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Abstract. Andrews, Lewis and Lovejoy investigated a new class of partitions with designated
summands by taking ordinary partitions and tagging exactly one of each part size. Let By(n)
denote the number of ¢-regular partition triples of n with designated summands. In this work,
we establish many infinite families of congruences modulo powers of 2 and 3 for B(n). For
example, foreachn > 1 and 8 > 0,

B; (12-5%2n 4 a; -5 =0 (mod 9),

where a; € {22,34,46,58}.

1 Introduction

A partition of a positive integer n is a non-increasing sequence of positive integers whose sum is
n. An ¢-regular partition is a partition in which none of the part is divisible by ¢.

Andrews, Lewis and Lovejoy [1] investigated a new class of partitions with designated sum-
mands by taking ordinary partitions and tagging exactly one of each part size. The total number
of partitions of n with designated summands is denoted by PD(n) and the generating function
for PD(n) is given by

= n __ f6
RZZOPD(n)q = 0T (1.1)
where -
fo =[O0 =¢"),n>1. (1.2)
j=1

For example, PD(4) = 10, namely

4,3 +1, 242, 242, 2241V +1L,27+141, V+14+1+1, 1+ +1+1,
I+1+1U+1L 1+14+1+1"

Mahadeva Naika and Gireesh [8] studied PD3(n), the number of partitions of n with des-
ignated summands whose parts are not divisible by 3 and the generating function is given by

- w_ Jefo
;PD3 (ma" = fifafig’

They obtained many congruences modulo 4, 9, 12, 36, 48 and 144 for P D;(n). For example, for
each nonnegative integer n and o > 0,

(1.3)

PD; (4 x3*"n+10x3%) =0 (mod9).

Andrews et al. [1], Baruah and Ojah [2] studied PDO(n), the number of partitions of n with
designated summands in which all parts are odd. The generating function for PDO(n) is given
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by

00 2
S PDO (n) g = 126 (14)
n=0

- fifsfie’

Mahadeva Naika and Shivashankar [13] established many congruences for BPD(n), the
number of bipartitions of n with designated summands and the generating function is given by

" BPD = .
= W= Ry

(1.5)

For more details, one can see [4, 9, 10, 11, 12, 15].
Motivated by the above work, in this paper, we define B,(n), the number of ¢-regular partition
triples of n with designated summands. The generating function for B,(n) is given by

— n f63f€3f23€f33€
A T T} 16

Also, we establish many infinite families of congruences modulo powers of 2 and 3 for By(n).
For example, foreachn > 1 and 8 > 0,

B; (125 2n 4 a; -5 =0 (mod 9),
where a; € {22,34,46,58}.

2 Preliminary results

In this section, we list few dissection formulas which are useful in proving our main results.

Lemma 2.1. The following 2-dissection holds:
AR

=S — 47238, 2.1)
Y
For a proof, we can see [3, p. 40, Entry 25].
Lemma 2.2. The following 2-dissection holds:
3 2
fo _ J;uf]s +qf4{6f36' 2.2)
It fifefse 15 f12
The identity (2.2) was obtained by Xia and Yao [17].
Lemma 2.3. The following 3-dissections hold:
5 ffis
J_J9 9 , 2.3
o fs ek @3
13 fefs | fi
22— +q=2, 24
i Rk TR @9
4 £6 33 2 £3
Ty g Jels |y plelis 2.5)
i B f3 f
Lemma 2.3 was proved by Hirschhorn and Sellers [7].
Lemma 2.4. The following 2-dissections hold:
2 4p 2 2
J% _ fz;féflz +2qf4f3f8f24, (2.6)
fi Bfsfa f3 fiz
fi _ hfifh 5 f22f8f12f24. 2.7

2 [ fsha 1 fafd
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Xia and Yao [16] proved (2.6) by employing an addition formula for theta functions. Replacing
3

g by —¢q in (2.6) and using the fact that (—q; —¢)oo = ff—}, we obtain (2.7).
14

Lemma 2.5. The following 2-dissections hold:
L R A
fifs R 31212 fin

_ fsz%2 ﬁz _ fff6f224 29
flf3 f42f6f224 qufnglzz ( X )

The equation (2.8) was proved by Baruah and Ojah [2]. Replacing ¢ by —¢ in (2.8) and using
3

2.8)

the fact that (—¢; —¢) Ip , we get (2.9).

