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Abstract. Here we discuss simple expansions of Cech closure operators on a fixed non-empty
set X. We compare certain properties of closure operators with their simple expansions.

1 Introduction

Larson R. E. and Throne W. J. introduced covering relations in the lattice of 77 Topologies[5].
Then Agashe P. and Levine N. discussed sum and product of covers in the lattice of topologies[1].
Cech E. introduced a generalized notion of Kuratowski closure operator which in tern makes a
space which is a generalization of topological spaces[2]. Many mathematicians contributed in
this area. P.T. Ramachandran studied the lattice of Cech Closure operators [7, 8, 9, 10]. Analo-
gous to the concept of immediate successors Kunheenkutty M. defined upper neighbours in the
lattice of Cech closure operators[3]. Kunheenkutty M.et.al. discussed adjacency of generaliza-
tion of Co-finite closure operators in [4].

Simple Extensions of topologies were introduced by Norman Levine in [6]. The simple
extension of a topology 7 on X by A C X is the smallest topology on X containing A and 7 [6].
The concept of simple expansions of Cech closure operators is introduced in the same[4, 3]. We
note that some properties of a closure operator V' need not be shared with the simple expansion of
V. In this paper we investigate under what conditions does certain properties of closure operators
hold for its simple expansion.

2 Preliminaries

Let X be a set and P(X) denotes the power set of X. A Cech closure operator on a set X is a
function V' : P(X) — P(X) satisfying V(¢) = ¢, ACV(A),and V(AU B) =V (A) UV (B)
for every A, B € P(X). For brevity we call V a closure operator on X and the pair (X, V) a
closure space.

A subset S of a closure space (X, V) is said to be closed if V' (.S) = S, and is said to be open if
its complement is closed. The collection of all open sets in a closure space (X, V) is a topology
on X, called the topology associated with V. A closure operator V is said to be topological if V'
is idempotent.

The closure operator I : P(X) — P(X) defined by I(¢) = ¢ and I(A) = X, for every
subset A C X, A # ¢ is called the indiscrete closure operator. This closure operator is the
topological closure operator associated with the indiscrete topology on X. The closure operator
D on X given by D(A) = A for all A € P(X), is the topological closure operator associated
with the discrete topology on X, called the discrete closure operator.

Define C,, on P(X), where « is any infinite cardinal number such that o < | X], by,

A |4l <«
X ; otherwise

Ca(A) = {

The closure operator Cj : P(X) — P(X) given by

A if Ais finite,
X  otherwise.

Co(A) = {
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When o = X, we get that C,, = Cy, = Cy. We have Cy(Cy(A)) = Cp(A) for every A C X.
Thus Cj is topological closure operator and is associated with co-finite topology.

Let V1, V5 be two closure operators on set X . Then V; is said to be coarser than V; if V5(A) C
Vi(A) for every A € P(X) and is denoted by V; < V5. This relation in the set of all closure
operators on X is a partial order. The set of all closure operators on X forms a lattice under
this partial order and is denoted by L(X). The smallest element of this lattice is the indiscrete
closure operator I and the largest is the discrete closure operator D. Let {V,;a € A} where A is
some indexing set, be a non empty collection of closure operators on L(X). A closure operator
V which is the infimum of {V,} in L(X) is given by V(4) = agAVa(A) for A € P(X)[2]. If

U is the supremum of a non empty collection {V,} in L(X) and A € P(X), then z € U(A) if
and only if for each finite cover { A, A,, ..., A, } of A, there exists an A; such that x € V,,(4;)
for each a € A[2]. Let U and V be two closure operators on X such that U < V. Then V is
called an upper neighbour of U [4] if W is any closure operator on X such that U < W <V,
then either W = U or W = V. Then U and V are said to be adjacent.

Simple expansions of a closure operator is defined and discussed in [4]. First of all we
need closure operators of the form V4 .. Then we look at some properties of this closure oper-
ators and give the definition of simple expansion. In this section we investigate some properties
of simple expansions also.

