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Abstract. In this paper we introduced and studied the concepts of z-elements and zj-elements
as a generalization of a z-ideal and zj ideal. Various properties and characterizations of z-
elements and zj-elements are obtained. It is shown that the Jacobson radical which is meet
of all maximal elements is a z-element and is contained in every z-element.

1 Introduction

A multiplicative lattice L is a complete lattice provided with commutative, associative and join
distributive multiplication in which the largest element 1 acts as a multiplicative identity. An
element a ∈ L is called proper if a < 1. A proper element p of L is said to be prime if ab ≤ p
implies a ≤ p or b ≤ p. If a ∈ L, b ∈ L, (a : b) is the join of all elements c in L such that cb ≤ a.
A proper element p of L is said to be primary if ab ≤ p implies a ≤ p or bn ≤ p for some positive
integer n. If a ∈ L, then

√
a= ∨ { x ∈ L∗ / xn ≤ a, n ∈ Z+ }. An element a ∈ L is called a

radical element ifa =
√
a. Radical element is also called as a semi-prime element. An element

a ∈ L is called compact if a ≤
∨
α bα implies a ≤ bα1 ∨ bα2 ...∨ bαn

for some finite subset
{α1, α2...αn}. An element m of L is called maximal element if m � x for any other x ∈ L.
Throughout this paper, L denotes a compactly generated multiplicative lattice with 1 compact
in which every finite product of compact element is compact. We shall denote by L∗, the set of
compact elements of L. A nonempty subset of L∗ is called a filter if the following conditions are
satisfied.
i)x, y ∈ F implies xy ∈ F
ii)x ∈ F , x ≤ y implies y ∈ F
Let F (L∗) denotes a set of all filters of L. For a nonempty subset {Fα} ⊆ F (L∗), define d Fα=
{x ≥ f1f2...fn, fi ∈ Fαi for some i = 1, 2...n}. Then it is observed that, F (L∗) = 〈 F (L∗),
d, ∩ 〉 is a complete distributive lattice with d as the supremum and the set theoretic ∩ as the
infimum. For a ∈ L∗ the smallest filter containing a is denoted by [a) and it is given by [a)=
{x ∈ L∗/x ≥ an for some non-negative integer n}. For a filter F ∈ F (L∗) we denote,
0F= ∨ {x ∈ L∗/xs = 0,for some s ∈ F}.
A lattice L is called semi-complemented if for any element a ∈ L, (a 6= 1) there exists a non-zero
element b ∈ L such that ab = 0. A lattice L is said to be dual semi-complemented if for every
element a ∈ L, (a 6= 0) there exists a non-zero element b 6= 1 such that a ∨ b = 1.
A lattice L with 0 is section semi-complemented if a � b then there exists c ∈ L such that
0 < c ≤ a and b ∧ c =0.
For all these definitions one can refer R.P.Dilworth[11], F.Alarcon, Jayaram and Anderson [7].

2 Z-Elements in multiplicative lattices.

The concept of z-ideals was first introduced by Kohls[5] which played an important role in
studying the ideal theory of C(X), the ring of continuous real valued functions on compactly
regular Hausdroff space X: See Gillman and M. Jerison [8]. Mason [9]studied z-ideals in gen-
eral commutative rings. He proved that maximal ideals , minimal prime ideals and some other
deals in commutative rings are z-ideals. As a generalization of z-ideals the concept of z0-ideals
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is introduced and studied in C(X). In [4] Huijsman and De-Pagter studied z0-ideals under the
name of d-ideals in Riesz spaces. Speed [13]introduced and studied the concept of Baer ideals in
commutative Baer rings which are essentially z0-ideals (equivalently d-ideals) and characterized
regular rings and quasi regular rings. Jayaram [6], Anderson, Jayaram and Phiri [3]defined the
concept of Baer ideals for lattice and multiplicative lattices respectively. The analogous concept
of z-ideals is introduced by Kavishwar and Joshi[12].
We introduce the concept of z-elements in compactly generated multiplicative lattices in which
1 is compact and every finite product of compact elements is compact.
Let L denote a compactly generated multiplicative lattice with largest element 1 compact in
which every finite product of compact elements is compact. Let µ = Max(L) denote the set of
all maximal elements in a lattice L and µ(a) = {m ∈ µ|a ≤ m} for a ∈ L.For a ∈ L the meet of
all maximal elements in L containing a is denoted byMa i.e. Ma = ∧(µ(a)) = ∧{m ∈ µ|a ≤ m}.
We introduce the concept of z-element in multiplicative lattices which is a generalization of z-
ideals in a commutative ring.
Now we prove the properties of z-elements in multiplicative lattices.

