
Palestine Journal of Mathematics

Vol. 11 (1) (2022) , 6–18 © Palestine Polytechnic University-PPU 2022

ON A NEW IDENTITY FOR DIAGONAL
TERMS OF 2× 2 MATRIX ROOTS

Peter J. Larcombe, Eric J. Fennessey, Lee Rawlin and James Stanton

Communicated by Ayman Badawi

MSC 2010 Classifications: Primary 11C20.

Keywords and phrases: General 2× 2 matrix roots, diagonal terms identity, matrix root generators.

Abstract We state and prove a condition for an identity which involves the diagonal entries
of any nth root of a general 2× 2 matrix, and develop a method for obtaining all roots through a
so called generator pair of parameters defined by its eigenvalues.

1 Introduction

Let

M = M(A,B,C,D) =

(
A B

C D

)
(1.1)

be a general (real) 2×2 matrix. Previous work on the invariance of the anti-diagonals ratio B/C
with respect to (integer) matrix power has resulted in a number of publications in which a variety
of proof methodologies are described [2, 4, 5, 7] (the phenomenon also extends to multiple anti-
diagonal ratios for a tri-diagonal matrix of arbitrary dimension [3, 6]). In this paper, based on a
diagonalisation of M, we establish a condition for a new identity involving the diagonal entries
of any nth root of M (which, interestingly, as a corollary is guaranteed to hold in the square roots
case n = 2), and in doing so create a method for securing all matrix roots (n2 in total) through a
so called generator pair of parameters defined by its eigenvalues in the case when the latter are
real and distinct; some illustrative examples, with supporting computations, are provided.

2 A Preliminary Result

Assuming M is diagonalisable (we take A,B,C,D to be real), then

M = ΩDΩ−1 (2.1)

for

Ω =

(
p q

r s

)
and D =

(
λ 0
0 µ

)
(2.2)

whose entries are found to be

p = p(A,B,C,D) = −2B/(A−D +K),

q = q(A,B,C,D) = −2B/(A−D −K),

r = 1,

s = 1,

λ = λ(A,B,C,D) = (A+D −K)/2,

µ = µ(A,B,C,D) = (A+D +K)/2, (2.3)

where the parameter K is (writing the trace of M as Tr{M} = A+D)

K2 = K2(A,B,C,D) = (A−D)2 + 4BC = Tr2{M} − 4|M|; (2.4)
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the variables λ, µ = 1
2(Tr{M} ∓ K) in D are the eigenvalues of M in terms of A,B,C,D

(the columns of Ω being their associated eigenvectors (p, 1)T , (q, 1)T (with T denoting trans-
position)), and take distinct values for K 6= 0 which guarantee |Ω| = p − q 6= 0 (and so the
invertibility of Ω). Our main result of the paper is based on the constraint K2 > 0, so that λ and
µ are real, as well as distinct.

We begin with a preliminary result (that is, Theorem 2.1)—with two lemmas as precursors—
which reveals a fundamental property of all root matrices of M, in readiness for those that we
generate to use in examples accompanying our analysis.

Lemma 2.1. We write, for n ≥ 1,

Mn =

(
A B

C D

)n

=

(
αn βn

γn δn

)
for the nth integer power of M (where α1 = A, . . . , δ1 = D), and, with ρ1 = 1, generate
ρ2, ρ3, ρ4, . . . , through the recursion ρn = αn−1 +Dρn−1 (n ≥ 2). Then

βn = Bρn,

γn = Cρn,

δn = αn − (A−D)ρn.

Proof. We proceed by induction, utilising a 2004 result of McLaughlin [8, Theorem 1, p. 3]
(where he gives closed forms for the elements of a 2× 2 integer matrix power). Our result holds
for n = 1, recovering β1 = Bρ1 = B, γ1 = Cρ1 = C and δ1 = α1−(A−D)ρ1 = A−(A−D) =
D. Assuming the stated relations hold for some n = k ≥ 1, then(

αk+1 βk+1

γk+1 δk+1

)
= Mk+1 =

(
αk βk

γk δk

)(
A B

C D

)

=

(
Aαk + Cβk Bαk +Dβk

Aγk + Cδk Bγk +Dδk

)
, (L.1)

whence, noting that
αk+1 = Aαk + Cβk, (L.2)

we find, as required,

βk+1 = Bαk +Dβk

= Bαk +D(Bρk) (by assumption)

= B(αk +Dρk)

= Bρk+1,

γk+1 = Aγk + Cδk

= A(Cρk) + C[αk − (A−D)ρk] (by assumption)

= C(αk +Dρk)

= Cρk+1,

δk+1 = Bγk +Dδk

= B(Cρk) +D[αk − (A−D)ρk] (by assumption)

= C(Bρk) +D[αk − (A−D)ρk]−Aαk +Aαk

= Aαk + Cβk − (A−D)(αk +Dρk) (by assumption)

= αk+1 − (A−D)(αk +Dρk) (by (L.2))

= αk+1 − (A−D)ρk+1, (L.3)
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which completes the proof.

Lemma 2.2. If, for n ≥ 1, the nth integer power of M is a diagonal matrix with distinct entries,
then M must itself be diagonal.

Proof. Suppose

Mn =

(
αn βn

γn δn

)
=

(
mu 0
0 ml

)
, (L.4)

with mu 6= ml. We argue by contradiction, assuming M is non-diagonal in which case either
B or C is non-zero. W.l.o.g., suppose B 6= 0. Then we have 0 = βn = Bρn (by Lemma 2.1)
⇒ ρn = 0. Thus, ml = δn = αn − (A − D)ρn (by Lemma 2.1) = αn = mu, which is a
contradiction.