Definition 2.1. [3] Let A be a non empty proper subset of X and z € A. Define, V(4 ,) :
P(X) — P(X) by,

10 ; if S = ¢,
V(A@)(S): X—{z} ; ifS#¢pandSC X — A,
X ;  otherwise.

Then V{4 ;) s a closure operator on X.
Lemma 2.2. Let V be a closure operator on X. Then Vs ,) <V ifand only if x ¢ V(X — A).

Proof. Suppose V(4 ;) < V. Then V(X —A) C Viy ,)(X—A) = X —{z}. Thusz ¢ V(X — A).
Conversely let z ¢ V(X — A). Suppose S C X — A, then V(S) C V(X —A). 2 ¢ V(X —-A) =
2 ¢ V(S) = V(S) € X —{a} = Vian(S). S ¢ X — A, then V(S) C Viun(S) = X.
Hence Vi4,) < V. O

Theorem 2.3. Let A and B be subsets of X such that B € A and let © € X such that x € B. Let
y € X, x #y. Then Vip ,) is an upper neighbour of V(4 , if and only if A\ B is a singleton
subset of X.

Proof. Suppose A = B U {y}. Since B C A, thenz ¢ V{4 ,,(S) = SC X\AC X\ B =
S CX\B=ux¢Vp,(S) Thatis Vi ,) < Vip,). Let W be a closure operator on X such
that V4 ) < W < V(g ). Then Vig ) (X \ A) € W(X \ A) C V4, (X \ A). Since B C A,
X\AC X\ B. Thus W(X \ A) C W(X \ B) and this implies that V{4 ,)(X \ A) = X \ {z}.
Also z ¢ Vig (X \ A) = X \ {z}. Thus z ¢ W(X \ B). Then by Lemma 2.2, V(g ,) < W.
Hence W = V(g ,).

Now suppose V| ;) is an upper neighbour of V(4 ;). Then V(4 ;) < V(). Then V(5 ;) (X \
A) CVia)(X\A) = X\ {z}. Thus z ¢ V{p ,)(X \ A). This implies that (X \ A) C (X \ B).
Thatis B C A. Suppose A\ B is a non-empty set such that its cardinality is greater than or equal
to 2. Then we can find a C' C X such that B C C C A. Then V4 ) < Vic2) < V(B,o)- Then
either Vi z) = Viaz) o Vicz) < V(p,z). This is a contradiction. Hence A \ B is a singleton
set. |

Theorem 2.4. Suppose that A and B are two infinite subsets of X such that x € AN B, then
‘/(A,x) V ‘/(B,z) = ‘/(AQB,m)'

Proof. We have V(4 2) < Vianp.e) and V(g o) < Vianpz)- Thus Via o)V Vig2) < Viansw)- In
order to prove Vianp.z) < Viaz) V V(B it is enough to prove that 2 ¢ V(4 .V V(g2 (X —
(AN B)) by Lemma 2.2.

Since ‘/(A,z;) < ‘/(A,a:) V ‘/(B,:r) and ‘/(B,x) < ‘/(A.,z) v Vv(B,:r)s T ¢ ‘/(A,z) \/ Vv(B,:L’) (X - A) and
€ ¢ ‘/(A,ac) V ‘/(B,w) (X - A) Hence z ¢ V(A,z) \/V(B,a:)(X - (A N B)) u
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Definition 2.5. [3] Let V' be any closure operator on X and A be a subset of X such that z € A.
The closure operator Vi{ = V'\/ V(4 ) is called a simple expansion of V by A at . Then it it is
easy to see that,

VE(S) = V(S)—{z} ; ifSN(X—A) #dandz ¢ V(SN A)
AV V() ; otherwise.

Remark 2.6. If A is closed in (X, V'), then A is closed in (X, V7).