Definition 2.1. An element h of L is called a z-element if µ(b) ⊆ µ(a) and b ≤ h implies a ≤ h.

Lemma 2.2. Every maximal element in L is a z- element.

Proof. Let m be a maximal element of L and µ(a) ⊆ µ(b), a ≤ m. Since a ≤ m we have
m ∈ µ(a). But µ(a) ⊆ µ(b) implies m ∈ µ(b). Thus b ≤ m. Hence m is a z- element. 2

Lemma 2.3. Let m be a unique maximal element of L such that h � m, then h is not a z-element.

Proof.Since h � m there exists x ≤ m such that x � h. Let i ≤ h. Since m is a unique maximal
element, we have µ(i) = µ(x) and x � h. Thus µ(i) ⊆ µ(x), i ≤ h but x � h. Hence h is not a
z-element. 2

[Diagram (1)]

Ex.1)- Consider the lattice shown in diagram (1) with the trivial multiplication x.y = 0 = y.x,
for each x 6= 1 6= y and x.1 = x = 1.x for every x ∈ L. Then it is easy to show that L is a
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multiplicative lattice.
d being a maximal is a z-element.
2)In the above diagram, a is not a z-element. Because µ(b) ⊆ µ(c), b ≤ a,µ(b) = µ(c) = {d}
but c � a.
3)Let R = Z. Then L(Z) the lattice of ideals of Z is a multiplicative lattice. < 4 > is not a
z-element in L(Z). Obviously < 2 >,< 3 >,< 5 > being maximal elements are z-elements.

Here is a characterization of dual semi complemented lattices in terms of maximal elements.

Lemma 2.4. A lattice L is dual semi complemented if and only if ∧{m|m ∈Max(L)} = 0.

Proof. Let L be a dual semi complemented lattice. Suppose ∧{m|m ∈ Max(L)} 6= 0,
a ≤ ∧{m|m ∈ Max(L)} and a 6= 0. Since L is dual semi complemented there exists b 6= 1
such that a ∨ b = 1. This implies that b � ∧{m|m ∈ Max(L)}. Since b 6= 1, there exists
a maximal element m1 such that b ≤ m1. But a ≤ ∧{m|m ∈ Max(L)} implies a ≤ m1.
Thus 1 = a ∨ b ≤ m1, a contradiction. Hence ∧{m|m ∈ Max(L)} = 0. Conversely, suppose
∧{m|m ∈ Max(L)} = 0. We show that L is dual semi complemented. Let 0 6= a ∈ L. Since
a 6= 0, we have a � ∧{m|m ∈ Max(L)} = 0. Then there exists a maximal element m1 such
that a � m1. Therefore a ∨m1 = 1. Hence m is dual semi complemented. 2

Using the above characterization we show that the least element of L is a z-element.

Lemma 2.5. Let L be a dual semi-complemented lattice. Then 0 is a z- element.

Proof.Let µ(a) ⊆ µ(b) and a ≤ 0. Then a = 0 and µ(a) = µ(0) = max(L). So µ(b) = max(L)
and b ≤ ∧{m|m ∈Max(L)} = 0 implies b = 0. Hence 0 is a z- element. 2

Lemma 2.6. Let a, b ∈ L. Then the following statements hold:- 1)Ma∧b = Ma ∧Mb = Mab.
2)µ(b) ⊆ µ(a) then µ(b ∧ c) ⊆ µ(a ∧ c) and µ(bc) ≤ µ(ac) for any c ∈ L.

