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Abstract. Here we discuss simple expansions of C̆ech closure operators on a fixed non-empty
set X . We compare certain properties of closure operators with their simple expansions.

1 Introduction

Larson R. E. and Throne W. J. introduced covering relations in the lattice of T1 Topologies[5].
Then Agashe P. and Levine N. discussed sum and product of covers in the lattice of topologies[1].
Čech E. introduced a generalized notion of Kuratowski closure operator which in tern makes a
space which is a generalization of topological spaces[2]. Many mathematicians contributed in
this area. P.T. Ramachandran studied the lattice of Čech Closure operators [7, 8, 9, 10]. Analo-
gous to the concept of immediate successors Kunheenkutty M. defined upper neighbours in the
lattice of C̆ech closure operators[3]. Kunheenkutty M.et.al. discussed adjacency of generaliza-
tion of Co-finite closure operators in [4].

Simple Extensions of topologies were introduced by Norman Levine in [6]. The simple
extension of a topology τ on X by A ⊆ X is the smallest topology on X containing A and τ [6].
The concept of simple expansions of C̆ech closure operators is introduced in the same[4, 3]. We
note that some properties of a closure operator V need not be shared with the simple expansion of
V . In this paper we investigate under what conditions does certain properties of closure operators
hold for its simple expansion.

2 Preliminaries

Let X be a set and P (X) denotes the power set of X . A C̆ech closure operator on a set X is a
function V : P (X)→ P (X) satisfying V (φ) = φ, A ⊆ V (A), and V (A ∪B) = V (A) ∪ V (B)
for every A, B ∈ P (X). For brevity we call V a closure operator on X and the pair (X,V ) a
closure space.

A subset S of a closure space (X,V ) is said to be closed if V (S) = S, and is said to be open if
its complement is closed. The collection of all open sets in a closure space (X,V ) is a topology
on X , called the topology associated with V . A closure operator V is said to be topological if V
is idempotent.

The closure operator I : P (X) → P (X) defined by I(φ) = φ and I(A) = X , for every
subset A ⊆ X, A 6= φ is called the indiscrete closure operator. This closure operator is the
topological closure operator associated with the indiscrete topology on X . The closure operator
D on X given by D(A) = A for all A ∈ P (X), is the topological closure operator associated
with the discrete topology on X , called the discrete closure operator.

Define Cα on P (X), where α is any infinite cardinal number such that α ≤ |X|, by,

Cα(A) =

{
A ; if |A| < α

X ; otherwise

The closure operator C0 : P (X)→ P (X) given by

C0(A) =

{
A if Ais finite,
X otherwise.
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When α = ℵ0, we get that Cα = Cℵ0 = C0. We have C0(C0(A)) = C0(A) for every A ⊆ X .
Thus C0 is topological closure operator and is associated with co-finite topology.

Let V1, V2 be two closure operators on set X . Then V1 is said to be coarser than V2 if V2(A) ⊆
V1(A) for every A ∈ P (X) and is denoted by V1 ≤ V2. This relation in the set of all closure
operators on X is a partial order. The set of all closure operators on X forms a lattice under
this partial order and is denoted by L(X). The smallest element of this lattice is the indiscrete
closure operator I and the largest is the discrete closure operator D. Let {Va; a ∈ A} where A is
some indexing set, be a non empty collection of closure operators on L(X). A closure operator
V which is the infimum of {Va} in L(X) is given by V (A) = ∪

a∈A
Va(A) for A ∈ P (X)[2]. If

U is the supremum of a non empty collection {Va} in L(X) and A ∈ P (X), then x ∈ U(A) if
and only if for each finite cover {A1, A2, . . . , An} of A, there exists an Ai such that x ∈ Va(Ai)
for each a ∈ A[2]. Let U and V be two closure operators on X such that U < V . Then V is
called an upper neighbour of U [4] if W is any closure operator on X such that U ≤ W ≤ V ,
then either W = U or W = V . Then U and V are said to be adjacent.