Lemma 2.7. Let (X, V) be a closure space. Suppose that A and B are two subsets of X such
thatz € ANB. Then Vi < Vi pand V§ < Vi g

Proof. Let S C X. Then

x€Vip(S) = SCANBorzeV(SNANB)
= SCAorzeV(SNA)
= zeVi(9).
Then V5 5(S) C Vi(S). Hence Vi < Vi, 5. Similarly we can prove that V% < V¥ . ]

Lemma 2.8. Let (X, V) be a closure space. Suppose that A and B are two subsets of X such
thatz € AUB. Then Vi 5 < Viand Vi g < V3.

Proof. Let S be a subset of X. Then
zeVi(S) = SCAorzeV(SNA)
= SCANBorzeV(SN(AUB))since SNACSN(AUDB)
= xz € Viyg(9).
Thus V3 5 < V4. Similarly we can prove that V7 5 < V&. ]
Remark 2.9. We have V < V7 5 < Vi < Vi, 5 by Lemma 2.7 and Lemma 2.8.

Lemma 2.10. Let A and B are subsets of X such that AU B # X. Let x € AN B. Suppose V
is a closure operator on X suchthatx ¢ V((X \ B)N A). Then ViV Vi =Vi g

Proof. We have by Lemma 2.7, V{ < V{5 and V3§ < Vi 5. Therefore we get Vi \/ V5 <
Vi~ p- To prove the converse inequality it is enough to prove that z ¢ Vi \/ VE(X \ (AN B)).
We have x ¢ V(X \ A) and ¢ VE(X \ B). This implies that x ¢ Vi\/VE(X \ A) and
z¢ ViV VE(X\B).Hencex ¢ Vi\/VE(X \ (AN B). Thus Vi 5z < ViV VE. i

Next we find out the relation between simple expansion of closure operators and upper neigh-
bours of closure operators.

Theorem 2.11. Let U and V' be two closure operators on a set X such that U is an upper
neighbour of V. Then U is a simple expansion of V' at some point x € X.

Proof. Suppose that U is an upper neighbour of V. Then there exists a subset A of X such that
U(A) C V(A). Let z € A. Consider the simple expansion of V' by A at z. We have V < V7.
We prove that V§ < U. That is to prove that U(S) C V{(S) foreach S C X.

Case (i) SC Xorz e V(SN A).

In this case V{(S) = V(S). Therefore U(S) C V(S).

Case (i) SN (X \ A) #pandx ¢ V(SN A).

In this case V{(S) = V(S) \ {z}. In order to prove U(S) C VZ(S), it is enough to prove that
x ¢ U(S). Sincexz ¢ V(SN A)and V < U, we have

2 ¢ U(SNA) 2.1)

Since A is a V-neighbourhood of z, A is a U-neighbourhood of x. Therefore AU (X \ S) is a
U-neighbourhood of x. This implies that z ¢ U(X \ (AU (X \ S))). That is

¢ U(SN (X \ A) 2.2)
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Hence from 2.1 and 2.2, « ¢ U(S). Therefore we get U(S) C V7 (S) for each S C X. Thus
V < V§ < U. Now by the definition of upper neighbours either V' = V7 or U = V}. Since
V # V§, we have U = V. This completes the proof. ]

Example 2.12. Converse of the Lemma 2.11 is not true. Let X = {a,b,c,d}. Define V :
P(X) = P(X) as V(6) = ¢, V({a}) = {a.b}, V({8}) = {a.b.c}. V({e}) = {¢}. V({d}) =
{a,d} and V(B) = gCgBV({x}) Now let A = {a} and consider V§. Then V§{({a}) = {a,b},
Va({b}) = {b,c}, Vi({c}) = {c} and V§{({d}) = {d}. Thus V{ is not an upper neighbour of
V,since V < U < V§ where U is given by U(¢) = ¢. U({a}) = {a,b}, U({b}) = {a,b,c},
U({e}) = (e} U{d}) = {d} and U(B) = U V({z}).

If V is a topological closure operator, then simple expansion of V' by A at a point « need not
be a topological closure operator.