Proof. 1)We have, M(a∧b) = ∧{m ∈ µ|(a ∧ b) ≤ m}. Let x ≤M(a∧b) and x �Ma ∧Mb. Then
x �Ma or x �Mb. Suppose x �Mb = ∧(µ(b)) = ∧{m ∈ µ|b ≤ m}. Without loss of generality
assume that, x � m1 for some maximal element m1 such that b ≤ m1. But then, x ≤ M(a∧b)
≤ m1, a contradiction. Hence x ≤ Ma ∧Mb and M(a∧b) ≤ Ma ∧Mb. Let x ≤ Ma ∧Mb and
x �M(a∧b). Then there exists a maximal element m2 such that (a ∧ b) ≤ m2 but x � m2. Since
m2 is a maximal element, m2 is prime and ab ≤ m2 implies a ≤ m2 or b ≤ m2. Without loss
of generality, assume that a ≤ m2. Then x ≤ Ma ≤ m2. This contradicts the fact that x � m2.
Hence Ma ∧Mb ≤M(a∧b) and M(a∧b) =Ma ∧Mb.
To prove that Ma ∧Mb = Mab. Let x ≤ Mab and x � Ma ∧Mb. Then x � Ma or x � Mb.
Suppose x �Ma. Then there exists a maximal element m1 such that x � m1 but a ≤ m1. Then
x ≤Mab ≤ m1, a contradiction. So x ≤Ma ∧Mband Mab ≤Ma ∧Mb. Let x ≤Ma ∧Mb, but
x �Mab. This implies there exists a maximal element m2 such that ab ≤ m2 but x � m2. Since
m2 is prime, ab ≤ m2 implies a ≤ m2 or b ≤ m2. If a ≤ m2, x ≤Ma ≤ m2, a contradiction and
hence Ma ∧Mb =Mab.
2) To prove that if µ(b) ⊆ µ(a) then µ(b ∧ c) ⊆ µ(a ∧ c) for any c ∈ L. Let m be a maximal
element such that m ∈ µ(b ∧ c). Since m is also a prime element, bc ≤ m implies b ≤ m or
c ≤ m. If c ≤ m, a∧ c ≤ m and m ∈ µ(a∧ c). If b ≤ m, m ∈ µ(b) ⊆ µ(a) and we have, a ≤ m.
This shows that (a ∧ c) ≤ m and m ∈ µ(a ∧ c). Thus µ(b ∧ c) ⊆ µ(a ∧ c) for any c ∈ L.
To prove that µ(bc) ≤ µ(ac).Let m ∈ µ(bc). Since m is prime bc ≤ m implies b ≤ m or a ≤ m.
If c ≤ m, ac ≤ m and m ∈ µ(ac). If b ≤ m, m ∈ µ(b) ⊆ µ(a) and we have a ≤ m and hence
ac ≤ m so that m ∈ µ(ac). Thus µ(bc) ≤ µ(ac). 2

Lemma 2.7. Every element i is contained in the least z-element namely, iz = ∧{j ≥ i| j is
z-element } is the smallest z-element containing i.
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Proof. Let µ(b) ⊆ µ(a) and b ≤ iz . Let j1 be an arbitrary z-element such that j1 ≥ i. Since
b ≤ j1, j1 is a z-element and µ(b) ⊆ µ(a) we have a ≤ j1. Thus a ≤ ∧ {j| j is a z-element such
that j ≥ i} = iz . Hence iz is a z-element. Now let j be any z-element containing i. Let x ≤ iz .
Then clearly, x ≤ j and hence iz ≤ j. 2

Lemma 2.8. Let L be a multiplicative lattice and i,j be any two elements of L. Then the following
statements hold:- 1)If i ≤ j, then iz ≤ jz
2) (iz)z = iz .