Simple expansions of a closure operator is defined and discussed in [4]. First of all we
need closure operators of the form VA,x. Then we look at some properties of this closure oper-
ators and give the definition of simple expansion. In this section we investigate some properties
of simple expansions also.

Definition 2.1. [3] Let A be a non empty proper subset of X and x ∈ A. Define, V(A,x) :
P (X)→ P (X) by,

V(A,x)(S) =


φ ; if S = φ,

X − {x} ; if S 6= φ and S ⊆ X −A,
X ; otherwise.

Then V(A,x) is a closure operator on X .

Lemma 2.2. Let V be a closure operator on X . Then V(A,x) ≤ V if and only if x /∈ V (X −A).

Proof. Suppose V(A,x) ≤ V . Then V (X−A) ⊆ V(A,x)(X−A) = X−{x}. Thus x /∈ V (X−A).
Conversely let x /∈ V (X−A). Suppose S ⊆ X−A, then V (S) ⊆ V (X−A). x /∈ V (X−A)⇒
x /∈ V (S) ⇒ V (S) ⊆ X − {x} = V(A,x)(S). If S * X − A, then V (S) ⊆ V(A,x)(S) = X .
Hence V(A,x) ≤ V .

Theorem 2.3. Let A and B be subsets of X such that B ∈ A and let x ∈ X such that x ∈ B. Let
y ∈ X , x 6= y. Then V(B,x) is an upper neighbour of V(A,x) if and only if A \ B is a singleton
subset of X .

Proof. Suppose A = B ∪ {y}. Since B ⊆ A, then x /∈ V(A,x)(S) ⇒ S ⊆ X \ A ⊆ X \ B ⇒
S ⊆ X \ B ⇒ x /∈ V(B,x)(S). That is V(A,x) ≤ V(B,x). Let W be a closure operator on X such
that V(A,x) ≤ W ≤ V(B,x). Then V(B,x)(X \ A) ⊆ W (X \ A) ⊆ V(A,x)(X \ A). Since B ⊆ A,
X \A ⊆ X \B. Thus W (X \A) ⊆W (X \B) and this implies that V(A,x)(X \A) = X \ {x}.
Also x /∈ V(B,x)(X \ A) = X \ {x}. Thus x /∈ W (X \ B). Then by Lemma 2.2, V(B,x) ≤ W .
Hence W = V(B,x).

Now suppose V(B,x) is an upper neighbour of V(A,x). Then V(A,x) < V(B,x). Then V(B,x)(X \
A) ⊆ V(A,x)(X \A) = X \ {x}. Thus x /∈ V(B,x)(X \A). This implies that (X \A) ⊆ (X \B).
That is B ⊆ A. Suppose A\B is a non-empty set such that its cardinality is greater than or equal
to 2. Then we can find a C ⊆ X such that B ⊂ C ⊂ A. Then V(A,x) ≤ V(C,x) ≤ V(B,x). Then
either V(C,x) = V(A,x) or V(C,x) ≤ V(B,x). This is a contradiction. Hence A \ B is a singleton
set.

Theorem 2.4. Suppose that A and B are two infinite subsets of X such that x ∈ A ∩ B, then
V(A,x)

∨
V(B,x) = V(A∩B,x).

Proof. We have V(A,x) ≤ V(A∩B,x) and V(B,x) ≤ V(A∩B,x). Thus V(A,x)
∨
V(B,x) ≤ V(A∩B,x). In

order to prove V(A∩B,x) ≤ V(A,x)
∨
V(B,x), it is enough to prove that x /∈ V(A,x)

∨
V(B,x)(X −

(A ∩B)) by Lemma 2.2.
Since V(A,x) ≤ V(A,x)

∨
V(B,x) and V(B,x) ≤ V(A,x)

∨
V(B,x), x /∈ V(A,x)

∨
V(B,x)(X − A) and

x /∈ V(A,x)
∨
V(B,x)(X −A). Hence x /∈ V(A,x)

∨
V(B,x)(X − (A ∩B)).
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Definition 2.5. [3] Let V be any closure operator on X and A be a subset of X such that x ∈ A.
The closure operator V xA = V

∨
V(A,x) is called a simple expansion of V by A at x. Then it it is

easy to see that,

V xA (S) =

{
V (S)− {x} ; if S ∩ (X −A) 6= φ and x /∈ V (S ∩A)
V (S) ; otherwise.