7
Lemma 2.6. The following 3-dissection holds:
fofs 2 3l
Nif=-"—5 —afofis —2q : (2.10)
YT RA 1 fof3
For a proof, we can see [6].
Lemma 2.7. The following 3-dissection holds:
Jfof 96 3 3 f 32 f 168
fi= —3qfs +4q : (2.11)
! f 3 f 13 8 ’ f 62 -f 93
For a proof, see [3, p.345].
Lemma 2.8. The following 2-dissection holds:
B _ R
== g (2.12)
fi  fife f4
The identity (2.12) was obtained by Hirschhorn et al. [5].
Lemma 2.9. [ 14, p. 212] We have the following 5-dissection formula
fi = ps (al@) —a—q*/a(d’)), (2.13)
where
2 3.5
0= afq) = T3 ) (2.14)

(0:6%¢%) o0
Lemma 2.10. /3, p.303, Entry 17(v)] We have

B(q’ A(q’ C(q’
(80D sSD) s

where A(q) = f(=q*,—¢*), B(q) = f(—¢*, —=¢°) and C(q) = f(~q,—¢°).

Lemma 2.11. For positive integers k and m, we have

™= 2™ (mod 3), (2.16)
W= (mod9), 2.17)
= f2m  (mod 2), (2.18)
2m = fim (mod 4) (2.19)

and
5‘,:” = ,fm (mod 8). (2.20)
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3 Congruences modulo 4 and 8 for B,(n)
Theorem 3.1. For all n > 0 and o, B > 0, we have

B)(12n+11) =0 (mod 8),

By(24n+19)=0 (mod 8),

B, (4-3%" 2 4 3%13) = 5971 . By(4n 4+ 3)  (mod B),

> B, (24-5%n+7-5)¢" =4f] (mod 8),
n=0

> B, (24-5 4 11551 g = 4qf]  (mod 8),
n=0
B, (24520 4 a1 -5 =0 (mod 8),
where ay € {11,59,83,107}.
Proof. Setting ¢ = 2 in (1.6), we find that

.- w_ _fife
B = .
2.0 = R

n=0

Employing (2.8) into (3.7), we obtain

iBZ (2n)q¢" = i + 3¢ 13 fiy
n=0 fl6f36f162 fllof%ff
and 6 £2 6 18 r6
S LI 18 g6
B2n+1)¢" =3 +q )
2 Br (o D" =35 + el

Invoking (2.20) into (3.9), we find that

n=0 le f4

Substituting (2.1) into (3.10), we obtain

I~ 22 18 4 £2 ¢4 2
Y By(4n+1)q" = f1£§2f6+4qf1f}§4f6 (mod 8)
n=0

and 00 8 2 12 2 02 pd pd
ZBZ (4n+3)q" = fz;ifé —i—4qf1 f2f‘£3 Sz (mod 8).
n=0 4 6

The equation (3.12) becomes

> Ba(4n+3)q" = ifs +44fi 51 (mod 8).
n=0

Utilizing (2.10) into (3.13), we get

S w22 a Jodsth
> "By (4n+3)q" = ffE + 497252
n=0 f3 f18

+44 f5fhfls  (mod 8).

(3.1)

3.2)

(3.3)

(3.4)

(3.5)

(3.6)

(3.7

(3.8)

(3.9)

(3.10)

(3.11)

(3.12)

(3.13)

(3.14)
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Extracting the terms involving ¢*"*2 from both sides of the above equation, we arrive at (3.1).
The equation (3.14) implies

> By(12n+43)q" = {17 +4qf3fifé (mod 8). (3.15)
n=0

Using (2.10) and (2.11) into (3.15) and then comparing the terms involving ¢°”*? on both sides
of the resultant equation, we obtain

D Ba(36n+27)q" =5/5 /¢ +4afi 3 fi, (mod 8). (3.16)
n=0
In view of the congruences (3.13) and (3.16), we see that
By(36n+27)=5-By(4n+3) (mod 8). 3.17)