Proof.1)Let i ≤ j and x ≤ iz= ∧{k| k is a z-element and k ≥ i}.
If x � jz =∧{q| q is a z-element and q ≥ j} then there exist z-element q1 such that x � q1 and
j ≤ q1. This together with i ≤ j, implies i ≤ q1. But x ≤ iz and i ≤ q1 for some z-element q1
gives iz ≤ q1. Therefore x ≤ q1, a contradiction. Hence iz ≤ jz .
2)Clearly, iz ≤ (iz)z . Let x ≤ (iz)z = ∧{q|q ≥ iz q is a z-element }. We know that iz is a
z-element and iz ≤ iz . But (iz)z is the least z element containing iz . So (iz)z ≤ iz and we have
iz = (iz)z . 2

Lemma 2.9. Let L be a multiplicative lattice and a, b ∈ L, then a ≤Mb if and only if Ma ≤Mb

if and only if µ(b) ⊆ µ(a).

Proof. Let Ma ≤Mb. Obviously, a ≤Ma implies a ≤Mb . Conversely a ≤Mb implies a ≤ ∧{
m ∈ µ|b ≤ m}.
Let x ≤ Ma = ∧{ m|a ≤ m ∈ µ}. Let m1 be any maximal element with b ≤ m1. Then a ≤ m1.
This gives x ≤ m1 and hence x ≤ Mb. Thus Ma ≤ Mb. Obviously, Ma ≤ Mb if and only if
µ(b) ⊆ µ(a). 2

In the next result we characterize z-elements.

Lemma 2.10. Let i be an element of L, then the following statements are equivalent:-
1)i is a z-element.
2)µ(a) = µ(b) and b ≤ i implies a ≤ i.
3)Ma ≤ i, for all a ≤ i.
4)Mb ≤Ma, a ≤ i implies b ≤ i.

Proof. (1) implies (2) is obvious.
(2)implies (3)
Let x ≤Ma. Then by lemma (2.9), Mx ≤Ma. HenceMx =Mx∧Ma =Ma∧x(by lemma (2.6)).
This gives µx = µ(a ∧ x). If a ≤ i, then (a ∧ x) ≤ i. But by (2) x ≤ i.
(3)implies (4)
Assume that Ma ≤ i, for all a ≤ i. We assume that Mb ≤ Ma, a ≤ i. Then Ma ≤ i and
b ≤Mb ≤Ma implies b ≤ i.
(4)implies (1)
We assume that Mb ≤ Ma and a ≤ i implies b ≤ i. We show that i is a z-element. Let
µ(b) ⊆ µ(a) and b ≤ i. Then Ma ≤ Mb and we have b ≤ i, by hypothesis a ≤ i. Hence i is a
z-element. 2

Separation lemma for z-element:-
Such type of Separation lemma is obtained by Anderson[2] and for z-ideals in lattices by Kav-
ishwar and Joshi[12].

Lemma 2.11. Let L be a multiplicative lattice. Suppose t � i, for all t ∈ S, where i is z-element
and S is multiplicatively closed in L. Then there exists a prime z-element p such that i ≤ p and
t � p, for all t ∈ S.

Proof. Let F = {j| j a z-element such that i ≤ j and t � j, ∀t ∈ S}. Then F 6= ∅, since atleast
i ∈ F and F is a poset with respect to ≤. Let C be a chain in F and m = ∨{j|j ∈ C }. We show
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that m is a z-element.
Assume that µ(a) ⊆ µ(b) and a ≤ m. Then a ≤ j for some j ∈ C . But j is a z-element and
µ(a) ⊆ µ(b) and a ≤ j implies b ≤ j and hence b ≤ m. Hence m is a z-element. Obviously
j ≤ m for all j ∈ C . That is m is an upper bound of C and m ∈ F . Thus F is a poset in which
every chain has an upper bound in F . Hence by Zorn’s lemma, there exists a maximal element
p ∈ F and clearly p is a z-element such that i ≤ p and t � p, ∀t ∈ S. We claim that p is a prime
element. Let ab ≤ p and a � p, b � p. Then (p ∨ a) > p, (p ∨ b) > p. Since p is a maximal
element with respect to t � p, ∀t ∈ S, it follows that there exists t1, t2 ∈ S such that t1 ≤ (p∨ a)
and t2 ≤ (p ∨ b). Since S is a multiplicatively closed set t1t2 ∈ S. Also t1t2 ≤ (p ∨ a)(p ∨ b)
≤ (p ∨ ab) ≤ p. This contradicts the fact that t � p, ∀t ∈ S. Hence p is a prime z-element. 2