Remark 2.6. If A is closed in (X,V ), then A is closed in (X,V xA ).

Lemma 2.7. Let (X,V ) be a closure space. Suppose that A and B are two subsets of X such
that x ∈ A ∩B. Then V xA ≤ V xA∩B and V xB ≤ V xA∩B .

Proof. Let S ⊆ X . Then

x ∈ V xA∩B(S) ⇒ S ⊆ A ∩B or x ∈ V (S ∩A ∩B)
⇒ S ⊆ A or x ∈ V (S ∩A)
⇒ x ∈ V xA (S).

Then V xA∩B(S) ⊆ V xA (S). Hence V xA ≤ V xA∩B . Similarly we can prove that V xB ≤ V xA∩B .

Lemma 2.8. Let (X,V ) be a closure space. Suppose that A and B are two subsets of X such
that x ∈ A ∪B. Then V xA∪B ≤ V xA and V xA∪B ≤ V xB .

Proof. Let S be a subset of X . Then

x ∈ V xA (S) ⇒ S ⊆ A or x ∈ V (S ∩A)
⇒ S ⊆ A ∩B or x ∈ V (S ∩ (A ∪B)) since S ∩A ⊆ S ∩ (A ∪B)
⇒ x ∈ V xA∪B(S).

Thus V xA∪B ≤ V xA . Similarly we can prove that V xA∪B ≤ V xB .

Remark 2.9. We have V ≤ V xA∪B ≤ V xA ≤ V xA∩B by Lemma 2.7 and Lemma 2.8.

Lemma 2.10. Let A and B are subsets of X such that A ∪ B 6= X . Let x ∈ A ∩ B. Suppose V
is a closure operator on X such that x /∈ V ((X \B) ∩A). Then V xA ∨ V xB = V xA∩B .

Proof. We have by Lemma 2.7, V xA ≤ V xA∩B and V xB ≤ V xA∩B . Therefore we get V xA
∨
V xB ≤

V xA∩B . To prove the converse inequality it is enough to prove that x /∈ V xA
∨
V xB (X \ (A ∩ B)).

We have x /∈ V xA (X \ A) and x /∈ V xB (X \ B). This implies that x /∈ V xA
∨
V xB (X \ A) and

x /∈ V xA
∨
V xB (X \B). Hence x /∈ V xA

∨
V xB (X \ (A ∩B). Thus V xA∩B ≤ V xA

∨
V xB .

Next we find out the relation between simple expansion of closure operators and upper neigh-
bours of closure operators.

Theorem 2.11. Let U and V be two closure operators on a set X such that U is an upper
neighbour of V . Then U is a simple expansion of V at some point x ∈ X .

Proof. Suppose that U is an upper neighbour of V . Then there exists a subset A of X such that
U(A) ⊂ V (A). Let x ∈ A. Consider the simple expansion of V by A at x. We have V ≤ V xA .
We prove that V xA ≤ U . That is to prove that U(S) ⊆ V xA (S) for each S ⊆ X .
Case (i) S ⊆ X or x ∈ V (S ∩A).
In this case V xA (S) = V (S). Therefore U(S) ⊆ V xA (S).
Case (ii) S ∩ (X \A) 6= φ and x /∈ V (S ∩A).
In this case V xA (S) = V (S) \ {x}. In order to prove U(S) ⊆ V xA (S), it is enough to prove that
x /∈ U(S). Since x /∈ V (S ∩A) and V < U , we have

x /∈ U(S ∩A) (2.1)