Example 2.13.Let X = R, A = Z and x = 1. Then Cy(Z) = R, where Co is the co-finite
closure operator. Now C§, (R —Z) = R — {1}. But C§,(Ci,(R —Z)) = C§,(R - {1}) =
Co(R—{1}) = R. Here Cj is a topological closure operator, but C§, is not a topologlcal closure
operator.

Now we check when simple expansion of a topological closure operator becomes topological.

Theorem 2.14. Let V be a closure operator on X and let A C X withx € AsuchthatV(A) = A
and V(X \{z}) = X\ {z}. Then if V is a topological closure operator, then V3 is a topological
closure operator.

Proof. Suppose V is a topological closure operator. Then V(V(A)) = V(A) for every A C X.
Now suppose that S C X.

Case (i):SN (X \ A4) =0.

That is S C A. In this case Vi (S) = V(S). Since S C A, we have V(S) C V(A) = A. Thus
VE(V(S)) = V(8) since V() C A. Now VE(VE(S)) = VI(V(S)) = V(V(8)) = V(5) =
VE(S).

Case (ii): z € V(SN A).

In this case V{(S) = V(S). Wehave S C V(S) = SNACV(S)NA = V(SNA) C
V(V(S) N A). Hence z € V(V(S) N A) and therefore V{(VZ(S)) = Vi(9).

Case (iii): SN (X \A) #0Pandz ¢ V(SN A).

Then Vi (S) = V(S) \ {z}. Since S C V{(S), SN(X\A) #0=VI(S)N(X\A) #0and
x ¢ V(Vi(S)NA). Hence x ¢ VI(S) = = ¢ VI(Vi(S)). Thus Vi (V. ””( ) CVE(S). IfVis
a topological closure operator, V¥ is a topological closure operator. O

Remark 2.15. Converse of the above Theorem 2.14 is not true. That is there exists a closure
operator V' which is not a topological closure operator but it has a simple expansion Vi where
V(A) = A which is topological.

Example 2.16. Let X = {a,b,c}. Let V : P(X) — P(X) be defined as V({a}) = {a},
V({b}) = {b,c}, V({c}) = {c,a} and V(A) = USV({s}). Then V is a closure operator on X
se

which is not a topological closure operator. Now consider the simple expansion of V by A = {a}

at a. We have Vi ({a}) = V({a}) = {a}, Vi({0}) = {b,c}, VA({c}) = V({c}) — {a} = {¢}

and V§(S) = LEJSV({S}) Then V7 is a topological closure operator.

3 Properties of Simple Expansions of Closure Operators

In this section we check under what conditions does various properties of closure opera-
tors like regularity, normality and separation axioms hold for its simple expansions. Recall the
definition of a regular closure space.

Definition 3.1. [2] A closure space (X, V) is said to be regular if for each point z € X and a
subset S of X, such that x ¢ V(S), there exists neighbourhoods U; of z and U, of S such that
Uy nNU; = o.
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Now we analyze regularity property of the simple expansion of a closure operator.

Theorem 3.2. Suppose that (X,V) is a regular closure space and let A C X such that V(A) =
A. Let x € A. Then (X, V) is a regular closure space.

Proof. Suppose V is regular and A C X such that V(A) = A. Let S C X. If S C A, then
Vi(S) =V(S). Since V < V§, every V- neighbourhood is a V{-neighbourhood of S therefore
V1 is regular.

If y # x, then y ¢ Vi (S) implies that y ¢ V(S). Since V is regular, there exists neighbour-
hoods Uj of z and U, of S such that U; N U, = ¢. Again, since every V-neighbourhood is a V¥
neighbourhood, V¥ is regular. Now suppose x ¢ V7 (S), by definition of Vi, SN (X — A) # ¢
andz ¢ V(SN A). Now z ¢ V(SN A) implies that there exists a neighbourhood U of z and W
of Ssuchthat U N W = ¢.