Lemma 2.12. Let L be a distributive multiplicative lattice. Then every strongly irreducible ele-
ment is a z-element if and only if every element is a z-element.

Proof.Obviously, if every element is a z-element every strongly irreducible element is a z-
element. Conversely, suppose every strongly irreducible element is a z-element. Let i be any
element, µ(b) ⊆ µ(a), b ≤ i. Suppose a � i. Let P = {x|i ≤ x, a � x}. Then P is a
partially ordered set with respect to ≤ and P 6= φ, since i ∈ P . Let C be a chain in P . Then
b = ∨{y|y ∈ C } is an upper bound of C in P . Hence by Zorn’s lemma P has a maximal
element p such that i ≤ p and a � p. We show that p is strongly irreducible. Suppose x ∧ y ≤ p,
x � p, y � p. Since p is a maximal with respect to a � p we have p ∨ x > a, p ∨ y > a.
Hence a ≤ (p ∨ x) ∧ (p ∨ y) that is a ≤ p, a contradiction. Hence p is a strongly irreducible
element. Clearly b ≤ p and µ(b) ⊆ µ(a) implies a ≤ p, since a strongly irreducible element p is
a z-element. This is a contradiction. Hence a ≤ i and i is a z-element. 2

Lemma 2.13. Let L be SSC lattice such that ∧{m|m ∈ max(L)} = 0. Then every element is a
z-element.

Proof. Let i be an element of SSC lattice L. Let µ(b) ⊆ µ(a) and b ≤ i. Suppose a � i.
Then there exists c 6= 0 such that c ≤ a and c ∧ i = 0. This gives b ∧ c = 0. Thus max (L) =
µ(b ∧ c) ⊆ µ(a ∧ c), by lemma (2.6). Then c = a ∧ c ≤ ∧{m| m ∈ max(L)} = 0. Therefore
c = 0, a contradiction. Thus a ≤ i and hence i is a z-element. 2

Let a be an element of L. Then (0 : a) = ∨{x ∈ L|xa = 0}. In this case (0 : a) is also
denoted by a⊥, i.e. a⊥ = ∨{x ∈ L|xa = 0}.
We shall denote (0 : a) by a⊥ and obtained its property in terms of maximal elements.

Lemma 2.14. Let L be a dual semi complemented lattice.
Then a⊥ = ∧{m ∈ max(L)|a � m} for any a ∈ L.

Proof. Let x ≤ a⊥. Then ax = 0. Let m ∈ max(L). As every maximal element is prime
it follows that m is a prime element. If a � m then ax = 0 ≤ m implies x ≤ m. Thus
a⊥ ≤ ∧{m ∈ max(L)|a � m}. Conversely, suppose x ≤ ∧{m ∈ max(L)|a � m} and
x � a⊥. Hence ax 6= 0. This shows that ax � ∧{m ∈ max(L)|a � m} = 0, by lemma
(2.4). Therefore there exists a maximal element m1 such that ax � m1, where a � m1 with
x � m1. This contradicts the fact that x ≤ ∧{m ∈ max(L)|a � m}. Hence x ≤ a⊥ and
∧{m ∈ max(L)|a � m} ≤ a⊥. Therefore a⊥ = ∧{m ∈ max(L)|a � m} for any a ∈ L. 2

We generalize the following concepts in lattices for multiplicative lattices.