As a point of interest for the reader, a generalised version of Lemma 2.2 (for a matrix of arbitrary
dimension) appears, with proof, in Appendix A.

Theorem 2.1. For K 6= 0, suppose R is an nth root matrix of M. Then there exists a diagonal
nth root matrix D̂ of D such that R = ΩD̂Ω−1.

Proof. Since Rn = M we can write, from (2.1), Rn = ΩDΩ−1 ⇒ D = Ω−1RnΩ =
(Ω−1RΩ)n. Since D is diagonal with distinct entries, then the matrix (Ω−1RΩ)n has these
properties too, and by Lemma 2.2 Ω−1RΩ is diagonal. It follows, therefore, writing Ω−1RΩ as
the diagonal matrix D̂, say, that D = (Ω−1RΩ)n = D̂n, whence D̂ = D1/n is an nth root of D
for which R = ΩD̂Ω−1.

We illustrate Theorem 2.1. Let Ri(n) = M1/n be an nth root matrix of M (i = 1, . . . , n).
For any given n ≥ 2, we appeal to an algorithm of Choudhry [1] (see Remark 2.1) to extract
n root matrices R1(n), . . . ,Rn(n) in a systematic fashion (each of which could in principle be
multiplied by an nth root of unity to offer a total of n2 root matrices). In the (square roots) case
n = 2, for example, with M assigned (resp.) values A,B,C,D = 1, 2, 3, 4, we compute

R1(2) =

√
5 + 2

√
2i

(
1
11(3 +

√
2i) 1

33(10− 4
√

2i)
1
11(5− 2

√
2i) 1

11(8−
√

2i)

)

=

(
0.55368857 + 0.46439416i 0.80696073− 0.21242648i
1.2104411− 0.31863972i 1.7641297 + 0.14575444i

)
,

R2(2) =

√
5− 2

√
2i

(
1
11(3−

√
2i) 1

33(10 + 4
√

2i)
1
11(5 + 2

√
2i) 1

11(8 +
√

2i)

)

=

(
0.55368857− 0.46439416i 0.80696073 + 0.21242648i
1.2104411 + 0.31863972i 1.7641297− 0.14575444i

)
, (2.5)

and (noting that from (2.4) K2 = 33 > 0), with

Ω =

(
4

3−
√

33
4

3+
√

33
1 1

)
, D =

(
1
2(5−

√
33) 0

0 1
2(5 +

√
33)

)
(2.6)

using (2.3), we find, as expected by Theorem 2.1, (Ω−1R1(2)Ω)2 = (Ω−1R2(2)Ω)2 = D.1 The
same matrix M(1, 2, 3, 4) has two of its (four) Choudhry 4th root matrices delivered as

R3(4) =

(
−0.056706113− 0.42039152i 0.72234344 + 0.19229847i

1.0835152 + 0.28844771i 1.0268090− 0.13194380i

)
(2.7)

1We thank Dr. James Clapperton for undertaking all computations related to this paper using the algebraic software
package Maple.
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and

R4(4) =

(
0.78407692− 0.42039152i 0.33774649 + 0.19229847i
0.50661973 + 0.28844771i 1.2906967− 0.13194380i

)
, (2.8)

for which it is easily checked that (Ω−1R3(4)Ω)4 = (Ω−1R4(4)Ω)4 = D. Finally, one of the
(ten) 10th root matrices of M(1, 2, 3, 4) is

R7(10) =

(
−0.42711554− 0.37918872i 0.63319404− 0.14464352i
0.94979107− 0.21696528i 0.52267553− 0.59615400i

)
, (2.9)

for which (Ω−1R7(10)Ω)10 = D.
By way of another example, we use the matrix M(3,−2, 5, 1) for which K2 = −36 < 0 and

Ω =

(
1
5(1− 3i) 1

5(1 + 3i)
1 1

)
, D =

(
2− 3i 0

0 2 + 3i

)
; (2.10)

we confirm that one of the (five) 5th matrix roots of M,

R2(5) =

(
1.3516393 −0.16826559

0.42066398 1.1833737

)
, (2.11)

satisfies (Ω−1R2(5)Ω)5 = D, while the cube root matrix

R3(3) =

(
0.39998857− 0.69280053i −0.50134883 + 0.86836164i

1.2533721− 2.1709041i −0.10136026 + 0.17556111i

)
(2.12)

satisfies (Ω−1R3(3)Ω)3 = D. Many other matrix roots have been tested for the two matrices
chosen here (and for other matrices where K2 6= 0).

Remark 2.1. The matrices we consider fall into the broad category of so called non-scalar
matrices (a scalar matrix is a scalar multiple of the identity matrix, and is known to have an
infinte number of roots), for which we expect to find a finite number of roots. According to
Choudhry [1]—to whose paper the interested reader is directed for technical details and back-
ground reading—exactly how many roots exist (n, n2 or none) depends on properties of M (its
singularity, eigenvalues, and trace2). We follow Choudhry’s methodology for the most part, par-
ticularly making use of Theorem 4.1 (pp. 189–190) therein. Much work has been conducted on
matrix roots over the years, and a good overview of the various treatments of 2 × 2 matrix root
extraction is given by Özdemir who includes a comparison of his approach (based on the notion
of a so called hybrid number in conjunction with a 2 × 2 matrix representation of de Moivre)
with others in terms of practicability, suitability, (dis)advantages, etc. [9, p. 23].

