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Abstract Some special families of finite sums with squared Horadam numbers and genera-
lized tribonacci numbers are discussed. As special cases of our results sums with squared Fi-
bonacci, Lucas, Pell, Pell-Lucas, Jaconsthal, Jacobsthal-Lucas, balancing, Lucas-balancing, and
tribonacci numbers are stated.

1 Introduction and motivation

Let wn = wn(a, b; p, q) be a general Horadam sequence, i.e., a second order recurrence

wn = pwn−1 − qwn−2, n ≥ 2,

with nonzero constant p, q and initial values w0 = a, w1 = b. The sequence wn can be extended
to negative subscripts according to

w−n = −1
q
(pw−n+1 − w−n+2), n ≥ 1.

This family of second order sequences is named after Alwyn Horadam, who studied their
properties in the mid-sixties of the last century [9, 10, 11]. Ab initio many researchers became
interested in the Horadam sequence. We refer the reader to the survey papers of Larcombe et al.
[13] and Larcombe [12]. Both surveys contain condensed information about Horadam numbers
and give an account of work subsequently conducted on this sequence. More recent results on
Horadam numbers can be found in [1, 2, 3, 6, 7, 8, 14, 15].

The popularity of the Horadam sequence is partially substantiated by its obvious connec-
tions to many famous number sequences: wn(0, 1; 1,−1) = Fn is the Fibonacci sequence,
wn(0, 1; 2,−1) = Pn is the Pell sequence, wn(0, 1; 1,−2) = Jn is the Jacobsthal sequence,
wn(0, 1; 3, 2) = Mn is the Mersenne sequence, wn(0, 1; 6, 1) = Bn is the balancing number
sequence, wn(2, 1; 1,−1) = Ln is the Lucas sequence, wn(2, 2; 2,−1) = Qn is the Pell-Lucas
sequence, wn(2, 1; 1,−2) = jn is the Jacobsthal-Lucas sequence, and wn(1, 3; 6, 1) = Cn is
Lucas-balancing number sequence.

The Binet formula of wn in the non-degenerated case, p2 − 4q > 0, is

wn =
(b− aβ)αn − (b− aα)βn

α− β
, (1.1)

with

α =
p+

√
p2 − 4q
2

, β =
p−

√
p2 − 4q
2

.

Next, we define the generalized tribonacci sequence vn = vn(v0, v1, v2). The sequence is a
third order recurrence

vn = vn−1 + vn−2 + vn−3, n ≥ 3,
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with arbitrary initial values v0, v1, and v2 not all being zero. Members of this sequence are
vn(0, 1, 1) = Tn the tribonacci sequence and vn(3, 1, 3) = Kn the tribonacci-Lucas sequence.

This paper is motivated by some recent results on connections between prominent number
sequences from [3, 4, 5, 6]. Using generating functions we will be able to express some families
of finite sums involving squared Horadam numbers and generalized tribonacci numbers in closed
form. Several special cases will complement our search.

2 Main results, Part 1

Generating functions for powers of (wn)n≥0 have been studied by some researchers in the past.
Horadam himself derived a formula for the functions in 1965 [10]. See also the papers of Man-
sour [16] and Mezö [17] for alternative expressions. For k ≥ 1 and z ∈ C, let

Wk(z; a, b; p, q) =Wk(z) =
∞∑
n=0

wk
nz

n.

In [10], Horadam derived the following result:

Wk(z) =

(
b− aβ
α− β

)k k∑
i=0

(
k

i

)(
aα− b
b− aβ

)i (
1− αk−iβiz

)−1
.

As pointed out by Larcombe and Fennessey in [15], the algebraic complexity of Wk(z) in-
creases quickly with k. Even the case W2(z) requires some effort but is, luckily, derived in detail
by the previous authors in [15].

It is stated as a lemma and will be used in our proofs below.

Lemma 2.1. The generating function for squared Horadam numbers equals

W2(z) =
A+Bz + Cz2

1−Dz +Ez2 − Fz3 , (2.1)

with

A = a2, B = b2 − a2(p2 − q), C = q(b− ap)2, D = p2 − q, E = q(p2 − q), F = q3.