Definition(2.14 (a)):- An element i ∈ L is said to be closed element if i⊥⊥ = i.
Definition(2.14 (b)):- An element i of a lattice L is called a zero element if there exists a proper
filter F such that i = ∨{F 0} where F 0 = {x ∈ L|xy = 0, for some y ∈ F}.
Definition(2.14 (c)):-For an element i and a prime element p of a lattice L we define i(p) as
follows, i(p) = ∨{x ∈ L|xy ≤ i, for some y � p}. If i = 0, then i(p) is denoted by 0(p).
Definition(2.14 (d)):-An element i of a lattice L is called dense if i⊥ = 0.
Definition(2.14 (e)):-An element i of a lattice L is called non-dense if i⊥ 6= 0.
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Under which condition an element is a z-element is proved in the next result.

Lemma 2.15. Let L be a lattice without zero divisors such that ∧{m|m ∈ max(L)} = 0. If i is
an element of L satisfying any one of the following conditions then i is a z-element.
1) If i is a non-dense prime element.
2) If i is a closed element.
3) If i is a zero element.
4) If i = 0(p) for any prime element p.
5) If i = a⊥ for any element a ∈ L.

Proof.1) Let i be a non-dense element and µ(b) ⊆ µ(a), b ≤ i. Since i is a non-dense el-
ement, i⊥ = ∨{x ∈ L|ix = 0} 6= 0. Then there exists a non-zero element x ≤ i⊥ such
that ix = 0. In particular, xb = 0(b ≤ i). Since µ(b) ⊆ µ(a), by lemma (2.6), we have,
max(L) = µ(bx) ⊆ µ(ax). Thus (ax) ≤ m, for all m ∈ max(L). Hence ax = 0 as
∧{m|m ∈ max(L) = 0. This implies that (ax) ≤ i and since i is a prime element a ≤ i or
x ≤ i. If x ≤ i then x ≤ i⊥ implies x2 ≤ i.i⊥ = 0 i.e. x2 = 0, (x 6= 0). This contradicts the fact
that L has no divisors of zero. Hence ax ≤ i⇒ a ≤ i. Thus i is a z-element.
2) Let i be a closed element i.e. i = i⊥⊥ and µ(b) ⊆ µ(a), b ≤ i. Now b ≤ i = i⊥⊥ ⇒ bx ≤
b∧x = 0, for all x ≤ i⊥ = ∨{y|iy = 0}. Since µ(b) ⊆ µ(a), we have max(L) = µ(by) ⊆ µ(ay)
fory ≤ i⊥. Hence (ay) = ∧{m ∈ max(L)} = 0. Therefore ay = 0 for all y ≤ i⊥. Then
ai⊥ = 0 and hence a ≤ i⊥⊥ = i, since i is a closed element. Thus µ(b) ⊆ µ(a), b ≤ i implies
a ≤ i. So i is a z-element.
3) Let i be a zero element. Then i = ∨{F 0} = ∨{x ∈ L|xy = 0 for some y ∈ F}, for some
proper filter F. Let µ(b) ⊆ µ(a) and b ≤ i. Since b ≤ i. We have, by = 0 for some y ∈ F . Now
µ(b) ⊆ µ(a)⇒ max(L) = µ(by) ⊆ µ(ay), by (2.6). Hence ay ≤ m, for all m ∈ max(L). Thus
ay ≤ ∧{m|m ∈ max(L)} = 0. Hence ay = 0 for some y ∈ F . Thus a ≤ ∨{F 0} = i. Hence i is
a z-element.
4) Suppose i = 0(p) for some prime element p, where 0(p) = ∨{x ∈ L|xy = 0, for some
y � p}. Then F = L − (p] is a filter. Also i = ∨{x ∈ L|xy = 0, for some y ∈ F} = F 0. Now
the result follows by (3).
5)Let i = a⊥ = ∨{x|ax = 0}, µ(b) ⊆ µ(a), b ≤ i. Now b ≤ i = a⊥ implies ba = 0. So
bc = 0 for all c ≤ a. Since µ(b) ⊆ µ(a) we have µ(bc) ⊆ µ(ac)[by (2.6)]. But bc = 0 implies
Max(L) = µ(bc) ⊆ µ(ac). This gives, ac ≤ ∧{m|m ∈ Max(L)} = 0 and hence ac = 0 when
c ≤ a. Hence aa = 0 and a ≤ a⊥ = i. Therefore i is a z-element. 2

3 zj-Elements in multiplicative lattices.

