (2.42)
Z 27 ( ) (m—=2)n+p+4j — Q(m+5)n+p ) (2.43)
Set 13: Z ( ) (m—=T)n+p+145 — ( 1)n4nP(m+2)n+pa (2.44)
Z ( ) (m—=T)n+p+145 — ( 1)n4nQ(m+2)n+p . (2.45)
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Many more binomial identities can be derived by making appropriate substitutions in the follow-
ing variations on the binomial formula:

S 1y (M) + by = 1y, (2.46)

=0

Z ( )xﬂ (x+y)" 7 =y", (2.47)

Jj=

<?)jley"j =n(z+y)" !, (2.48)
7=0
> (= (?) (z+y)’ 'y = (=1)"na""! (2.49)
7=0
and
S0 (T e 4 = 250
j=1

Note that identities (2.46) and (2.47) are obtained from identity (2.34) by obvious transforma-
tions while identity (2.48) is obtained by differentiating the identity

Z (?) xledZy" I = (ze” +y)" (2.51)

J=0

with respect to z and then setting z to zero. More generally,

S ny ., Jom—J — d z n
Z (j)] y e (ze® +y) . (2.52)

j:O z=0

Identities (2.49) and (2.50) are variations on identity (2.48).

Identities from Waring identity
Waring’s formula and its dual [1, Equations (22) and (1)] are

Ln/2] .
> (—l)jnﬁj (ny‘ j)(azy)j(wy)"” =" +y" (2.53)
j3=0

and
/2] - _ gl el
> (—1)J< , )(xy)] (z+y)" 7 = —F —. (2.54)
=0 J T—y

Identity (2.53) holds for positive integer n while identity (2.54) holds for any non-negative inte-
ger n.

Theorem 2.5. The following identities hold for positive integer n and arbitrary integer p:

[n/2] i
. N n—
> Vo= ( P )Pp+n3j = (=1)"(QuPy = Patp), (2.55)
=0
LT
Z (_I)J ( ] >Pp+n—3j = (_l)nil(Pp+an—3 - Pan—Z) ) (256)

Jj=0
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[n/2] )
. n n —
§ (_I)J n— ,] ( ] j) Pp74n+8j - p+nQ2n - Pp+3n 5 (257)

In/2) .
(n —
Z (—1) ( i ])Pp4n+8j =PpinPopn2— Ppin_1Pop_1, (2.58)

[n/2] .
- n n—
> (=1 i ( ; ’ >Pp_3n+8j = PrnipQon — Potan (2.59)

and
[n/2]

fn—1
Z (=1) ( i ]) Py 3ni8; = PonypPon—2 — Popip_1Pon_1. (2.60)
=0

Proof. Identities (2.55), (2.57) and (2.59) are obtained by choosing (z,y) = (o, 8), (z,y) =
(a/B,B/a)and (x,y) = (1/a?,1/3%) in identity (2.53), in turn, and making use of (1.4), (1.11),
(1.22) and (1.23). Identities (2.56), (2.58) and (2.60) are obtained by choosing (x,y) = (a, 3),
(v,y) = (a/B,B/a) and (x,y) = (1/a?,1/3?) in identity (2.54), in turn, and making use of
(1.4), (1.11), (1.22). (1.23) and (1.15). o

Theorem 2.6. The following identities hold for positive integer n and any integer p; where val-
ues of a, b, ¢, d, e and f are given in the attached table (Table 1 reproduced here for ease of
reference):

[n/2] .
i n n-—7 j17 pn—27 n n
Z (_I)J n—j ( j >aj bjf % P(m+e)n+p+(c—2e+d)j =a P(m+c)n+p +b P(m+d)n+p
=0
(2.61)
and

[n/2] .
.n n—7j S me2d " "
Z (_I)J — ( . )ajb]f 2JQ(m+e)n+p+(672e+d)j =a Q(m+c)n+p +0b Q(erd)ner .

pard n—J\ Jj
(2.62)
a b c d e f a b c d e f
Set 1: I -1 1 -1 -2 1 Set 9: 1 1 1 -6 -1 2
Set 2: 1 -1 1 -2 -1 1 Set 10: 2 1 2 =2 5 1
Set 3: 1 I -1 =2 1 Set 11: 1 -1 5 -2 2 2
Set 4: 1 1 2 =2 3 1 Set 12: 1 -2 5 2 -2 1
Set 5: I -1 3 2 =2 1 Set 13: 1 -1 7 =7 2 4
Set 6: 1 -1 3 -2 2 1 Set 14: 1 -4 7 2 =7 1
Set 7: 2 -1 -1 1 -6 1 Set 15: 1 4 -7 2 7 1
Set 8: 2 -1 -1 -6 1 1
Proof. Use (z,y) = (aa™"¢, ba™*?) in (2.53) while taking note of (1.27). i

Below we give explicit examples from identities (2.61) and (2.62), using the values of a, b, c,
d, e and f as given in the indicated set, in each case, as seen from the attached table of Theorem
2.6.