Now, we can state the first result of our study.

Theorem 2.2. For each n ≥ 0,

n∑
i=0

(
(1−D)vn+2−i + (1 +E)vn+1−i + (1− F )vn−i

)
w2

i

= Avn+3 +Bvn+2 + Cvn+1 − v0w
2
n+3 + (Dv0 − v1)w

2
n+2 + (Dv1 − v2 − Ev0)w

2
n+1,

where the coefficients A− F are stated in Lemma 2.1.

Proof. Recall that the generating function for (vn)n≥0 is

V (z) =
∞∑
n=0

vnz
n =

v0 + (v1 − v0)z + (v2 − v1 − v0)z2

1− z − z2 − z3 . (2.2)

From (2.1) we get that

A+Bz + Cz2

W2(z)
= 1−Dz +Ez2 − Fz3.

Hence,

A+Bz + Cz2

W2(z)
+ (D − 1)z − (E + 1)z2 + (F − 1)z3 = 1− z − z2 − z3.
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This gives

A+Bz + Cz2 +
(
(D − 1)z − (E + 1)z2 + (F − 1)z3

)
W2(z)

W2(z)

=
v0 + (v1 − v0)z + (v2 − v1 − v0)z2

V (z)

or, equivalently,

AV (z)− v0W2(z) +BzV (z)− (v1 − v0)zW2(z) + Cz2V (z)− (v2 − v1 − v0)z
2W2(z)

= (1−D)zW2(z)V (z) + (E + 1)z2W2(z)V (z) + (1− F )z3W2(z)V (z).

Now, it is easy (but lengthy) to expand both sides of the equation in power series in z using
Cauchy’s rule for the multiplication of two power series

∞∑
n=0

anz
n ·
∞∑
n=0

bnz
n =

∞∑
n=0

(
n∑

k=0

akbn−k

)
zn.

The identity comes out when comparing the coefficients and straightforwardly manipulating
the relations. We leave the details to the interested reader.

Some special instances are given below:

Example 2.3. For n ≥ 0,
n∑

i=0

(
Tn+3−i − 3Tn−i

)
F 2
i = Fn+3Fn − Tn+2 + Tn+1,

n∑
i=0

(
Tn+3−i − 3Tn−i

)
L2
i = Ln+3Ln − 4Tn+3 + 7Tn+2 + Tn+1,

2
n∑

i=0

(
2Tn+3−i − 3Tn−i

)
P 2
i = P 2

n + 4PnPn+1 − Tn+2 + Tn+1,

2
n∑

i=0

(
17Kn+2−i − 18Kn+1−i

)
B2

i = 3B2
n+3 − 104B2

n+2 + 73B2
n+1 −Kn+2 −Kn+1.

A variant of the sums with even subscripts is stated as our next theorem.

Theorem 2.4. For each n ≥ 0,
n∑

i=0

(
(3−D)v2(n+2−i) + (1 +E)v2(n+1−i) + (1− F )v2(n−i)

)
w2

i

= Av2n+6 +Bv2n+4 + Cv2n+2

−v0w
2
n+3 + (Dv0 − v2)w

2
n+2 +

(
(D − 2)v2 − 2v1 − (1 +E)v0

)
w2

n+1,

with A− F as stated in Lemma 2.1.

Proof. The generating function for (v2n)n≥0 is

V ∗(z) =
∞∑
n=0

v2nz
n =

v0 + (v2 − 3v0)z + (2v1 − v2)z2

1− 3z − z2 − z3 .

Relating V ∗(z) toW2(z) as in the previous proof, we derive the following functional equation

AV ∗(z)− v0W2(z) +BzV ∗(z)− (v2 − 3v0)zW2(z) + Cz2V ∗(z)− (2v1 − v2)z
2W2(z)

= (3−D)zW2(z)V
∗(z) + (E + 1)z2W2(z)V

∗(z) + (1− F )z3W2(z)V
∗(z).