Since A is a V -neighbourhood of x, A is a U -neighbourhood of x. Therefore A ∪ (X \ S) is a
U -neighbourhood of x. This implies that x /∈ U(X \ (A ∪ (X \ S))). That is

x /∈ U(S ∩ (X \A)) (2.2)
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Hence from 2.1 and 2.2, x /∈ U(S). Therefore we get U(S) ⊆ V xA (S) for each S ⊆ X . Thus
V ≤ V xA ≤ U . Now by the definition of upper neighbours either V = V xA or U = V xA . Since
V 6= V xA , we have U = V xA . This completes the proof.

Example 2.12. Converse of the Lemma 2.11 is not true. Let X = {a, b, c, d}. Define V :
P (X) → P (X) as V (φ) = φ, V ({a}) = {a, b}, V ({b}) = {a, b, c}, V ({c}) = {c}, V ({d}) =
{a, d} and V (B) = ∪

x∈B
V ({x}). Now let A = {a} and consider V aA . Then V aA({a}) = {a, b},

V aA({b}) = {b, c}, V aA({c}) = {c} and V aA({d}) = {d}. Thus V aA is not an upper neighbour of
V , since V 6 U 6 V xA where U is given by U(φ) = φ. U({a}) = {a, b}, U({b}) = {a, b, c},
U({c}) = {c}, U({d}) = {d} and U(B) = ∪

x∈B
V ({x}).

If V is a topological closure operator, then simple expansion of V by A at a point x need not
be a topological closure operator.

Example 2.13. Let X = R, A = Z and x = 1. Then C0(Z) = R, where C0 is the co-finite
closure operator. Now Cx0A(R − Z) = R − {1}. But Cx0A(C

x
0A(R − Z)) = Cx0A(R − {1}) =

C0(R−{1}) = R. Here C0 is a topological closure operator, but Cx0A is not a topological closure
operator.

Now we check when simple expansion of a topological closure operator becomes topological.

Theorem 2.14. Let V be a closure operator onX and letA ⊆ X with x ∈ A such that V (A) = A
and V (X \{x}) = X \{x}. Then if V is a topological closure operator, then V xA is a topological
closure operator.

Proof. Suppose V is a topological closure operator. Then V (V (A)) = V (A) for every A ⊆ X .
Now suppose that S ⊆ X .
Case (i):S ∩ (X \A) = ∅.
That is S ⊆ A. In this case V xA (S) = V (S). Since S ⊆ A, we have V (S) ⊆ V (A) = A. Thus
V xA (V (S)) = V (S) since V (S) ⊆ A. Now V xA (V

x
A (S)) = V xA (V (S)) = V (V (S)) = V (S) =

V xA (S).
Case (ii): x ∈ V (S ∩A).
In this case V xA (S) = V (S). We have S ⊆ V (S) ⇒ S ∩ A ⊆ V (S) ∩ A ⇒ V (S ∩ A) ⊆
V (V (S) ∩A). Hence x ∈ V (V (S) ∩A) and therefore V xA (V

x
A (S)) = V xA (S).

Case (iii): S ∩ (X \A) 6= ∅ and x /∈ V (S ∩A).
Then V xA (S) = V (S) \ {x}. Since S ⊆ V xA (S), S ∩ (X \ A) 6= ∅ ⇒ V xA (S) ∩ (X \ A) 6= ∅ and
x /∈ V (V xA (S) ∩ A). Hence x /∈ V xA (S)⇒ x /∈ V xA (V xA (S)). Thus V xA (V

x
A (S)) ⊆ V xA (S). If V is

a topological closure operator, V xA is a topological closure operator.

Remark 2.15. Converse of the above Theorem 2.14 is not true. That is there exists a closure
operator V which is not a topological closure operator but it has a simple expansion V xA where
V (A) = A which is topological.