3 Main Result and Discussion

Theorem 3.1 (Stanton’s Theorem). For K2 > 0, let α, β be (resp.) any nth roots of the
eigenvalues λ, µ of a matrix M(A,B,C,D), with A 6= D. Then there exists an nth root matrix
R = R(α, β;A,B,C,D) of M for which

Re{R1,1}Im{R1,1} = Re{R2,2}Im{R2,2}

if Im{α2} = Im{β2}.

Proof. First, define a diagonal matrix

D∗(α, β) =

(
α 0
0 β

)
. (P.1)

2We summarise as follows: If M is singular with zero trace then there are no roots; if it is non-singular with distinct
eigenvalues then there are n2 roots (a set of n that is multiplied up to one of n2 by roots of unity (or else delivered separately,
in full)); otherwise, a singular matrix with non-zero trace, or a non-singular matrix with equal eigenvalues, has n roots.
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For K2 > 0 the eigenvalues λ, µ of M are real and distinct. Setting λ = αn, µ = βn, then
α, β are (resp.) nth roots of λ, µ, and (D∗)n = D, the eigenvalues matrix of (2.2). Thus, the
decomposition (2.1) gives

R = R(α, β;A,B,C,D)

= M1/n

= (ΩDΩ−1)1/n

= ΩD1/nΩ−1

= ΩD∗Ω−1. (P.2)

Accordingly, we see that

R =
1
|Ω|

(
psα− qrβ pq(β − α)
rs(α− β) psβ − qrα

)

=

(
R1,1 R1,2

R2,1 R2,2

)
, (P.3)

say, where, by (2.3), a little algebra delivers explicit forms

R1,1 = [α+ β + (β − α)(A−D)/K]/2,

R1,2 = B(β − α)/K,
R2,1 = C(β − α)/K,
R2,2 = [α+ β − (β − α)(A−D)/K]/2. (P.4)

Let us write σ = (A − D)/K 6= 0, and express the complex form of each eigenvalue root pair
α, β as α = αr + iαc and β = βr + iβc, say. Noting that

α+ β = αr + βr + i(αc + βc),

β − α = βr − αr + i(βc − αc), (P.5)

then

2R1,1 = α+ β + (β − α)σ
= αr(1− σ) + βr(1 + σ) + i[αc(1− σ) + βc(1 + σ)] (P.6)

and

2R2,2 = α+ β − (β − α)σ
= αr(1 + σ) + βr(1− σ) + i[αc(1 + σ) + βc(1− σ)], (P.7)

yielding

Re{R1,1}Im{R1,1}
= [αr(1− σ) + βr(1 + σ)][αc(1− σ) + βc(1 + σ)]/4

= [αrαc(1− σ)2 + (αrβc + αcβr)(1− σ)(1 + σ) + βrβc(1 + σ)2]/4 (P.8)

and

Re{R2,2}Im{R2,2}

= [αrαc(1 + σ)2 + (αrβc + αcβr)(1 + σ)(1− σ) + βrβc(1− σ)2]/4, (P.9)

and in turn

Re{R1,1}Im{R1,1} − Re{R2,2}Im{R2,2} = −σ(αrαc − βrβc)
= 0 (P.10)

if αrαc = βrβc, that is, if Im{α2} = Im{β2}.
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Corollary 3.1. In the (square roots) case n = 2, α2 = λ ∈ R and β2 = µ ∈ R, ⇒ Im{α2} =
Im{β2} = 0 and the condition holds trivially; thus, Theorem 3.1 is guaranteed to be true for any
square root matrices of M.

We note also that, given nth root matrices R1(n),R2(n), . . . ,Rn(n) of a matrix M (n ≥ 2),
any product of p ≤ n of these root matrices constitutes an nth root of Mp. Recalling that any
pair of nth root matrices commute (an elementary reader exercise3), this follows by considering,
w.l.o.g., [R1(n)·R2(n)· · · · ·Rp(n)]n = [R1(n)]n ·[R2(n)]n · · · · ·[Rp(n)]n = M·M· · · · ·M =
Mp, whence R1(n) ·R2(n) · · · · ·Rp(n) = (Mp)1/n.

Remark 3.1. We remark that the general nature of the elements of R(α, β;A,B,C,D) in (P.4)
confirms the invariance of the anti-diagonals ratio B/C of any matrix root, since R1,2/R2,1 =
B/C (which is independent of eigenvalue nth roots α = λ1/n, β = µ1/n, and so n). This extends
the anti-diagonals ratio invariance of 2 × 2 (integer) matrix powers [2, 4, 5, 7] to now cover
inverse powers (that is, roots), a fact that is also available directly from Özdemir’s work [9].4

3.1 On Square Roots

If a root matrix is purely real (or purely imaginary), then Theorem 3.1 is satisfied trivially, as in
the Choudhry square roots

R1(2) =

(
1 2
3 4

)
and R2(2) =

√
33

11

(
3 10/3
5 8

)
(3.1)

of the matrix M(7, 10, 15, 22) (for which K2 = 825 > 0), and roots

R1(2) =

(
2 5
14 42

)
and R2(2) =

√
470
47

(
3 11

154/5 91

)
(3.2)

of the matrix M(74, 220, 616, 1834) (for which K2 = 3, 639, 680 > 0)—we also include roots