Kavishwar and Joshi have studied zj-ideals on the lines of Alibad, Azarpanah and Taherifar[1].
We extend this concept to zj-elements in compactly generated multiplicative lattices.

Definition 3.1. Let i and j be the two elements of L. The element i is said to be a zj-element if
Ma ∧ j ≤ i, for all a ≤ i where Ma = ∧{m|a ≤ m}.

Ex. 1)From the diagram (1) b is a zj-element for j = c.
2) a is not a z-element but a is a zj-element for j = b.

Note:- Clearly if j ≤ i then i is always a zj-element and hence an element i is always a
zi-element. Further if j = 1 then z1 element is nothing but a z-element. 2

Lemma 3.2. If i is a z-element then i is a zj-element for any element j of a lattice L.

Proof. Let a ≤ i and x ≤ Ma ∧ j. Then x ≤ Ma implies Mx ≤ Ma. Since i is a z-element,
µ(a) ⊆ µ(x) and a ≤ i implies x ≤ i. Thus Ma ∧ j ≤ i, for all a ≤ i. Hence i is a zj-element. 2
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Definition 3.3. An element x ∈ L is called semi primary if
√
x is a prime element.

An element a ∈ L is called semi prime if
√
a = a.

Lemma 3.4. Let i be a semi prime element and j be any element of L. Then the following state-
ments hold:-
1) If i is a zj-element (z-element) and p is a minimal prime containing i, then p is also a zj-
element (z-element).
2) A prime element p in L is a zj-element if and only if p is either a z-element or j ≤ p.

Proof. 1) Let p be minimal prime containing i and suppose x ≤ p. We claim that Mx ∧ j ≤ p.
Since x ≤ p there exists y � p such that xny ≤ i, for some integer n ≥ 1. (See [10]). Since i
is a zj-element Mxny ∧ j = Mxn ∧My ∧Mj ≤ i ≤ p by (2.6). Also note that Mxn = Mx for
any positive integer n. Since y � p, My � p and p is a prime element gives Mx ∧ j ≤ p. Thus
Mx ∧ j ≤ p, for all x ≤ p. Hence p is a zj- element.
2) Let p be a prime zj- element such that j � p. Suppose µ(b) ⊆ µ(a) and b ≤ p. Since p is
a zj- element, we have Mb ∧ j ≤ p. This together with j � p implies Mb ≤ p. But Ma ≤ Mb

gives a ≤ Ma ≤ p. Hence p is a z-element. Conversely assume that p is a z-element or j ≤ p.
Suppose j ≤ p. Let a ≤ p. Then Ma ∧ j ≤ p. This holds for all a ≤ p. Hence p is a zj-element.
Now suppose j � p and p is a z-element. By lemma (3.2), it follows that p is a zj-element. 2

Lemma 3.5. Let i be a semi-prime element, j be any element and p,q be prime elements of L.
Then the following statements hold:-
1)If i ∧ p is a zj-element then either i or p is a zj-element.
2) If p ∧ q is a zj-element and p and q are not comparable then p and q are zj-elements.

Proof. 1) Let i ∧ p be a zj-element. If i ≤ p, then clearly i is a zj-element. Now suppose
i � p. Let b ≤ p. Then there exists an element a ≤ i but a � p. Hence ab ≤ p, ab ≤ a ≤ i
implies ab ≤ i ∧ p. Since i ∧ p is a zj-element. ab ≤ i ∧ p implies Ma∧b ∧ j ≤ i ∧ p. By (2.6),
Ma ∧Mb ∧ j ≤ p. Since p is prime and Ma(Mb ∧ j) ≤ p and Ma � p, we have Mb ∧ j ≤ p for
all b ≤ p. Hence p is a zj- element.
2) Suppose p ∧ q is a zj- element, where p and q are not comparable, so that p � q and q � p.
Now p � q implies q is a zj- element (by 1) and q � p implies p is a zj- element (by 1). 2

Lemma 3.6. Let i and j be two elements of L. Then (i ∧ j)z = iz ∧ jz .