Using the above relation and by induction on «, we arrive at (3.3).
The equation (3.14) implies

> By (12n+7)q" =4f] (mod 8). (3.18)

n=0

Extracting the terms involving ¢*"*! from both sides of the equation (3.18), we get (3.2).
The equation (3.18) implies

> By (24n+7)q" =4f] (mod 8), (3.19)
n=0
which is 8 = 0 case of (3.4). Suppose that the congruence (3.4) is true for 8 > 0, we have
> B, (24-5n+7-5)q" =4f] (mod 8). (3.20)
n=0

Substituting (2.13) into (3.20), we arrive at

Z B, (2452 n 4+ 11 - 5741 ¢ = 4¢f]  (mod 8), (3.21)
n=0
which implies
> By (2450 7.5 " =4 (mod 8), (3.22)
n=0

which implies that the congruence (3.4) is true for 5 + 1. Hence, by induction, the congruence
(3.4) holds for all integer 5 > 0.

Employing (2.13) into (3.4) and then comparing the coefficients of ¢°”*> on both sides of the
resultant equation, we arrive at (3.5).

Extracting the terms involving ¢>"*% for i = 0,2,3,4 from the equation (3.5), we obtain
3.6). O

Theorem 3.2. For all n > 0 and o, 8 > 0, we have

By(36n+35)=0 (mod 8), (3.23)

By(72n+57) =0 (mod 8), (3.24)

B, (432 4 320%2) =521 . By (4n + 1)  (mod 8), (3.25)
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> By (72-5%n+21-5%) q" =4f] (mod 8), (3.26)
n=0
> By (725t n 433524 " = 4qf]  (mod 8), (3.27)
n=0
By (725204 ay - 511 =0 (mod 8), (3.28)

where ay € {33,177,249,321}.

Proof. From the equation (3.11), we arrive at

ZBz (4n+1)q" =3/ /3 +4afifif; (mod 8). (3.29)

Substituting (2.10) and (2.11) into (3.29), we obtain

> By(12n+1)q" = i +4q A (mod 8), (3.30)
— It 7
o0 6
Z B (12n+5)¢" = 2f2;3f6 +4fafs + 4qJJz6 (mod 8) (3.31)
n=0
and -
> By (12n+9)q" = Tf f¢ +4afi 3, (mod 8). (3.32)
n=0
Using (2.10) into (3.32), we find that
> By (12n+9)q" = T3 1§ +4af + 40 f5frff  (mod 8). (3.33)

n=0

Extracting the terms involving ¢°"*? from both sides of the above equation, we arrive at (3.23).
The congruence (3.33) implies

D> By(36n+9)q" =7f1f3 +4qf5 /i f; (mod 8). (3.34)
n=0
In view of the congruences (3.29) and (3.34), we get
B(36n+9)=5-By(4n+1) (mod 8). (3.35)

Using the above relation and by induction on «, we arrive at (3.25).
From the congruence (3.33), we obtain

> By (36n+21)¢q" =4f] (mod 8). (3.36)
n=0

Collecting the coefficients of ¢>**! from both sides of the above equation, we arrive at (3.24).
The congruence (3.36) implies

> By (72n+421)¢" = 4f] (mod 8), (3.37)
n=0

which is 8 = 0 case of (3.26). The rest of the proofs of the identities (3.26)-(3.28) are similar to
the proofs of the identities (3.4)-(3.6). So, we omit the details. O
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Theorem 3.3. Let a3 € {11,59,83,107, 131, 155}, then for all n > 0 and 3,~v > 0, we have

> B (24-7n+5-77) " =2f1fs (mod 4), (3.38)
n=0
Z By (24- 77 n +11- 7)™ = 2qf1f3  (mod 4), (3.39)
n=0
By (24- 77" + a3 - 7)) =0 (mod 4), (3.40)
B, (125212 4 52072) = 3541 . B, (12n 4+ 1) (mod 4), (3.41)
B, (60(5n +i) +25) =0 (mod 4), (3.42)

where i =1,2,3,4.