R1(2) = i

(
−1 1
4 −3

)
and R2(2) =

i√
5

(
3 −2
−8 7

)
(3.3)

of the matrix M(−5, 4, 16,−13) (for which K2 = 320 > 0). Where square root matrices are
fully complex, they are conjugates of each other as seen in (2.5); another example is the square
root matrix pair

R1(2) =

(
1.5267117 + 2.8981618i −1.8400672 + 2.0439247i
−2.1647850 + 2.4046173i 2.6091042 + 1.6958531i

)
,

R2(2) =

(
1.5267117− 2.8981618i −1.8400672− 2.0439247i
−2.1647850− 2.4046173i 2.6091042− 1.6958531i

)
, (3.4)

derived from the matrix M(−7,−17,−20, 3) for which K2 = 1460 > 0; these illustrate the
statement of Corollary 3.1.

As an aside, the same comments apply if we set A = D (that is, σ = 0) with the additional
observation that each matrix of any square root pair has its diagonal entries equal, as in the
conjugate pair

R1(2) =

(
0.93482766 + 0.84097329i 1.4780923− 1.3296955i
0.59123692− 0.53187821i 0.93482766 + 0.84097329i

)
,

R2(2) =

(
0.93482766− 0.84097329i 1.4780923 + 1.3296955i
0.59123692 + 0.53187821i 0.93482766− 0.84097329i

)
, (3.5)

3Using the decomposition (P.2) of any nth root matrix, combined with the commutativity of diagonal matrices.
4This is clearly true for any non-zero K(A,B,C,D), over and above K2 > 0.
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derived from the matrix M( 1
3 , 5, 2,

1
3) for which K2 = 40 > 0—this is clear from (P.4) where,

for any nth root matrix, σ = 0 ⇒ R1,1 = R2,2 = (α + β)/2 (and so the root matrix has a
diagonals ratio of unity, in which case Theorem 3.1 is automatically self-satisfying).

3.2 On Higher Order Roots

Example 1. Consider the matrix M(2, 2, 7, 15), with K2 = Tr2{M} − 4|M| = 172 − 4(16) =
225 = 152 > 0. Only two of the sixteen 16th Choudhry root matrices R1(16), . . . ,R16(16) of
M satisfy Theorem 3.1, and they do so trivially because they are real matrices; the other seven
conjugate root matrix pairs fail the condition. It is easy enough, however, to construct a (non-
trivial) 16th root matrix for which Theorem 3.1 does hold, described as follows. Noting that M
has eigenvalues λ = 1, µ = 16, then any solutions α, β of α16 = λ = 1, β16 = µ = 16 will, in
defining a diagonal matrix D∗(α, β) (P.1), produce a 16th root matrix of general form

R(α, β) =
1

15

(
14α+ β 2(β − α)
7(β − α) α+ 14β

)
(3.6)

using (P.4). Choosing specific solutions

αs = exp(5πi/4) = −(1 + i)/
√

2,

βs = 21/4exp(3πi/8) =

(√
2−
√

2 +

√
2 +
√

2i
)
/23/4, (3.7)

yields a particular 16th root matrix

R(αs, βs) =

(
−0.62962701− 0.586720721i 0.15495955 + 0.24077212i

0.54235843 + 0.84270242i 0.37761008 + 0.97829805i

)
(3.8)

of M for which Theorem 3.1 indeed holds because

Im{α2
s} = Im{i} = 1 = Im{−1 + i} = Im{β2

s}. (3.9)

Moreover, the 16 choices for each of α, β combine to offer 162 root matricesR(α, β) (3.6) which
are found to correspond precisely to those 16 Choudhry root matrices R1(16), . . . ,R16(16) that
are each multiplied by a 16th root of unity (that is to say, the collection of composites ωjRi(16)
(i, j = 1, . . . , 16), where ω1, . . . , ω16 are the 16th roots of unity), of which 32, in fact, satisfy
Theorem 3.1 inclusive of the matrix R(αs, βs) (3.8) (this represents 1

8 of the full set of root ma-
trices, with the real, imaginary and fully complex matrix roots numbering (resp.) 4,4 and 24).5

Clearly, it is possible to access n2 nth root matrices of an arbitrary matrix M(A,B,C,D)
based on all pairwise combinations of those nth roots α, β of the eigenvalues of M which act as
a generating pair of system parameters; the general form entries (P.4) of the root matrix (P.3)
are evidently all dependent on a linear combination of these generators in connection with the
matrix variables A,B,C,D and K(A,B,C,D) of M as shown. For the purpose of illustration
we finish with a second example where a root matrix is constructed for which Theorem 3.1 holds.

Example 2. Consider now the matrix M(5, 16, 118, 32), with K2 = Tr2{M} − 4|M| =
372 − 4(−1728) = 8, 281 = 912 > 0. This time we choose 12th roots

αs = 31/4exp(πi/4) = 31/4(1 + i)/
√

2,

βs =
√

2exp(πi/6) = (
√

3 + i)/
√

2, (3.10)

of its (resp.) eigenvalues λ = −27, µ = 64 which define D∗(αs, βs) and identify a particular
12th root matrix (from (P.4))

R(αs, βs) =

(
1.03403871 + 0.8520121282i 0.0517169253− 0.0392963653i
0.381412324− 0.2898106949i 1.121311021 + 0.7856995118i

)
(3.11)

5Of course the five pairs of square root matrices seen in (3.1)-(3.5) can each be multiplied by−1 (the (non-trivial) square
root of of unity) to produce a complete group of 4 = 22 in each example.
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of M for which Theorem 3.1 holds (in this case Im{α2
s} = Im{

√
3i} =

√
3 = Im{1 +

√
3i} =

Im{β2
s}). Linear combinations of the generator pair α, β offer up all 12th root matrices which

assume a general form

R(α, β) =
1
91

(
59α+ 32β 16(β − α)
118(β − α) 32α+ 59β

)
, (3.12)

of which R(αs, βs) (3.11) is one instance, with all 122 matrix roots of M matching those ex-
tracted via Choudhry’s algorithm accordingly ( 1

9 of which satisfy Theorem 3.1, all fully complex
ones).