We have U and A are V{-neighbourhood of = implies that U N A is a neighbourhood of z.
Now U N'A C A and therefore V(U N A) C Vi(A) = V(A) = A. Also U N A C U implies
that V(U N A) C V(U). Thus Vi(UNA) C V(U)N A. We have U N W = ¢ implies that
UCX—W.ThenV(U) C V(X —W).Now X — V(X — W) C X — V().
VIUYNACV(U)then X —V(U) C X — (V(U) N A). Thus we have

SCX-V(X-W)
CX-V()
C X — (V(U)N A).
As mentioned above we have Vi (UNA) CV(U)NA. Thus X \V(U)NAC X \VI(UNA).

Therefore SN A C X\ V{(UNA). Now Vi(UNA) =V(UNA) C V(A) = A. Then
SN(X\A) C(X\A) CX\(Vi(UNA)). Hence X \ (UN A) is a neighbourhood of S. Thus
U N A is a neighbourhood of = and X \ (U N A) is a neighbourhood of S. Hence (X,V}) is a
regular closure space. O

Definition 3.3. [2] A closure space (X, V) is said to be Ty if € V({y}), y € V({z}) implies
that z = y, and is said to be T if every singleton subset of X is closed in X.

Definition 3.4. Let (X,V) be a closure space. Two subsets S; and S, of X are said to be
separated if there exists neighbourhoods U; of S; and U, of S, such that Uy N U, = ¢. A closure
space (X, V) is said to be separated if any two distinct points of X are said to be separated.

Note that any expansion of a Ty (respectively T}, T» ) topological space has the same separa-
tion property.

Theorem 3.5. Let (X, V') be a closure space which is Ty, Ty or separated and x € X and A C X
such that © € A. Then (X, V) is To, Ty and separated.

Proof. Suppose (X, V') is Ty. Suppose y € Vi({z}) and z € V{({y}). Then y € V({z}) and
z € V({y}). Since Vis Ty, y = z.

Now suppose V is a T} closure operator. Then since V{(S) C V(S) for every subset S of
X, Vi is T;. Now we have to prove that if any two subsets in (X, V) is separated in (X, V),
then any two sets in (X, V7) is also separated. For that suppose that S} and S, are subsets of
X. Then there exists neighbourhoods U; of S| and U, of S, such that U; N U, = ¢. That is
S CX—-V(X—-Uy)and S, C X — V(X — U). We have V§(S) C V(S) for every subset S
of X. Then S} C X — V(X —U;)and S, C X — V(X — U,). Hence S; and S, are separated
in (X, VY). O

There is a characterization theorem for normal closure spaces in [2] as follows,

Theorem 3.6. [2] A closure space (X, V') is normal if and only if Sy, S, subsets of X such that
V(S1) NV(Sy) = ¢, then Si and S, are separated and if v € X and S C X are such that
V({z}) NV (S) # ¢, then x € V(S).

Theorem 3.7. Suppose (X, V) be a normal closure space. Let A C X such that x € A and
V({z}) = {x}. Consider the simple expansion V. Then (X, V}) is a normal closure space.
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Proof. Suppose (X, V) is a normal closure space. Then we have V(S;) NV (S,) = ¢, implies
that S; and S, are separated. Now suppose V7 (S1) N VZ(S2) = ¢. Then Vi (S)) C X — V{(S,)
and V§(S2) € X—V1(S1). Then X — S is a neighbourhood of S, and X —.5; is a neighbourhood
of S;. Hence S; and S are separated. Now we have to prove that V{({y}) N Vi (S) # ¢ implies
that y € VE(S). Suppose y £z, Vi({y}) 1 VE(S) # 6, 5 C X. We have V3 ({y}) = V({y})
or Vi({y}) = V({y}) — {z}. Since V is normal, this implies that y € V(S). Next consider the
case when y = z. Then V{({z}) = V({z}) by definition and by assumption V{({z}) = {z}.
If Vi({z}) N Vi(S) # ¢ implies that {z} N V{(S) # ¢. Then x € Vi (S). Hence (X, V7) is
normal. O

Theorem 3.8. [6] Let (X, T) be separable and A ¢ T. Then (X, 7(A)) is separable if and only
if (A,7 N A) is separable.

