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Abstract. We state, and prove using matrices, two (related) linear recurrence identities for
terms of the so called Horadam sequence; each result expresses the general term of the sequence
as a linear combination of terms with particular initial values. First offered by A.F. Horadam
himself in the 1960s, our approach to their formulation is quite different and, we believe, new.

1 Introduction

Denote by {wn}∞n=0 = {wn}∞0 = {wn(a, b; p, q)}∞0 , in standard format, the four-parameter
Horadam sequence arising from the second order linear recursion

wn+2 = pwn+1 − qwn, n ≥ 0, (1.1)

for which w0 = a and w1 = b are initial values. Relations between terms of the sequence (and
full/partial specialisations thereof) are many and varied in the literature that exists on it (see the
surveys [7, 6]1), and here we formulate related linear recurrence identities that retain almost
complete symbolic generality (and combine to offer a third one). Of note is the fact that while
the methodology introduces naturally two arbitrary parameters en route to the results, their final
forms are independent of them. We also point out that our approach is quite different from that
of Horadam in whose work the identities appeared together in 1965 [2, (2.14), p. 164].

2 Two Identities and Proofs

2.1 Identities

We will establish simultaneously, by proof, the following two (non-independent) identities:

Identity I. For n ≥ 2,

wn(a, b; p, q) = bwn−1(1, p; p, q)− qawn−2(1, p; p, q).

Identity II. For n ≥ 1,

wn(a, b; p, q) = awn(1, p; p, q)− (pa− b)wn−1(1, p; p, q).

2.2 Proofs

Before we proceed, we introduce a family of polynomials α0(x), α1(x), α2(x), . . . , where, for
n ≥ 0,

αn(x) = αn(A(x), B(x), C(x)) = (1, 0)

(
−B(x) A(x)

−C(x) 0

)n(
1
0

)
, (2.1)

1Published in 2013 and 2017, these works together attempt to cover (as comprehensively as possible) those relevant
publications from the time of the 1960s, when Alwyn F. Horadam—after whom the sequence is known—released two seminal
papers [2, 3] that brought the sequence to the attention of the academic community in a way not seen before; Horadam passed
away in 2016, with subsequent tributes available as [5, 11] and, more recently, [4].
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the first few of which are

α0(x) = 1,

α1(x) = −B(x),
α2(x) = B2(x)−A(x)C(x),
α3(x) = 2A(x)B(x)C(x)−B3(x),

α4(x) = B4(x)− 3A(x)B2(x)C(x) +A2(x)C2(x),

α5(x) = 4A(x)B3(x)C(x)− 3A2(x)B(x)C2(x)−B5(x), (2.2)

etc., with general closed form

αn(x) =
1

2n+1
[−B(x) + ρ(x)]n+1 − [−B(x)− ρ(x)]n+1

ρ(x)
, n ≥ 0, (2.3)

ρ(x) = ρ(A(x), B(x), C(x)) =
√
B2(x)− 4A(x)C(x) being a ‘discriminant’ function. These

have, in previous work, been associated with integer sequences whose individual governing (or-
dinary) generating function z(x), say, satisfies a quadratic equation 0 = A(x)z2+B(x)z+C(x),
where A(x), B(x), C(x) ∈ Z[x]; instances seen in [1] are families of Catalan, (Large) Schröder
and Motzkin polynomials (characterised, resp., as αn(x,−1, 1), αn(x, x − 1, 1) and αn(x2, x −
1, 1) by their namesake sequences) for whom ‘auto-identities’ were developed (that is, identities
generated algorithmically by computer), and any reader seeking further context for these polyno-
mials is referred to articles [8, 9, 10] by the authors. We shall make reference to the established
results [1, Lemma 1.1, p. 10]

0 = A(x)C(x)αn(x) +B(x)αn+1(x) + αn+2(x), n ≥ 0, (2.4)

and [1, (L5), p. 11](
αn(x)

−C(x)αn−1(x)

)
=

(
−B(x) A(x)

−C(x) 0

)n(
1
0

)
, n ≥ 1, (2.5)

accordingly.