Remark 3.2. It is immediate from (P.3) (or (P.4)) that every root matrix R = R(α, β) has
the property that R1,1 + R2,2 = α + β (as the matrices in (3.6) and (3.12) bear out);6 a similar
feature is exhibited by the sum of the diagonal terms of the square of every such root matrix, and
this observation can be generalised (see Remark B.1 of Appendix B). For interest, Appendix B
states and proves a couple of results cast in terms of R2 when Theorem 3.1 holds.

Remark 3.3. In fact, with R1,1 +R2,2 = α+β we can derive Theorem 3.1 in a slightly different
manner (included here for completeness), for noting (from (P.4)) that R1,1 − R2,2 = (β − α)σ,
we can write Re{R1,1}Im{R1,1} − Re{R2,2}Im{R2,2} = 1

2 [Im{(R1,1)2} − Im{(R2,2)2}] =
1
2 Im{(R1,1)2 − (R2,2)2} = 1

2 Im{[R1,1 + R2,2][R1,1 − R2,2]} = 1
2 Im{(α + β) · (β − α)σ} =

1
2σIm{β2 − α2} = 0 if 0 = Im{β2 − α2} = Im{β2} − Im{α2}. Our thanks go to Prof. Sam
Northshield (Plattsburgh State University of New York) for pointing this out to the author P.J.L. in
a private communication.

4 Condition Counts

We have seen that the sets {R(α, β) : αn = λ, βn = µ} and {ωjRi(n) : i, j = 1, . . . , n, ωn = 1}
contain all (that is, n2) nth roots of any given matrix M(A,B,C,D). We now turn our attention
to counting those root matrices for which Theorem 3.1 holds, defining Cn(A,B,C,D) to be the
number of nth root matrices of M(A,B,C,D) that satisfy the result.

4.1 Tr{M} 6= 0

For M(2, 2, 7, 15) of Example 1, it is found that {Cn(2, 2, 7, 15)}∞n=2 forms the sequence {4, 1, 16,
1, 4, 1, 16, 1, 4, 1, 16, 1, 4, 1, 32, 1, 4, 1, 16, 1, 4, 1, 16, 1, . . .}, while Example 2 gives {Cn(5, 16,
118, 32)}∞n=2 = {4, 1, 0, 1, 4, 1, 0, 1, 4, 1, 16, 1, 4, 1, 0, 1, 4, 1, 0, 1, . . .}. The anomaly values 32
(Example 1) and 16 (Example 2) prevent each sequence looking like period 4 ones (we have
taken computations as far as n = 50, at which point 502 = 2, 500 50th root matrices are
being tested against Theorem 3.1). Periodic instances do seem to occur, however, as seen in
{Cn(4, 1, 3,−2)}∞n=2 = {4, 1, 0, 1, 4, 1, 0, 1, . . .} (K2 = 48; λ = 1 − 2

√
3 < 0, µ = 1 +

2
√

3 > 0) and {Cn(−3, 2, 8,−10)}∞n=2 = {4, 1, 0, 1, 4, 1, 0, 1, . . .} (K2 = 113; λ = 1
2(−13 −√

113) < 0, µ = 1
2(−13 +

√
113) < 0) (the same sequence appears to arise in other exam-

ples such as {Cn(−2, 2, 1, 10)}∞n=2 (K2 = 152; λ = 4 −
√

38 < 0, µ = 4 +
√

38 > 0) and
{Cn(−11, 7, 14,−13)}∞n=2 (K2 = 396; λ = −12 − 3

√
11 < 0, µ = −12 + 3

√
11 < 0)). We

also find {Cn(3, 3/2, 6, 4)}∞n=2 = {4, 1, 16, 1, 4, 1, 16, 1, . . .} (K2 = 37; λ = 1
2(7 −

√
37) > 0,

µ = 1
2(7 +

√
37) > 0) (repeated as {Cn(1, 1,−6, 6)}∞n=2 (K2 = 1; λ = 3 > 0, µ = 4 > 0)

and {Cn(10, 5, 4, 7)}∞n=2 (K2 = 89; λ = 1
2(17 −

√
89) > 0, µ = 1

2(17 +
√

89) > 0)). From the
computational tests conducted, the conclusion to which one is led is that {Cn(A,B,C,D)}∞n=2
is, for the most part (that is, with a relatively small number of exceptions through occasional
‘rogue’ elements), the period 4 sequence {4, 1, 0, 1, . . .} for eigenvalues λ, µ of different sign
(resp., < 0, > 0) or both negative, or else it is {4, 1, 16, 1, . . .} if they are both positive; the
eigenvalues must have different modulus values.