Example 2.16. Let X = {a, b, c}. Let V : P (X) → P (X) be defined as V ({a}) = {a},
V ({b}) = {b, c}, V ({c}) = {c, a} and V (A) = ∪

s∈S
V ({s}). Then V is a closure operator on X

which is not a topological closure operator. Now consider the simple expansion of V byA = {a}
at a. We have V aA({a}) = V ({a}) = {a}, V aA({b}) = {b, c}, V aA({c}) = V ({c}) − {a} = {c}
and V aA(S) = ∪

s∈S
V ({s}). Then V aA is a topological closure operator.

3 Properties of Simple Expansions of Closure Operators

In this section we check under what conditions does various properties of closure opera-
tors like regularity, normality and separation axioms hold for its simple expansions. Recall the
definition of a regular closure space.

Definition 3.1. [2] A closure space (X,V ) is said to be regular if for each point x ∈ X and a
subset S of X , such that x /∈ V (S), there exists neighbourhoods U1 of x and U2 of S such that
U1 ∩ U2 = φ.
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Now we analyze regularity property of the simple expansion of a closure operator.

Theorem 3.2. Suppose that (X,V ) is a regular closure space and let A ⊆ X such that V (A) =
A. Let x ∈ A. Then (X,V xA ) is a regular closure space.

Proof. Suppose V is regular and A ⊆ X such that V (A) = A. Let S ⊆ X . If S ⊆ A, then
V xA (S) = V (S). Since V ≤ V xA , every V - neighbourhood is a V xA -neighbourhood of S therefore
V xA is regular.

If y 6= x, then y /∈ V xA (S) implies that y /∈ V (S). Since V is regular, there exists neighbour-
hoods U1 of x and U2 of S such that U1 ∩ U2 = φ. Again, since every V -neighbourhood is a V xA
neighbourhood, V xA is regular. Now suppose x /∈ V xA (S), by definition of V xA , S ∩ (X − A) 6= φ
and x /∈ V (S ∩A). Now x /∈ V (S ∩A) implies that there exists a neighbourhood U of x and W
of S such that U ∩W = φ.

We have U and A are V xA -neighbourhood of x implies that U ∩ A is a neighbourhood of x.
Now U ∩ A ⊆ A and therefore V xA (U ∩ A) ⊆ V xA (A) = V (A) = A. Also U ∩ A ⊆ U implies
that V xA (U ∩ A) ⊆ V (U). Thus V xA (U ∩ A) ⊆ V (U) ∩ A. We have U ∩W = φ implies that
U ⊆ X −W . Then V (U) ⊆ V (X −W ). Now X − V (X −W ) ⊆ X − V (U).
V (U) ∩A ⊆ V (U) then X − V (U) ⊆ X − (V (U) ∩A). Thus we have

S ⊆ X − V (X −W )

⊆ X − V (U)
⊆ X − (V (U) ∩A).

As mentioned above we have V xA (U ∩A) ⊆ V (U) ∩A. Thus X \ V (U) ∩A ⊆ X \ V xA (U ∩A).
Therefore S ∩ A ⊆ X \ V xA (U ∩ A). Now V xA (U ∩ A) = V (U ∩ A) ⊆ V (A) = A. Then
S ∩ (X \A) ⊆ (X \A) ⊆ X \ (V xA (U ∩A)). Hence X \ (U ∩A) is a neighbourhood of S. Thus
U ∩ A is a neighbourhood of x and X \ (U ∩ A) is a neighbourhood of S. Hence (X,V xA ) is a
regular closure space.

Definition 3.3. [2] A closure space (X,V ) is said to be T0 if x ∈ V ({y}), y ∈ V ({x}) implies
that x = y, and is said to be T1 if every singleton subset of X is closed in X .