Proof. Let

H(p, q) =

(
p −q
1 0

)
, (I.1)

from which the recursion (1.1) readily delivers the matrix power relation(
wn

wn−1

)
= Hn−1(p, q)

(
w1

w0

)
(I.2)

that holds for n ≥1. If we now define, with γ, δ arbitrary, a matrix

A(w0, w1, γ, δ) =

(
w1 γ

w0 δ

)
, (I.3)

then we can write (
w1

w0

)
= A(w0, w1, γ, δ)

(
1
0

)
, (I.4)

and so (I.2) becomes(
wn

wn−1

)
= Hn−1(p, q)A(w0, w1, γ, δ)

(
1
0

)

= A(w0, w1, γ, δ)A
−1(w0, w1, γ, δ)H

n−1(p, q)A(w0, w1, γ, δ)

(
1
0

)

= A(w0, w1, γ, δ)C
n−1(p, q, w0, w1, γ, δ)

(
1
0

)
, (I.5)
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where (denoting |A| as A = A(w0, w1, γ, δ) = δw1 − γw0, and assumed non-zero)

C(p, q, w0, w1, γ, δ) = A−1(w0, w1γ, δ)H(p, q)A(w0, w1, γ, δ)

=
1
A

(
δ −γ
−w0 w1

)(
p −q
1 0

)(
w1 γ

w0 δ

)

=
1
A

(
δ(pw1 − qw0)− γw1 δ(pγ − qδ)− γ2

(w1)2 − w0(pw1 − qw0) γw1 − w0(pγ − qδ)

)
, (I.6)

after a little algebra. We will require the bottom right-hand entry of C(p, q, w0, w1, γ, δ) to be
zero for our purpose, whence

δ =
γ

qw0
(pw0 − w1), (I.7)

and A can be expressed as

A(w0, w1, p, q, γ) = δw1 − γw0

=
γ

qw0
(pw0 − w1)w1 − γw0

=
γ

qw0
[pw0w1 − q(w0)

2 − (w1)
2]. (I.8)

After some further manipulation the remaining entries of C(p, q, w0, w1, γ, δ) (I.6) may be re-
written with δ similarly absent (reader exercise), whereupon, with reference to (I.8), it is found
that

C(p, q, w0, w1, γ) =
1
A

(
pA γA/w0

−qw0A/γ 0

)
=

(
p γ/w0

−qw0/γ 0

)
, (I.9)

and so (I.5) reads(
wn

wn−1

)
=

(
w1 γ

w0 δ

)(
p γ/w0

−qw0/γ 0

)n−1(
1
0

)
. (I.10)

Now, setting A(x) = γ/w0, B(x) = −p and C(x) = qw0/γ, then in terms of elements
αn(γ/w0,−p, qw0/γ) (2.5) offers the above as(

wn

wn−1

)
=

(
w1 γ

w0 δ

)(
αn−1

−(qw0/γ)αn−2

)

=

(
w1αn−1 − qw0αn−2

w0αn−1 − (qw0δ/γ)αn−2

)
; (I.11)

in other words,
wn = w1αn−1 − qw0αn−2, n ≥ 2, (I.12)

and (having removed δ by (I.7))

wn = w0αn − (pw0 − w1)αn−1, n ≥ 1. (I.13)

Furthermore, equating wn in (I.12),(I.13) delivers immediately

0 = αn − pαn−1 + qαn−2, (I.14)

which recovers the special case of (2.4) for αn(γ/w0,−p, qw0/γ) and, moreover, is the same
linear recurrence (1.1) as for Horadam terms. It follows, therefore, that αn(γ/w0,−p, qw0/γ) is a
particular Horadam element, and with α0(A(x), B(x), C(x)) = 1 and α1(A(x), B(x), C(x)) =
−B(x) corresponding to α0(γ/w0,−p, qw0/γ) = 1 and α1(γ/w0,−p, qw0/γ) = p, we infer

αn(γ/w0,−p, qw0/γ) = wn(1, p; p, q), n ≥ 0; (I.15)

equations (I.12),(I.13) now read as Identities I and II, completing their proofs.
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2.3 Example and a Further Identity

Noting that

{wn(a, b; p, q)}∞0 = {a, b, pb− qa, p2b− pqa− qb, p3b− p2qa− 2pqb+ q2a, . . .} (2.6)

and
{wn(1, p; p, q)}∞0 = {1, p, p2 − q, p3 − 2pq, p4 − 3p2q + q2, . . .}, (2.7)

Identity I is readily verified for n = 4, say, for which the r.h.s. is bw3(1, p; p, q)−qaw2(1, p; p, q) =
b(p3 − 2pq)− qa(p2 − q) = p3b− p2qa− 2pqb+ q2a = w4(a, b; p, q) = l.h.s. Alternatively, the
r.h.s. of Identity II is aw4(1, p; p, q)− (pa− b)w3(1, p; p, q) = a(p4− 3p2q+ q2)− (pa− b)(p3−
2pq) = · · · = p3b− p2qa− 2pqb+ q2a = w4(a, b; p, q) = l.h.s.