6Alternatively, we can argue that R1,1 + R2,2 = Tr{R} = Tr{ΩD∗Ω−1} (by (P.2)) = Tr{D∗} (by the invariance of
the trace function under cyclic permutation) = α + β.
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4.2 Tr{M} = 0

We have a rather different result when M has zero trace (and |λ| = |µ|). The matrix M(1, 2, 3,
−1), for instance (with K2 = 28; λ, µ = ∓

√
7), returns a count sequence {Cn(1, 2, 3,−1)}∞n=2

= {4, 3, 0, 5, 12, 7, 0, 9, 20, 11, 0, 13, 28, 15, 0, 17, 36, 19, 0, 21, 44, 23, 0, 25, 52, . . .} with Cn =
0 (n = 4, 8, 12, 16, . . .), Cn = 2n (n = 2, 6, 10, 14, . . .), and for n (odd) ≥ 3 Cn = n (see
Appendix C for further context for this sequence {Cn(A,B,C,−A)}∞n=2); the same count se-
quence is delivered for the matrices M(−7, 8,−6, 7) (K2 = 4; λ, µ = ∓1), M(−8, 13,−3, 8)
(K2 = 100; λ, µ = ∓5), M(−6, 7,−3, 6) (K2 = 60; λ, µ = ∓

√
15), M(3,−5, 1,−3) (K2 = 16;

λ, µ = ∓2), M(8, 1, 6,−8) (K2 = 280; λ, µ = ∓
√

70) and M(14,−16,−18,−14) (K2 = 1936;
λ, µ = ∓22).7

Lemma 4.1. The diagonal entries of any nth root matrix of M have the same imaginary part iff
those in D∗(α, β) do also. Furthermore, this is the same for both pairs of diagonal terms.

Proof. We base our proof on the form of R1,1 = [α+β+(β−α)σ]/2 and R2,2 = [α+β− (β−
α)σ]/2, from (P.4), with σ = (A−D)/K.

Necessity: Assuming R1,1, R2,2 have the same imaginary part, then the difference R1,1 −R2,2 =

(β − α)σ is real. Thus, since σ is real, so must β − α be real, and so Im{α} = Im{β} (we also
trivially deduce the inference Im{R2,2} = Im{R1,1} = 1

2 Im{α+β+(β−α)σ} = 1
2 Im{α+β} =

1
2 [Im{α}+ Im{β}] = 1

2 [Im{α}+ Im{α}] = Im{α} (= Im{β})).

Sufficiency: Assuming Im{α} = Im{β}, then β − α is real ⇒ (β − α)σ is real, whence
Im{R1,1} = 1

2 Im{α+ β + (β − α)σ} = 1
2 Im{α+ β} = 1

2 Im{α+ β − (β − α)σ} = Im{R2,2}
(again, it is trivial to see that Im{R1,1} = Im{R2,2} = 1

2 Im{α+ β} = · · · = Im{α} = Im{β}).

This completes the proof.

We also have a further result through which Lemma 4.1 follows independently. Let

L =

(
w x

y z

)
(4.1)

∈ M2[R] be a real valued 2 × 2 matrix and, for ε a given real, define ∆2(ε) = {L + εiI2 : L ∈
M2[R]} as the set of all 2 × 2 matrices whose anti-diagonal terms are real and whose complex
diagonal terms have the same imaginary part ε (I2 is the 2-square identity matrix here).

Lemma 4.2. If Ω ∈ M2[R] is invertible, and Q ∈ ∆2(ε), then both ΩQΩ−1 and Ω−1QΩ
∈ ∆2(ε).

Proof. Consider first ΩQΩ−1 = Ω(L + εiI2)Ω−1 (for some L ∈ M2[R]) = · · · = ΩLΩ−1 +
εiI2 ∈ ∆2(ε) since ΩLΩ−1 ∈M2[R]. Likewise, Ω−1QΩ ∈ ∆2(ε) follows similarly.

The application of Lemma 4.2 to establish Lemma 4.1 is given in Appendix D.
In attempting to quantify those root matrices of a general matrix M that satisfy Theorem

3.1, we note, by Theorem 2.1, that for each successful root matrix Rp that ‘passes’ the condi-
tion their exists a corresponding nth root matrix D∗p(α, β) of the eigenvalues matrix D that also
does, and moreover the diagonal entries of the pair of squared matrices (Rp)2, (D∗p)

2 each have
equal imaginary parts (Theorem B.1 of Appendix B). Lemma 4.1 now establishes a one-to-one
correspondence between Rp and D∗p. Because (Rp)2 = (ΩD∗pΩ

−1)2 = Ω(D∗p)
2Ω−1, Lemma

4.1 also applies to the square of any nth root matrix Rp of M and the square of the correspond-
ing matrix D∗p, and so the count of successful matrices Rp is matched by those associated nth
root matrices D∗p of simply the eigenvalues matrix D itself; in other words, sets of nth root
matrices for which Theorem 3.1 holds have the same cardinality when seeking roots of either
M(A,B,C,D) or its diagonalising matrix of eigenvalues.

7In the caseA = D then we know (see the end of Section 3.1) that allnth root matrices satisfy Theorem 3.1. Computations
on some test matrices of this type confirm that Cn = n2.
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Theorem 4.1. Given any matrix M(A,B,C,D), with eigenvalues λ(A,B,C,D), µ(A,B,C,D)
as in (2.3), then for n ≥ 2 Cn(A,B,C,D) = Cn(λ, 0, 0, µ) provided A 6= D.