Proof. From the equation (3.31), we arrive at

f

Substituting (2.12) into (3.43) and then collecting the terms involving ¢*" from the resultant
equation, we get

0o 3
ZBZ (I12n+5)q¢" = Zfo3
1

n=0

(mod 4). (3.43)

> By (24n+5)q" =2f1fs (mod 4), (3.44)
n=0
which is v = 0 case of (3.38). Suppose that the congruence (3.38) is true for v > 0. Substituting
(2.15) into (3.38), we arrive at

> By (247 4 11- 77 ¢ =2 f7 £ (mod 4), (3.45)
n=0
which implies
> B (24770 +5-77) ¢" =2f1 fs (mod 4), (3.46)
n=0

which implies that the congruence (3.38) is true for v 4+ 1. So, by induction, the congruence
(3.38) holds for all integer v > 0.

Employing (2.15) into (3.38) and then extracting the terms involving ¢’"*3 from both sides
of the resultant equation, we get (3.39).

From the equation (3.39), we arrive at (3.40).

The congruence (3.30) reduces to

= 2
Y B(12n+1)¢" =37 =3f5 (a(a’) — g~ ¢*/a(¢’)” (mod4),  (3.47)
n=0
which implies
> B, (60n+25)¢" = f3 (mod 4), (3.48)
n=0
which implies
> B, (300n+25)¢" = ff (mod 4). (3.49)
n=0
In view of the congruences (3.47) and (3.49), we see that
By(300n +25) =3 By(12n+1) (mod 4). (3.50)

Using the above relation and by induction on 3, we arrive at (3.41).
Extracting the terms involving ¢>*** for i = 1,2,3,4 from the equation (3.48), we obtain
(3.42). O
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Theorem 3.4. For all n > 0 and o > 0, we have

> By (430423 ¢" = fiff +3qfife  (mod 8). (3.51)
n=0
Proof. Invoking (2.20) into (3.8), we find that
= 18 5 fift
B, (2n)q" = + 3q mod 8). (3.52)
2 B (an)a" = Tt S0 gy (mod §
Substituting (2.8) and (2.9) into (3.52), we get
- BRI . BRI B
By (4n) ¢" = +q + 6q mod 8 (3.53)
2 a )" = it 4 gy Sy (med®
and 8 4 ¢12 12 p4
- f fite PRI
By (4n+2)¢" =6==% +3 + 3q mod 8). (3.54)
2 Ba(n ot 2" =6+ 35T gy (mod )

The equation (3.54) reduces to

> By (4n+2)q" = £ +3qfi fe (mod 8), (3.55)

n=0

which is o« = 0 case of (3.51). Suppose that the congruence (3.51) is true for o > 0. Employing
(2.10) into (3.51) and then collecting the coefficients of ¢*", ¢*"*! and ¢*"*2, we obtain

iB 20+1 2 0 — r4 f2f33fg
(437 In+2.3%) ¢ :f1+4qf7 (mod 8), (3.56)
1
n=0
> By (4.3t n 2.3 " =3+ 4 £+ qff f§ (mod 8) (3.57)
n=0
and -
ZB 2a+1 2a0\ 0 — f22f32f§
2(4-3 n+10-3 )q =6 (mod 8). (3.58)

12

Substituting (2.10) and (2.11) into (3.57) and then collecting the terms involving ¢*"*! from the
resultant equation, we arrive at

n=0

3 By (430 2.3 ¢ = fi i+ 3qf3 S (mod 8), (3.59)
n=0

which implies that the congruence (3.51) is true for a 4 1. By induction, the congruence (3.51)
holds for all integer « > 0. O

Theorem 3.5. Let ay € {46,94,142,238} and as € {14,62,158,206}, then for all n > 0 and
a, B > 0, we have