Theorem 3.9. Let (X, V) be a closure space. Let v € X and A C X such that x € A. Then
(X,V) is separable if and only if (X, V§) is separable.

Proof. Suppose (X,V7) is separable. Then there exists a countable set S of X such that
Vi(S) = X. Since V{(S) C V(S), we have V(S) = X. Hence (X, V) is separable.
Conversely let (X, V) be separable. Let S C X such that S is countable and V(S) = X. If
S C A thenVi(S)=V(S)=Xandifz € V(SNA), then V{(S) = V(S) = X. Now suppose
SNX—-A#¢andz ¢ V(SNA), then Vi(S) =V(S)—{z} = X — {z}. Now consider the set
SU{z}. We have VE(SU{z}) = VE(S)UVE({z}) = X — {z} UV ({z}) = X. Thus (X, V¥)
is separable. O

Next we check simple expansion of a connected closure space. First of all let us define semi
separated subsets of a closure space.

Definition 3.10. [2] Let (X, V') be a closure space. Two subsets S; and S, of X are said to be
semi separated if there exist neighbourhoods U; of S; and U, of S, such that U1 NS, = 0 =
U,NS,.

Definition 3.11. [2] A subset S of a closure space (X, V) is said to be connected if S is not the
union of two non empty semi separated subsets of (X, V). Thatis S = S; U S,, (V(S1)NS,) U
(51 NV(Sy)) = ¢ implies that S} = ¢ or S, = ¢.

Example 3.12. Let X = Z, A = {1,2,...,n} and x = 2. Then C3,(Z — {2}) = Z — {2}
sinceZ — {2} NZ —{1,2,....,n} # pand 2 ¢ Co(Z — {2} N A). ThenZ = {2} NZ — {2}.
And {2} N C2,(Z — {2}) = ¢ and Cy({2}) N (Z — {2}) = ¢. Thatis (X, Cp) is connected but
(X,C3,) is not connected.

Now we characterize simple expansion of connected sets.

Theorem 3.13. Let (X, V') be a closure space. Let A C X be such that x € X. If (X \ A,V |x\a)
is connected, then (X, V) is connected.

Proof. Suppose that (X'\ A, V|x\ 4) is connected. Assume that X = X;UX) such that V{(X;)N
X, = 0 and X; NVF(X,) = 0. We have V7 (S) = V(S) or Vi(S) = V(S) \ {z} for every
SCX.

Case (i): Vi (X)) = V(X)) and V} (X,) = V(X3).

In this case V(X;) N X, = @ and X; NV (X,) = (). This implies that V(X)) N X\ AN X, =0
and X1 NV (X;) N X \ A = 0. Thus by assumption X; = () or X; = 0.

Case (ii): VI (X)) = V(X)) \ {z} and V} (X;) = V(X>).

In this case V(X;) \ {z} N X\ AN X, = 0and X; N V(X;) N X \ A = (. This implies that
VX)NX\ANnX; =0and X; NV (X3)N X\ A=0,since x € A. Hence by assumption
X] = @ or X2 = @

Case (iii): V(X)) = V(X,) and Vi (X,) = V(X2) \ {z}.

Then V(X;) N X, =@ and X1 NV (X3) \ {z} = 0, which implies that V(X)) N X\ ANX, =0
and X; NV (X,) \ {z} N X \ A = 0. Since x € A, we have V(X;)N X\ AN X, = 0 and
XiNV(X)N X\ A=0. Thus X; =0 or X, = 0.

Case (iv): Vi (X)) =V (X)) \ {z} and VF(X;) = V(X2) \ {z}.

In this case also since z € A, V(X)) NX\ANX, =0and X; NV (X2)NX\A=0.So X, =0
or X, = () by assumption. m]
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