Definition 3.4. Let (X,V ) be a closure space. Two subsets S1 and S2 of X are said to be
separated if there exists neighbourhoods U1 of S1 and U2 of S2 such that U1 ∩U2 = φ. A closure
space (X,V ) is said to be separated if any two distinct points of X are said to be separated.

Note that any expansion of a T0 (respectively T1, T2 ) topological space has the same separa-
tion property.

Theorem 3.5. Let (X,V ) be a closure space which is T0, T1 or separated and x ∈ X and A ⊆ X
such that x ∈ A. Then (X,V xA ) is T0, T1 and separated.

Proof. Suppose (X,V ) is T0. Suppose y ∈ V xA ({z}) and z ∈ V xA ({y}). Then y ∈ V ({z}) and
z ∈ V ({y}). Since V is T0, y = z.
Now suppose V is a T1 closure operator. Then since V xA (S) ⊆ V (S) for every subset S of
X , V xA is T1. Now we have to prove that if any two subsets in (X,V ) is separated in (X,V ),
then any two sets in (X,V xA ) is also separated. For that suppose that S1 and S2 are subsets of
X . Then there exists neighbourhoods U1 of S1 and U2 of S2 such that U1 ∩ U2 = φ. That is
S1 ⊆ X − V (X − U1) and S2 ⊆ X − V (X − U2). We have V xA (S) ⊆ V (S) for every subset S
of X . Then S1 ⊆ X − V xA (X − U1) and S2 ⊆ X − V xA (X − U2). Hence S1 and S2 are separated
in (X,V xA ).

There is a characterization theorem for normal closure spaces in [2] as follows,

Theorem 3.6. [2] A closure space (X,V ) is normal if and only if S1, S2 subsets of X such that
V (S1) ∩ V (S2) = φ, then S1 and S2 are separated and if x ∈ X and S ⊆ X are such that
V ({x}) ∩ V (S) 6= φ, then x ∈ V (S).

Theorem 3.7. Suppose (X,V ) be a normal closure space. Let A ⊆ X such that x ∈ A and
V ({x}) = {x}. Consider the simple expansion V xA . Then (X,V xA ) is a normal closure space.
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Proof. Suppose (X,V ) is a normal closure space. Then we have V (S1) ∩ V (S2) = φ, implies
that S1 and S2 are separated. Now suppose V xA (S1)∩V xA (S2) = φ. Then V xA (S1) ⊆ X −V xA (S2)
and V xA (S2) ⊆ X−V xA (S1). ThenX−S1 is a neighbourhood of S2 andX−S2 is a neighbourhood
of S1. Hence S1 and S2 are separated. Now we have to prove that V xA ({y})∩V xA (S) 6= φ implies
that y ∈ V xA (S). Suppose y 6= x, V xA ({y}) ∩ V xA (S) 6= φ, S ⊆ X . We have V xA ({y}) = V ({y})
or V xA ({y}) = V ({y})− {x}. Since V is normal, this implies that y ∈ V (S). Next consider the
case when y = x. Then V xA ({x}) = V ({x}) by definition and by assumption V xA ({x}) = {x}.
If V xA ({x}) ∩ V xA (S) 6= φ implies that {x} ∩ V xA (S) 6= φ. Then x ∈ V xA (S). Hence (X,V xA ) is
normal.

Theorem 3.8. [6] Let (X, τ) be separable and A /∈ τ . Then (X, τ(A)) is separable if and only
if (A, τ ∩A) is separable.

Theorem 3.9. Let (X,V ) be a closure space. Let x ∈ X and A ⊆ X such that x ∈ A. Then
(X,V ) is separable if and only if (X,V xA ) is separable.

Proof. Suppose (X,V xA ) is separable. Then there exists a countable set S of X such that
V xA (S) = X . Since V xA (S) ⊆ V (S), we have V (S) = X . Hence (X,V ) is separable.