B, (16-3**"'n+14.3**) =0 (mod 8), (3.60)
By(16-3%%1n +46-3°*) =0 (mod 8), (3.61)
> By (16-3%41. 55 3832 . 5%0) " = 4f, £ (mod 8), (3.62)
n=0
> By (16-3%F . 5204y 4632 . 52N g = 4 £5 5, (mod 8), (3.63)

n=0
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B, (163715202 4 g4 - 32 . 52971 =0 (mod 8), (3.64)
i B, (163211 . 5% 42232 . 52%) " =4, f7  (mod 8), (3.65)
n=0
f: B, (16321 520% 1y 4 1432 5254 1) ¢m = 447 f10 f]s (mod 8), (3.66)
n=0
B, (1632211 . 5202 4 5. 3% . 52971) =0 (mod 8). (3.67)

Proof. Substituting (2.1) and (2.12) into (3.56), we get

= 2ot 2 /5 VE
> By (83" n42.32)¢" = 22 +4¢=26  (mod 8) (3.68)
n=0 fl fl
and
o f3f3
> B, (8-3n 4 14-32) ¢" = 4f] + 4% (mod 8). (3.69)
1
n=0
Using (2.12) into (3.69), we obtain
S N1
> By (163t n 4 14.32) ¢" = 4f] + 4 fz 3 (mod 8) (3.70)
6
n=0
and -
> By (16-3%Fn 4 38.32) ¢" = 4f, f; (mod 8). (3.71)
n=0

From the equation (3.70), we arrive at (3.60).
The congruence (3.71) is 5 = 0 case of (3.62). Suppose that the congruence (3.62) is true for
a, > 0, we have

> B, (1637 .50 43832 . 5%) ¢" = 4f, f7  (mod 8). (3.72)
n=0

Utilizing (2.13) into (3.72), we get

> B, (16321 . 5204y 44632 . 52 g = 4¢P f5 f5,  (mod 8), (3.73)
n=0

which implies

> B, (1632 . 52042, 43832 . 52002) g = 4f, £ (mod 8), (3.74)

n=0

which implies that the congruence (3.62) is true for S + 1. Hence, by induction, the congruence
(3.62) holds for all integers «, 5 > 0.

Utilizing (2.13) into (3.62) and then collecting the coefficients of ¢>"** from both sides of
the resultant equation, we get (3.63).

Extracting the terms involving ¢>"*** for i = 0, 1,2,4 from the equation (3.63), we obtain
(3.64).

Substituting (2.6) into (3.58) and then collecting the coefficients of ¢>"*! from the resultant
equation, we get

Z By (8-3%"1n4+22.32) ¢" = 4f,f2 (mod 8). (3.75)
n=0
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Extracting the terms involving ¢*"*! from both sides of the equation (3.75), we arrive at (3.61).
The congruence (3.75) implies

> By (16-3%n422.3%) ¢" = 4f,f] (mod 8), (3.76)

n=0

which is 8 = 0 case of (3.65). Suppose that the congruence (3.65) is true for 3 > 0, we have

> By (16-32%. 520, 4223 . 5%) " =4, f]  (mod 8). (3.77)

n=0

Substituting (2.13) into (3.77), we arrive at

> By (16324 . 520%y 1432 520 g = 4g? i fs (mod 8), (3.78)
n=0

which implies

> By (16374 . 52042 22320 522 g =4 fF (mod 8), (3.79)
n=0

which implies that the congruence (3.65) is true for 5 + 1. Hence, by induction, the congruence
(3.65) holds for all integers «, 5 > 0.

Substituting (2.13) into (3.65) and then collecting the coefficients of ¢>"*! from the resultant
equation, we arrive at (3.66).

Extracting the terms involving ¢°*** for i = 0, 1, 3, 4 from both sides of the equation (3.66),
we obtain (3.67). O