Ln/2] .
n n —
Set I: Z Tl_]( j J>P(Tn—2)n+l7+4j = P(m+1)n+p + (_1)nP(m—l)n+pa (2.63)
=0
w2
Set 1: Z n—j ( j )Q(m—Z)n+p+4j = Q(m+1)n+p + (_l)nQ(m—l)n+p ) (264)

Jj=0
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[n/2] .
n—=17
Set 4: Z n—j ( j >P(m+3)n+p6j = P(m+2)n+p + P(m72)n+p )
/2] .
Set 4: Z n—j ( j )Q(m+3)n+p6j = Q(m+2)n+p + Q(m72)n+p )
[n/2]

Set 7. Z n—j ( )sz(m 6)n+p+125 — =2" P(m 1)n+p + (71)np(m+l)n+p7

[n/2]

n n—yj n

Set 7: Z n_]( ] )2JQm 6)n+p+12j =2" Qm 1n+p+( 1) Q(m+1)n+p7
7=0

[n/2] .
.n n—j . ,
Set 10: E (=1)/ ng( j )2]P(m+5)n+p10j =2"Pimi2n+p + Pm-2)ntp

[n/2| .
.n n — .
Set 10: Z (_1)] f_] ( j ]) ZJQ(erS)nerfl()j = 2nQ(m+2)n+p + Q(m72)n+p )

[n/2]

Set13: ) i
=0 T

n —j n—44 n
j < j >22 Y Punsoynip-aj = Ponsnnsp T (1) P 7)1y

n n — ] n—47 n
Set 13: Z n—j ( j )22 4JQ(7n+2)n+p—4j = Q(m+7)n+p + (_1) Q(m—7)n+p .

2.3 Double binomial summation identities

(2.65)

(2.66)

(2.67)

(2.68)

(2.69)

(2.70)

2.71)

(2.72)

To conclude our study of series involving the Padovan and Perrin numbers, we now present
double binomial summation identities involving these numbers. Theorem 2.7 states identities
from the standard double binomial identity while double binomial summation identities obtained

from the Waring formula and its dual are presented in Theorem 2.8

Theorem 2.7. The following identities hold for positive integer n and arbitrary integers m, p

and q:
n J n - .
Z 2 (J> ( > 4Py B Pk = Plnspineg
7=0 k=0
n j n .
ZZ (]) ( )Pk 4Pj Pn Ppn+q+k+] - P(m+p)n+q7
7=0 k=0
n J n
k
Z Z (]) (k) Pk Pg 3 P; 5Jan+q+k+j = Q(m+p)n+q
§=0 k=0
and

(2.73)

(2.74)

(2.75)

(2.76)



PADOVAN AND PERRIN NUMBERS SUMMATION 649

Theorem 2.8. The following identities hold for positive integer n and arbitrary integers p and q:

/2 n=2j 4 n (n—3\(n—2j ,
S 3 o () () e = @y P, 07
j=0 k=0 n=IN
A Ay
Z Z (_1)J+k< ; )( )Qn 27kP —pj+pk
=0 k=0 J
Pq+]Pp7z+p—4 - Pqun+p—3 Pp—4 0
Por2Ponyp—4 — Por1 Pppip-3  —Pp—3 Ppy (2.78)
Pqppn+p—4 - Pq—]Ppn+p—3 0 —4p-3
Pp—4 —1p-3 Pp—4
Py 0 —P s
ln/2in=2j n (n—j\[n—2j
Z Z 7+k ( . ) < )QIZCqu+3pn6pj2pk = (_l)n(QanPpTH»q_PSanrq) )
j=0 k=0 L AN k
(2.79)
n/2) n=2j PNV
S5 o (") (M )@ s
j=0 k=0 J k
Ppryq¢Poprni2p—3 — Ponvqr1Popniop—a Popa 0
(—l)n Ppn+q+1P2pn+2p—3 - Ppn+q+2P2pn+2p—4 PZp—3 P2p—4 (280)
o Ppn+qflp2pn+2p73 - Ppn+qP2pn+2p74 0 P2p73
Py 3 Py 0 ’
Py s Pyps3 Py
Py 0 Py 3
[n/2| n—2j5 n n—j n—2]
Z Z j+k ( ; ) ( k )QIZCqu+4pn—8pj—2pk = (_l)n(Q2pnP2pn+q_P4pn+q)
j=0 k=0 n=J\ J
2.81)
and
[n/2] n—2j5 n—j py
Z Z j+k( > ( k >Q]2€ppq+4pn—8pj—2pk
j=0 k=0 J
Prpnirgr1 Poprniop—a — PopniqPopniop—3  Prp-a 0
(=)™ | Popn+qr2Popnizp—4 — Popnigr1Prpniop—3 Pap—3 Papy (2.82)
_ PrpntgPopntap—4 — Pongq—1Popni2p—3 0 Py
—Py3 Prpy 0
Py sy —Pyp 3 Py
Py 0 —Pyy,_3

Proof. Identities (2.77), (2.79) and (2.81) are obtained by choosing (z,y) = (o?, 8?), (z,y) =
((a/B)P,(B/a)P) and (z,y) = (1/a*",1/3%") in identity (2.53), in turn, and making use of
Lemma 1.8. Identities (2.78), (2.80) and (2.82) are obtained by choosing (z,y) = (a?, 87),
(x,9) = ((a/B)P, (B/a)P) and (z,y) = (1/a??,1/3°P) in identity (2.54), in turn, and making
use of Lemma 1.8. O
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