The result follows upon expanding both sides into power series in z and comparing the coef-
ficients.
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Example 2.5. For n ≥ 0,

n∑
i=0

(
T2(n+2−i) − T2(n+1−i) + 2T2(n−i)

)
F 2
i = T2n+4 − T2n+2 − F 2

n+2 − 2F 2
n+1,

n∑
i=0

(
5T2(n+1−i) − 9T2(n−i)

)
J2
i = 2T2n+2 − T2n+4 + J2

n+2 + J2
n+1,

2
n∑

i=0

(
K2(n+2−i) + 2K2(n+1−i) −K2(n−i)

)
P 2
i = K2n+2 −K2n+4 + 3P 2

n+3 − 12P 2
n+2 − 19P 2

n+1,

4
n∑

i=0

(
8T2(n+2−i) − 9T2(n+1−i)

)
B2

i = −T2n+2 − T2n+4 +B2
n+2 − 31B2

n+1.

For completeness, we also give the result involving odd subscripted generalized tribonacci
numbers.

Theorem 2.6. For each n ≥ 0, we have

n∑
i=0

(
(3−D)v2(n+2−i)+1 + (1 +E)v2(n+1−i)+1 + (1− F )v2(n−i)+1

)
w2

i

= Av2n+7 +Bv2n+5 + Cv2n+3

−v1w
2
n+3 +

(
(D − 1)v1 − v2 + v0

)
w2

n+2 +
(
(D − 4)v2 + (D − 3)v1 + (D − 2)v0 − Ev1

)
w2

n+1,

with A− F as stated in Lemma 2.1.

Proof. First note that by standard methods, we have the generating function for (v2n+1)n≥0 as
follows

V −(z) =
∞∑
n=0

v2n+1z
n =

v1 + (v2 − 2v1 + v0)z + (v2 − v1 − v0)z2

1− 3z − z2 − z3 .

Relating V −(z) to W2(z) as in the previous proofs, the following functional equation is
derived

AV −(z)− v1W2(z) +BzV −(z)− (v2 − 2v1 + v0)zW2(z)

+Cz2V −(z)− (v2 − v1 − v0)z
2W2(z)

= (3−D)zW2(z)V
−(z) + (E + 1)z2W2(z)V

−(z) + (1− F )z3W2(z)V
−(z).

Once more, the result follows upon expanding both sides into power series in z and comparing
the coefficients.

Example 2.7. For n ≥ 0,

n∑
k=0

(
T2(n+2−k)+1 − T2(n+1−k)+1 + 2T2(n−k)+1

)
F 2
k = T2n+5 − T2n+3 − F 2

n+3 − F 2
n+1,

n∑
k=0

(
T2(n+2−k)+1 − T2(n+1−k)+1 + 2T2(n−k)+1

)
L2
k = 4T2n+7 − 7T2n+5 − T2n+3 − L2

n+3 − L2
n+1,

n∑
k=0

(
5K2(n+1−k)+1 − 9K2(n+2−k)+1

)
J2
k = T2n+3 − T2n+5 + J2

n+3 + 4J2
n+2 − 6J2

n+1,

4
n∑

k=0

(
8T2(n+2−k)+1 − 9T2(n+1−k)+1

)
B2

k = −T2n+5 − T2n+3 +B2
n+3 − 33B2

n+2 − 28B2
n+1.
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3 Main Results, Part 2

In this section, we present a pair of connections between squared odd and even subscripted
Horadam numbers and generalized tribonacci numbers. In the following lemma we derive ex-
pression for sequences (w2

2n+1)n≥0 and (w2
2n)n≥0.

Lemma 3.1. The generating functions for squared odd (even) subscripted Horadam numbers are
given by

ω1(z) =
∞∑
n=0

w2
2n+1z

n =
A1 +B1z + C1z

2

1−D0z +E0z2 − F0z3 , (3.1)

ω2(z) =
∞∑
n=0

w2
2nz

n =
A2 +B2z + C2z

2

1−D0z +E0z2 − F0z3 , (3.2)

where

A1 = b2, B1 = q(a2p2q − 2abp3 + 2abpq + 2b2p2 − 2b2q), C1 = q4(ap− b)2,

A2 = a2, B2 = (aq − bp)2 − a2(p2 − q)(p2 − 3q), C2 = (ap2 − bp− aq)2q2,

D0 = (p2 − q)(p2 − 3q), E0 = q2(p2 − q)(p2 − 3q), F0 = q6.