We have tested Theorem 4.1 on all of the explicit matrices listed in this section, and confirm
its validity. Computations reveal that the result does not hold when A = D, the reasons for
which (being quite subtle) are omitted here.

5 Summary

In this paper a condition for an identity associated with the diagonal terms of 2× 2 matrix roots
has been formulated theoretically, and tested based on an established method to generate such
roots; we believe this result is new to the literature. Additionally, it has been shown that a set
of n2 nth roots of a matrix is available from pairwise combinations of all nth roots of its (real)
eigenvalues.

We have mentioned [9] as a source of references to previous articles on matrix roots. The
study of Tam and Huang [10]—adopting a mainly graph theoretic approach to analyse (non-
negative) pth roots of (non-negative) matrices which includes the p = 2 square roots case—cites
historical works that reveal interest in a topic dating back to the 19th century. Despite this, it
is hoped that the results and observations detailed here are viewed as contributing further to the
topic in a positive way.8

Appendix A: Generalisation of Lemma 2.2

Here we generalise, with proof, Lemma 2.2.

Theorem A.1. If, for n ≥ 1, the nth integer power of an s × s matrix N is a diagonal ma-
trix with distinct entries, then N must itself be diagonal.

Proof. Suppose Nn = D for some diagonal (s × s) matrix D whose entries are distinct. If N
has eigenvalues λ1, λ2, . . . , λs, say, then those of D are λn1 , λ

n
2 , . . . , λ

n
s . Since D is diagonal its

eigenvalues are simply its diagonal entries, which latter being distinct means that λn1 , λ
n
2 , . . . , λ

n
s

are all distinct and in turn that the set of eigenvalues λ1, λ2, . . . , λs of N is a distinct one also
(this is a straightforward inference, for consider any arbitrary pair of eigenvalues λi, λj , where
i 6= j—writing the difference λni −λnj as (λi−λj)(λn−1

i +λn−2
i λj + · · ·+λiλ

n−2
j +λn−1

j ), then
by inspection λni − λnj 6= 0⇒ λi − λj 6= 0). Thus, N is expressible in diagonalised form as

N = VN̂V−1, (AP.1)

where N̂ is the diagonal matrix containing the (distinct) eigenvalues λ1, λ2, . . . , λs of N, and
V has its associated eigenvectors as columns. Moreover, since D = Nn it is well known (by
standard theory) that N and D share the same set of eigenvectors, so that the matrix V which
diagonalises N must also diagonalise D. However, since D is diagonal itself, V must be the
(s× s) identity matrix, whence (AP.1) reads N = N̂, and so N is diagonal.

Appendix B: The Square of an nth Root Matrix

Theorem B.1. For K2 > 0, let α, β be (resp.) any nth roots of the eigenvalues λ, µ of a matrix
M(A,B,C,D) (A 6= D), and suppose R = R(α, β;A,B,C,D) is an nth root matrix of M with
S = R2. If Theorem 3.1 holds (i.e., Im{α2} = Im{β2}), then

Im{α2} = Im{β2} = Im{S1,1} = Im{S2,2}.
8The author Lee Rawlin was involved in this work as part of his undergraduate final year dissertation project at the

University of Derby (supervised by P.J.L.) during the 2020-21 academic year. The motivation for thinking about properties of
matrix roots arose from some extensive computational experiments conducted by James Stanton who first raised the possibilty
of the result given here as Theorem 3.1.
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Proof. Consider, using (P.1)-(P.3),

S = R2

= Ω(D∗)2Ω−1

=
1
|Ω|

(
psα2 − qrβ2 pq(β2 − α2)

rs(α2 − β2) psβ2 − qrα2

)

=

(
S1,1 S1,2

S2,1 S2,2

)
, (BP.1)

say. If Theorem 3.1 holds then α2 and β2 have a common imaginary part. Denoting this by c′,
and their (resp.) real parts as α′r, β′r, we write

α2 = α′r + ic′ and β2 = β′r + ic′, (BP.2)

whereupon

|Ω|S1,1 = psα2 − qrβ2

= ps(α′r + ic′)− qr(β′r + ic′)

= psα′r − qrβ′r + (ps− qr)ic′

= psα′r − qrβ′r + |Ω|ic′, (BP.3)

which is to say,
S1,1 = (psα′r − qrβ′r)/|Ω|+ ic′. (BP.4)

In a similar fashion, we find that

S2,2 = (psβ2 − qrα2)/|Ω| = · · · = (psβ′r − qrα′r)/|Ω|+ ic′, (BP.5)

and the result is established.

Remark B.1. It is immediate—from (BP.1) or consideration of Tr{S}—that S1,1+S2,2 = α2+β2

for every matrix S which is the square of a root matrix R of M (1.1). Extending this observation,
then T = Rn is such that T1,1 + T2,2 = αn + βn = λ + µ, but since T co-incides with M we
merely recover the relation λ+ µ =M1,1 +M2,2 = A+D = Tr{M} offered by (2.3).

Theorem B.1, as a consequence of Theorem 3.1, is no great surprise, being a slight contex-
tual enhancement of the observation that for any complex 2 × 2 matrix N, say, and its square
P = N2, the following statements are equivalent (showing that Statement A⇔ Statement B is a
simple algebraic exercise which is left for the reader to confirm):

Statement A : Re{N1,1}Im{N1,1} = Re{N2,2}Im{N2,2};
Statement B : Im{P1,1} = Im{P2,2}.