Theorem 3.6. Let a¢ € {38,62,86, 110, 134, 158}, then for all n > 0 and «, B,y > 0, we have

i B, (8321 .5% .72 4+ 2.3% . 5% .72 ¢" = f}  (mod 4), (3.80)
n=0
B, (8 3%t .5%H(5n 4+ 4) +2.32*.5%2) =0 (mod 4), (3.81)
i B, (832t . 5% 720ty 2. 320 54 7Y g0 = f2 (mod 4), (3.82)
n=0
By (83215972 4 6. 320715977 =0 (mod 4), (3.83)

where i =1,2,3,4.
Proof. The equation (3.68) becomes

> By (8-3n42-3)¢" = f} (mod 4), (3.84)

n=0

which is 5 = « = 0 case of (3.80). Suppose that the congruence (3.80) is true for «, 5 > 0 and

v = 0. Substituting (2.13) into (3.80) with v = 0 and then comparing the coefficients of ¢>»*2
on both sides of the resultant equation, we get
o0
> By (832t .54y 42,32 5% " = 3£2 (mod 4), (3.85)
n=0
which implies (3.81)
and -
> B, (8-3%F . 542y 2. 320 512 " = 3£ (mod 4). (3.86)

n=0
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Again, using (2.13) into (3.86), we arrive at

> By (832t .54y 4232 . 5 " = 2 (mod 4), (3.87)
n=0

which implies
> By (832t .54y 12320 54 gn = - (mod 4), (3.88)
n=0

which implies that the congruence (3.80) is true for 8 4 1 with v = 0. By induction, the con-
gruence (3.80) holds for o, 5 > 0 with v = 0. Suppose that the congruence (3.80) is true for
a, 8,7 > 0. Using (2.15) into (3.80), we arrive at

> By (8-3%F .57 42320 54 7 " = 7 (mod 4), (3.89)
n=0

which implies
> By (837t .57y 42320 54 7 " = £ (mod 4), (3.90)
n=0

which implies that the congruence (3.80) is true for v + 1. Hence, by induction, the congruence
(3.80) holds for all integers a, 5,y > 0.

Employing (2.15) into (3.80) and then collecting the coefficients of ¢’"** from both sides of
the resultant equation, we obtain (3.82).

From the congruence (3.82), we arrive at (3.83). O

Theorem 3.7. For all n > 0 and o > 0, we have

B> (8-3%"n+4.32"2) = B,(8n +4) (mod 8), (3.91)
B, (16322 +8.32%2) = B,(16n+8) (mod 8). (3.92)
Proof. The equation (3.53) reduces to
S n — f22f;1‘ 2 2 22 2
232(477/)(] =M mmr +7qf1f2f3f6 (mOd 8) (393)
fifs |,
n=0 17376

Employing (2.8) and (2.9) into (3.93), we get

oo 2 r4
}:&@mef%%2+wﬁﬁﬁﬁ (mod 8) (3.94)
n=0 1/3J6
and -
Z By (8n+4)q" = flfs +7qfifé  (mod 8). (3.95)
n=0

Substituting (2.10) into (3.95) and then collecting the coefficients of ¢*”*! from the resultant
equation, we arrive at

Y B (24n+12)¢" =1 f3 +4f 3 + afif  (mod 8). (3.96)
n=0

Using (2.10) and (2.11) in the above equation and then extracting the terms involving ¢*"*! from
the resultant equation, we obtain

> By (12n+36)q" = fi 3 +Tafi fo  (mod 8). (3.97)
n=0
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In view of the congruences (3.95) and (3.97), we find that
By(72n+36) = B,(8n+4) (mod 8). (3.98)

Using the above relation and by induction on «, we arrive at (3.91).
Using (2.8) and (2.9) into (3.94), we get

00 2 ¢4
> By (16n)¢" = J;Z J;“ >+ 3qfif3fifs  (mod 8) (3.99)
ot fif5 15
and -
> By (16n+8)q" =5f1f) +3qfife (mod 8). (3.100)

n=0

In view of the congruences (3.94) and (3.99), we get
By(16n) = B,(8n) (mod 8). (3.101)

Substituting (2.10) into (3.100) and then comparing the coefficients of ¢***! on both sides of the
resultant equation, we obtain