Proof. We provide a proof of formula (3.1). Adapting the featured proof will yield the second
identity, the details of which we leave to the reader.

Using Binet’s formula (1.1), we have

w2
2n+1 =

(b− aβ)2

p2 − 4q
α4n+2 − 2

(b− aβ)(b− aα)
p2 − 4q

q2n+1 +
(b− aα)2

p2 − 4q
β4n+2.

Thus,

∞∑
n=0

w2
2n+1x

n

=
(b− aβ)2

p2 − 4q
α2
∞∑
n=0

(α4x)n − 2q
(b− aβ)(b− aα)

p2 − 4q

∞∑
n=0

(q2x)n +
(b− aα)2

p2 − 4q
β2
∞∑
n=0

(β4x)n

=
1

p2 − 4q

(
α2(b− aβ)2

1− α4x
− 2q(b− aβ)(b− aα)

1− q2x
+
β2(b− aα)2

1− β4x

)
.

The result follows after simple algebra manipulations.

A proof comparable to the one given for Theorem 2.6 yields the following relations between
squared odd (even) subscripted Horadam numbers and generalized tribonacci numbers.

Theorem 3.2. For n ≥ 0, the following identities hold:

n∑
k=0

(
(1−D0)vn+2−k + (1 +E0)vn+1−k + (1− F0)vn−k

)
w2

2k+1

= A1vn+3 +B1vn+2 + C1vn+1 − v0w
2
2n+7 − (v1 −D0v0)w

2
2n+5 − (v2 −D0v1 +E0v0)w

2
2n+3

and

n∑
k=0

(
(1−D0)vn+2−k + (1 +E0)vn+1−k − (1− F0)vn−k

)
w2

2k

= A2vn+3 +B2vn+2 + C2vn+1 − v0w
2
2n+6 − (v1 −D0v0)w

2
2n+4 − (v2 −D0v1 +E0v0)w

2
2n+2,

where all constants are defined as in Lemma 3.1.
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Proof. The formulas are essentially the consequence of the relations(
v0 + (v1 − v0)z + (v2 − v1 − v0)z

2)ω1(z)

= (A1 +B1z + C1z
2)V (z) +

(
D0 − 1− (E0 + 1)z + (F0 − 1)z2)zω1(z)V (z)

and (
v0 + (v1 − v0)z + (v2 − v1 − v0)z

2)ω2(z)

= (A2 +B2z + C2z
2)V (z) + (D0 − 1− (E0 + 1)z + (F0 − 1)z2)zω2(z)V (z)

which we derived from (2.2), (3.1) and (2.2), (3.2), respectively.

Example 3.3. For n ≥ 0,

n∑
i=0

(
7Tn+2−i − 9Tn+1−i

)
F 2

2i+1 = 5Tn+2 − Tn+4 + F 2
2n+5 − 7F 2

2n+3,

n∑
i=0

(
7Kn+2−i − 9Kn+1−i

)
L2

2i+1 = −Kn+4 − 7Kn+2 + 3L2
2n+7 − 23L2

2n+5 + 19L2
2n+3,

2
n∑

i=0

(
17Tn+2−i − 18Tn+1−i

)
P 2

2i = −4Tn+2 − 4Tn+1 + P 2
2n+4 − 34P 2

2n+2,

n∑
i=0

(
20Kn+2−i − 85Kn+1−i + 63Kn−i

)
M2

2i = −9Kn+2 − 36Kn+1 − 62M2
2n+4 + 234M2

2n+2.

4 Another extended identity

In this section, we outline how generalizations of the identities from the previous sections can be
derived. As a showcase, we offer a generalization of Theorem 2.2 that is able to produce many
interesting sum identities, including alternating sums.