Conversely let (X,V ) be separable. Let S ⊆ X such that S is countable and V (S) = X . If
S ⊆ A, then V xA (S) = V (S) = X and if x ∈ V (S∩A), then V xA (S) = V (S) = X . Now suppose
S ∩X−A 6= φ and x /∈ V (S ∩A), then V xA (S) = V (S)−{x} = X−{x}. Now consider the set
S ∪ {x}. We have V xA (S ∪ {x}) = V xA (S)∪ V xA ({x}) = X − {x} ∪ V ({x}) = X . Thus (X,V xA )
is separable.

Next we check simple expansion of a connected closure space. First of all let us define semi
separated subsets of a closure space.

Definition 3.10. [2] Let (X,V ) be a closure space. Two subsets S1 and S2 of X are said to be
semi separated if there exist neighbourhoods U1 of S1 and U2 of S2 such that U1 ∩ S2 = ∅ =
U2 ∩ S2.

Definition 3.11. [2] A subset S of a closure space (X,V ) is said to be connected if S is not the
union of two non empty semi separated subsets of (X,V ). That is S = S1 ∪ S2, (V (S1) ∩ S2) ∪
(S1 ∩ V (S2)) = φ implies that S1 = φ or S2 = φ.

Example 3.12. Let X = Z, A = {1, 2, . . . , n} and x = 2. Then C2
0A(Z − {2}) = Z − {2}

since Z − {2} ∩ Z − {1, 2, . . . , n} 6= φ and 2 /∈ C0(Z − {2} ∩ A). Then Z = {2} ∩ Z − {2}.
And {2} ∩ C2

0A(Z − {2}) = φ and C0({2}) ∩ (Z − {2}) = φ. That is (X,C0) is connected but
(X,C2

0A) is not connected.

Now we characterize simple expansion of connected sets.

Theorem 3.13. Let (X,V ) be a closure space. LetA ⊆ X be such that x ∈ X . If (X \A, V |X\A)
is connected, then (X,V xA ) is connected.

Proof. Suppose that (X\A, V |X\A) is connected. Assume thatX = X1∪X2 such that V xA (X1)∩
X2 = ∅ and X1 ∩ V xA (X2) = ∅. We have V xA (S) = V (S) or V xA (S) = V (S) \ {x} for every
S ⊆ X .
Case (i): V xA (X1) = V (X1) and V xA (X2) = V (X2).
In this case V (X1) ∩X2 = ∅ and X1 ∩ V (X2) = ∅. This implies that V (X1) ∩X \ A ∩X2 = ∅
and X1 ∩ V (X2) ∩X \A = ∅. Thus by assumption X1 = ∅ or X2 = ∅.
Case (ii): V xA (X1) = V (X1) \ {x} and V xA (X2) = V (X2).
In this case V (X1) \ {x} ∩ X \ A ∩ X2 = ∅ and X1 ∩ V (X2) ∩ X \ A = ∅. This implies that
V (X1) ∩ X \ A ∩ X2 = ∅ and X1 ∩ V (X2) ∩ X \ A = ∅, since x ∈ A. Hence by assumption
X1 = ∅ or X2 = ∅.
Case (iii): V xA (X1) = V (X1) and V xA (X2) = V (X2) \ {x}.
Then V (X1)∩X2 = ∅ and X1 ∩ V (X2) \ {x} = ∅, which implies that V (X1)∩X \A∩X2 = ∅
and X1 ∩ V (X2) \ {x} ∩ X \ A = ∅. Since x ∈ A, we have V (X1) ∩ X \ A ∩ X2 = ∅ and
X1 ∩ V (X2) ∩X \A = ∅. Thus X1 = ∅ or X2 = ∅.
Case (iv): V xA (X1) = V (X1) \ {x} and V xA (X2) = V (X2) \ {x}.
In this case also since x ∈ A, V (X1)∩X \A∩X2 = ∅ and X1∩V (X2)∩X \A = ∅. So X1 = ∅
or X2 = ∅ by assumption.
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