> B, (48n+24) " = 3£ f; +4f1 3 + 5aff§  (mod 8). (3.102)
n=0
Employing (2.10) and (2.11) in the above equation and then extracting the terms involving ¢*"*!
from the resultant equation, we get
> By (144n+72) ¢" =5f £ +3qfifs (mod 8). (3.103)
n=0
In view of the congruences (3.100) and (3.103), we obtain
By(144n +72) = By(16n+8) (mod 8). (3.104)
Using the above relation and by induction on «, we arrive at (3.92). O
4 Congruences modulo 3 and 9 for B;(n)
Theorem 4.1. For all n > 0 and o > 0, we have
B3(6n+1)=0 (mod 3), 4.1
Bi3(6n+5)=0 (mod 3), 4.2)
B3 (2:3*Pn+43") = B3(18n+9) (mod 9). 4.3)
Proof. Setting ¢ = 3 in (1.6), we find that
. 1613
Bs(n)¢" = . 4.4
nZ:;) f115 fi
Employing (2.2) into (4.4), we obtain
[e'S) 379 4 £7
S B (2n)¢" = fgfg +3qf2f§]f62flg (4.5)
n=0 Fifis 1 Jg
and 2 £5 5 6 £9 13
> f2f3f6 f2f3f18
B3;(2n+1)¢" =3 +q . 4.6)
2 Pne ) hhis PR
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Invoking (2.16) and (2.17) into (4.6), we find that

. n _— f22f62 f26f138
By (2n+1)¢" = 32220 4 =218 do). 4.7
; s@n+ )" =3pp e (mod9) (4.7)
Substituting (2.4) into (4.7), we have
[’} 5
> Bi(6n+1)¢" =3f1fs+ 3q% (mod 9), (4.8)
o fifs
S SN 1
By (6n+3)¢" =3 & do 4.9
;3(n+ )q R AT (mod 9) (4.9)
and - )
> Bs (6n+5)q”53f3f6 (mod 9). (4.10)

fif

From the equations (4.8) and (4.10), we arrive at (4.1) and (4.2) respectively.
The equation (4.9) becomes

n=0

IS1é
R

513
fifs

> Bi(6n+3)q" = + i +q (mod 9). 4.11)

n=0

Using (2.4) and (2.11) into (4.11) and then extracting the terms involving ¢°"*! from both sides
of the resultant equation, we get

135
e

N w3 B306 5433
ZB3(18n+9)q = ﬁ+7fif3'+q
s 1/3

(mod 9). 4.12)

Again, using (2.4) and (2.11) in the above equation and then collecting the coefficients of ¢*"*!

from the resultant equation, we obtain

B2 518

;033 (54n+27)q" =3 Tn T 6 + 5 (mod 9). (4.13)

In view of the congruences (4.12) and (4.13), we see that
B3(54n +27) = B3(18n+9) (mod 9). 4.14)
Using the above relation and by induction on «, we arrive at (4.3). O

Theorem 4.2. Let a7 € {22,34,46,58} and ag € {44,68,92,116}, then for all n > 1 and
a, B >0, we have

B3(12n+10) =0 (mod 9), (4.15)

B3(24n+20)=0 (mod9), (4.16)

B; (2-3*"'n) = B3(2n) (mod 9), (4.17)

B; (322" 4+ 2%13) = By(6n+2) (mod 9), (4.18)

i& (12-5%n+2-5%)¢" =3f1fs (mod9), (4.19)
n=1

i B3 (12-5%Hn 42.5%42) ¢" = 3f5fis (mod 9), (4.20)

n=1
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B; (12520 4 a7 - 51 =0 (mod 9),

B; (322 4+ 2%M) = By(6n+4) (mod 9),

> B3(24-5%n+4.5%)¢" =6f1f3 (mod9),
n=1

> B3 (245t n+4.572) " =6fsfis  (mod 9),

n=1
B; (245 n 4 a5 -5 =0 (mod 9).
Proof. Invoking (2.16) and (2.17) into (4.5), we find that

o0 2
Z B;(2n)¢" =1+ 3qf2J;6 élg (mod 9),
i filfs
which implies
233 2n)q f2f6f‘8 (mod 9).
T 13
Substituting (2.5) into (4.27), we obtain
oo 4 4
Z B; (6n)¢" = 3qf2 {6 (mod 9),
n=1 f]
o0 6 16
> Bs(6n+2)q" = f fof 3 (mod 9)
n=1 1 f6
and - <
> Biy(6n+4)q" = 6@ (mod 9).
n=1 fl
The equation (4.28) can be written as
233 6n) q foﬁf‘S (mod 9).
T L3

In view of the congruences (4.27) and (4.31), we get
B3(6n) = B3(2n) (mod 9).