Finally, although non-independent of each other (for they are clearly, and trivially, connected
by the Horadam recursion (1.1)), Identities I and II may be combined to give a further result:

Identity (Additional). For n ≥ 2,

2wn(a, b; p, q) = awn(1, p; p, q) + (2b− pa)wn−1(1, p; p, q)− qawn−2(1, p; p, q).

We see this holds for n = 2, for instance, whose r.h.s. = aw2(1, p; p, q) + (2b− pa)w1(1, p; p, q)
−qaw0(1, p; p, q) = a(p2 − q) + (2b− pa)p− qa(1) = 2(pb− qa) = 2w2(a, b; p, q) = l.h.s.

3 Summary

This paper presents two (non-independent) linear recurrence identities (and a third one there-
from) involving terms of the long established Horadam sequence. It is clear that (where T
denotes transposition) the representation of (w1, w0)T in (I.4) (through the introduction of the
matrix A(w0, w1, γ, δ) (I.3)) is critical to the formulation which is both elegant and subtle. Ho-
radam gives no details as such in [2], but alludes to the fact that Identity I or II follows directly
from the closed forms of the terms wn(a, b; p, q) and wn(1, p; p, q) that are listed therein—for
completeness, we refer the reader to the Appendix where we give a flavour of his line of think-
ing.

Appendix

Here we illustrate how Identity I or II can be generated directly, choosing to deal with a different
characteristic root case for each.

The characteristic polynomial λ2 − pλ+ q associated with (1.1) leads to well known closed
(Binet) forms of the Horadam sequence general term. In the non-degenerate characteristic roots
case (with distinct roots α(p, q) = (p+

√
p2 − 4q)/2, β(p, q) = (p−

√
p2 − 4q)/2 (p2 6= 4q)),

wn(a, b; p, q) = wn(α(p, q), β(p, q), a, b) =
(b− aβ)αn − (b− aα)βn

α− β
, n ≥ 0, (A.1)

while in the degenerate characteristic roots case (with non-distinct roots α(p) = β(p) = p/2
(p2 = 4q)),

wn(a, b; p, p2/4) = wn(α(p), a, b) = bnαn−1 − a(n− 1)αn, n ≥ 0, (A.2)

noting that the relations
α+ β = p, αβ = q, (A.3)

cover both root types; it follows immediately that, using (A.3), equations (A.1) and (A.2) give

wn(1, p; p, q) =
(p− β)αn − (p− α)βn

α− β
=

(α)αn − (β)βn

α− β
=
αn+1 − βn+1

α− β
, (A.4)

and

wn(1, p; p, p2/4) = pnαn−1 − (n− 1)αn = (2α)nαn−1 − (n− 1)αn = (n+ 1)αn. (A.5)
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The identities are easily derived as follows, again appealing to (A.3) as necessary.

Identity I (Non-Degenerate Roots Case). Consider

bwn−1(1, p; p, q)− qawn−2(1, p; p, q)

=
1

α− β
[b(αn − βn)− qa(αn−1 − βn−1)]

=
1

α− β
[b(αn − βn)− (αβ)a(αn−1 − βn−1)]

=
1

α− β
[b(αn − βn)− a(βαn − αβn)]

=
1

α− β
[(b− aβ)αn − (b− aα)βn]

= wn(a, b; p, q). (A.6)

Identity II (Degenerate Roots Case). Consider

awn(1, p; p, p2/4)− (pa− b)wn−1(1, p; p, p2/4)

= a(n+ 1)αn − (pa− b)nαn−1

= a(n+ 1)αn − ([2α]a− b)nαn−1

= a[(n+ 1)− 2n]αn + bnαn−1

= bnαn−1 − a(n− 1)αn

= wn(a, b; p, p2/4). (A.7)
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