Theorem 4.1. Let the coefficients A− F be defined as in Lemma 2.1 and x ∈ C. Then, we have
for each n ≥ 0

n∑
k=0

xk
(
(1−Dx)vn+2−k + (1 +Ex2)vn+1−k + (1− Fx3)vn−k

)
w2

k

= Avn+3 +Bxvn+2 + Cx2vn+1

−v0x
n+3w2

n+3 + (Dxv0 − v1)x
n+2w2

n+2 + (Dxv1 − Ex2v0 − v2)x
n+1w2

n+1.

Proof. Let W ∗2 (z) be defined as

W ∗2 (z) =
∞∑
n=0

xnw2
nz

n.

Then, obviously,

W ∗2 (z) =
A+Bxz + Cx2z2

1−Dxz +Ex2z2 − Fx3z3 . (4.1)

Proceeding as before, we arrive at the functional equation

AV (z)− v0W
∗
2 (z) +BxzV (z)− (v1 − v0)zW

∗
2 (z) + Cx2z2V (z)− (v2 − v1 − v0)z

2W ∗2 (z)

= (1−Dx)zW ∗2 (z)V (z) + (1 +Ex2)z2W ∗2 (z)V (z) + (1− Fx3)z3W ∗2 (z)V (z),

with V (z) given in (2.2). The result follows from the equation. Details are omitted.
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Focusing on Fibonacci and Lucas numbers we get the next corollary.

Corollary 4.2. For each x ∈ C and n ≥ 0, we have

n∑
k=0

xk
(
(1− 2x)Tn+2−k + (1− 2x2)Tn+1−k + (1 + x3)Tn−k

)
F 2
k

= xTn+2 − x2Tn+1 − xn+2F 2
n+2 + (2x− 1)xn+1F 2

n+1

and
n∑

k=0

xk
(
(1− 2x)Tn+2−k + (1− 2x2)Tn+1−k + (1 + x3)Tn−k

)
L2
k

= 4Tn+3 − 7xTn+2 − x2Tn+1 − xn+2L2
n+2 + (2x− 1)xn+1L2

n+1.

We conclude with the following evaluations:

Example 4.3.
n∑

k=1

(−1)k
(
3Tn+2−k − Tn+1−k

)
F 2
k = (−1)n+1F 2

n+2 + 3(−1)nF 2
n+1 − Tn+2 − Tn+1,

n∑
k=0

(−1)k
(
3Tn+2−k − Tn+1−k

)
L2
k = (−1)n+1L2

n+2 + 3(−1)nL2
n+1 + 4Tn+3 + 7Tn+2 − Tn+1,

n∑
k=1

(
4Tn+1−k + 9Tn−k

)F 2
k

2k
= 4Tn+2 − 2Tn+1 −

F 2
n+2

2n−1 ,

n∑
k=0

(
4Tn+1−k + 9Tn−k

)L2
k

2k
= 32Tn+3 − 28Tn+2 − 2Tn+1 −

L2
n+2

2n−1 .

More special sums of this kind can be derived from Theorem 4.1.

5 Summary and concluding remarks

In this paper, closed forms for special families of non-alternating and alternating finite series
involving squared Horadam numbers and tribonacci numbers were stated. The method of proof
is to derive functional relations between ordinary generating functions, from which the results
follow fairly straightforwardly. The main results have been illustrated by a variety of examples,
which are interesting on their own. For instance, let Sm(n), m = 1, 2, 3, 4, denote the four sums
on the left in Example 2.3. These sums form new integer sequences and their first entries are

(S1(n))n≥0 = {0, 2, 3, 13, 33, . . .},
(S2(n))n≥0 = {8, 6, 35, 71, 205, . . .},

(S3(n))n≥0 = {0, 4, 21, 262, 1.530, . . .},
(S4(n))n≥0 = {0, 66, 2.506, 85.652, 2.910.616, . . .}.

In our future work we are going to investigate more relations for mixed sequences. Specif-
ically, we study finite sums of non-convolutional type of products of Horadam numbers and
tribonacci numbers. We also work on identities involving more than two different sequences.
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