Using the above relation and by induction on «, we arrive at (4.17).
The congruence (4.29) reduces to

13

233 6n+2)q”:3f

n=1

(mod 9).
Employing (2.12) into (4.33), we obtain

> Bi(12n+2)¢" =3f1f; (mod 9)

n=1

and

fe

ZB; 12n 4 8) ¢" = 7
2

n=1

(mod 9).

421

(4.22)

(4.23)

(4.24)

(4.25)

(4.26)

4.27)

(4.28)

(4.29)

(4.30)

(4.31)

(4.32)

(4.33)

(4.34)

(4.35)
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Extracting the terms involving ¢>"*! from the equation (4.35), we get (4.16).
The equation (4.35) implies

s

> B3 (24n+8)q" = 7
1

n=1

(mod 9). (4.36)

In view of the congruences (4.33) and (4.36), we find that
B3(24n+8) = B3(6n+2) (mod 9). 4.37)

Using the above relation and by induction on «, we arrive at (4.18).
The congruence (4.34) is 5 = 0 case of (4.19). Suppose that the congruence (4.19) is true for
B > 0 and using (2.13) into (4.19), we get

> B3 (1250 +2.5%%2) " =35 f15 (mod 9), (4.38)
n=1

which implies
> B3 (125270 +2.522) " =3, f3  (mod 9), (4.39)
n=1

which implies that the congruence (4.19) is true for 8 + 1. So, by induction, the congruence
(4.19) holds for all integer 5 > 0.

Employing (2.13) into (4.19) and then collecting the coefficients of ¢>"*** from both sides of
the resultant equation, we obtain (4.20).

From the equation (4.20), we arrive at (4.21).

The equation (4.30) reduces to

Lg

2 (mod 9). (4.40)

> Bs(bn+4)q" =6

n=I

Extracting the terms involving ¢>**! from both sides of the above equation, we get (4.15).
The equation (4.40) implies

oo n_ ﬁ
> Bi(12n+4)q" = 7

n=1

(mod 9). (4.41)

The rest of the proofs of the identities (4.22)-(4.25) are similar to the proofs of the identities
(4.18)-(4.21). So, we omit the details. O

5 Congruences modulo 3 and 9 for By(n)

Theorem 5.1. For all n > 0 and o > 0, we have

By(3n+1)=0 (mod 3), (5.1)
By(3n+2)=0 (mod 3), (5.2)
By(9n+6) =0 (mod 9), (5.3)
By(3%3n) = By(9n) (mod 9). (5.4)

Proof. Letting ¢ = 9 in (1.6), we find that

- n_ Jofsfis
By (n = 2=z ol 5.5
2 Bo(m " = s &2



102 M. S. Mahadeva Naika and Harishkumar T

Invoking (2.17) into (5.5), we see that

- n_f16f63f93f138f§7
B = 21-679/18727 do). 5.6
2= e, ) G0
Using (2.3) into (5.6), we obtain
S By (3n)¢" = 17 f;f3f9 +afSFS (mod 9), 5.7)
. 18
00 202 r4
> By(3n+1)q" = f22f32f9 (mod 9) (5.8)
n=0 fl f18
and
- f2f3 f9
nZ:OBg (3n+2)¢" f1 - (mod 9). (5.9)

From the equations (5.8) and (5.9), we arrive at (5.1) and (5.2) respectively.
Employing (2.10) and (2.11) into (5.7), we obtain (5.3) and

S By On)q” =TI oy pspe 288 (mod 9). (5.10)

n=0 fl 8

Again, using (2.10) and (2.11) into (5.10) and then collecting the coefficients of ¢>" from both
sides, we get

ZBg (27n) ¢" = 1 J;z 4 2qf8 8 + 2 f5fE (mod 9). (5.11)
_ 18
In view of the congruences (5.10) and (5.11), we see that
By(27n) = By(9n) (mod 9). (5.12)
Using the above relation and by induction on «, we arrive at (5.4). O
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