Theorem B.2. For K2 > 0, let α, β be (resp.) any nth roots of the eigenvalues λ, µ of a matrix
M(A,B,C,D) (A 6= D), and suppose R = R(α, β;A,B,C,D) is an nth root matrix of M with
S = R2. If Theorem 3.1 holds (i.e., Im{α2} = Im{β2}), then

Re{S1,1}Im{S1,1} = Re{S2,2}Im{S2,2}

if either α2, β2 ∈ R or α2 = β2.

Proof. Using (BP.4),(BP.5) (or else deploying the line of argument described in Remark 3.3), we
see that Re{S1,1}Im{S1,1} − Re{S2,2}Im{S2,2} = c′(ps+ qr)(α′r − β′r)/|Ω| which, using (2.3),
reduces to −σc′(α′r − β′r) (with σ (as previously defined) 6= 0) and is zero if either c′ = 0 or
α′r = β′r. In the case when c′ = 0 (in other words, if α2, β2 ∈ R) then Theorem B.2 holds trivially
since Im{α2} = Im{β2} = 0 (a special case of Theorem 3.1) and so Im{S1,1} = Im{S2,2} = 0
by Theorem B.1. The case α′r = β′r arises if α2 = β2, whence S1,1 = S2,2 by (BP.4),(BP.5) and
again Theorem B.2 holds automatically.



A NEW 2 × 2 MATRIX ROOTS IDENTITY 17

Remark B.2. As an aside, a necessary (but not sufficient) condition for equality of α2 and β2

is that the matrix M has zero trace, for α2 = β2 ⇒ (α2)n = (β2)n ⇒ (αn)2 = (βn)2 ⇒ λ2 =
µ2 ⇒ λ = −µ (the paper is based on the assumption that λ 6= µ) iff Tr{M} = 0 (in which case
λ = −K/2 = −µ).9 Note also that α2 6= β2 for any even n, for this would otherwise give (for
some even n = 2m (integer m ≥ 1)) λ = αn = α2m = (α2)m = (β2)m = β2m = βn = µ; we
see a particular instance of this in the n = 2 square roots case where (referring to Corollary 3.1)
α2 = λ 6= µ = β2.

Remark B.3. Evidently, when Theorem 3.1 holds for a root matrix R of M, it follows that
S = R2 ∈ ∆2(c′) with an explicit compositional matrix L (4.1) for which

w = (psα′r − qrβ′r)/|Ω|,
z = (psβ′r − qrα′r)/|Ω|, (B.1)

directly from (BP.4),(BP.5), and

x = pq(β′r − α′r)/|Ω|,
y = rs(α′r − β′r)/|Ω|, (B.2)

given readily by (BP.1),(BP.2), where Ω ∈ M2[R] is the (invertible) matrix of (2.2). Thus,
ΩSΩ−1 ∈ ∆2(c′) by Lemma 4.2.

Appendix C

The counting sequence {Cn(A,B,C,−A)}∞n=2 = {4, 3, 0, 5, 12, 7, 0, 9, . . .} associated with a
zero trace matrix M (Section 4.2) is contained within Sequence No. A251610 (that is, {1, 4, 3, 0,
5, 12, 7, 0, 9, . . .}) on the well known On-Line Encyclopaedia of Integer Sequences;10 we see that
the latter sequence is listed as having an enumerative interpretation in relation to determinants
of spiral knots—it (i) has (ordinary) generating function

x4 + 2x3 − 2x2 + 2x+ 1
(x− 1)2(x2 + 1)2 = 1 + 4x+ 3x2 + 5x4 + 12x5 + 7x6 + 9x8 + · · · , (C.1)

and (ii) is generated (a) as {k(sk)2}∞k=1 through an intermediate sequence {sk}∞k=1 delivered by
the linear recursion sk =

√
2sk−1−sk−2 (k ≥ 3; s1 = 1, s2 =

√
2),11 or (b) directly, via a closed

form version for its general term, as

{k[2− (−i)k − ik]/2}∞k=1, (C.2)

or equivalently,
{k[1− cos(kπ/2)]}∞k=1. (C.3)

Appendix D: Alternative Proof of Lemma 4.1

Here we establish Lemma 4.1 by application of Lemma 4.2.

Proof. We again refer to the elements (P.4) of any nth root matrix R of a matrix M.

Necessity: Assuming R1,1, R2,2 have the same imaginary part, then (by the previous proof of
Lemma 4.1) β−α is real. Writing α = αr+ iαc and β = βr+ iβc, it follows that αc = βc and in
turn that Im{R1,1} = Im{R2,2} = αc. Thus, with R1,2 and R2,1 real by inspection, R ∈ ∆2(αc)
and so (using (P.2)) D∗(α, β) = Ω−1RΩ ∈ ∆2(αc) by Lemma 4.2.

Sufficiency: We assume Im{α} = Im{β} (so that αc = βc). Then D∗(α, β) ∈ ∆2(αc) trivially
(its anti-diagonal elements are real, being zero), whence (using (P.2)) R = ΩD∗Ω−1 ∈ ∆2(αc)
by Lemma 4.2.

9The condition is not a sufficient one, for Tr{M} = 0⇒ λ = −µ⇒ λ2 = µ2 ⇒ · · · ⇒ (α2)n = (β2)n, but it is not
possible to infer from this that α2 = β2.

10See https://oeis.org/.
11Which yields {sk}∞k=1 as the period 8 sequence {1,

√
2, 1, 0,−1,−

√
2,−1, 0, . . .}.
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