Proof.Clearly iz ∧ jz is an element containing i∧ j. Since iz is the smallest z-element containing
i and jz is the smallest z-element containing j. It follows that iz∧jz ≥ (i∧j). To show that iz∧jz
is a z-element, let µ(b) ⊆ µ(a) and b ≤ iz ∧ jz so b ≤ iz b ≤ jz . Since iz, jz are z-elements, we
have a ≤ iz, a ≤ jz . Hence iz ∧ jz is a z-element and i ∧ j ≤ iz ∧ jz . To prove that (i ∧ j)z =
iz ∧ jz , it is enough to show that iz ∧ jz is the smallest z-element containing (i ∧ j). To see this
let k be a z-element such that (i ∧ j) ≤ k. If each element of L is a radical element i.e.

√
a = a

for each a in L then
√
k = k. In this case k = ∧{p|p is minimal prime containing k}. Since for

each p ∈ Min(k), we have (i ∧ j) ≤ p, it follows that i ≤ p or j ≤ p. By lemma (3.4) each
p ∈ Min(k) is a z-element. Using this fact along with iz is the smallest z-element containing i,
it follows that iz ∧ jz ≤ p, for each p ∈Min(k). Therefore (iz ∧ jz) ≤ ∧ {p|p ∈Min(k)} = k.
It follows that iz ∧ jz is the smallest z-element containing i ∧ j. Hence (i ∧ j)z= iz ∧ jz . 2

Now we characterize zj-elements in different ways.
We write Min(i)= the set of all minimal primes containing i.

Lemma 3.7. Let i be a semi prime element of a lattice L and j be an element of L. Then the
following statements are equivalent:-1)i is a zj-element.
2)iz ∧ j ≤ i (equivalently iz ∧ j = i ∧ j)
3) If there is a z-element k containing i, then k ∧ j ≤ i.
4)For each a ≤ i and b ≤ j,if Mb ≤Ma, then b ≤ i.
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Proof. (1)implies (2)
Let i be a semi prime zj-element. Then i = ∧{p|p is a minimal prime such that i ≤ p}. Hence
iz = {∧p∈Min(i)p}z ≤ (∧p∈Min(i)pz). By lemma (3.4) pz = p or j ≤ p. Hence in any case we
have, iz ∧ j ≤ (∧p∈Min(i)pz) ∧ j= [∧p∈Min(i)p] ∧ j = i ∧ j ≤ i.
(2) implies (3)
Assume that iz ∧ j ≤ i (equivalently iz ∧ j = i∧ j). Take k = iz then iz is the smallest z-element
containing i and hence iz ∧ j ≤ i(by hypothesis).
(3)implies (4)
Assume that if there is a z- element k containing i then k ∧ j ≤ i. Let a ≤ i,b ≤ j and Mb ≤Ma.
By (3) there exists a z-element k containing i such that k∧ j ≤ i. Then by lemma (2.10)Ma ≤ k.
Clearly , b ≤Mb ≤Ma. Hence b ≤Mb ∧ j ≤ k ∧ j ≤ i. Thus b ≤ i.
(4) implies (1)
Assume that for each a ≤ i and b ≤ j if Mb ≤ Ma then b ≤ i. Let a ≤ i and x ≤ Ma ∧ j. Then
by lemma (2.9) x ≤ Ma implies Mx ≤ Ma. Now a ≤ i, x ≤ j and Mx ≤ Ma implies x ≤ i (by
assumption). Thus Ma ∧ j ≤ i, for all a ≤ i. Hence i is a zj-element. 2

Lemma 3.8. The following statements hold in L:-
1)If i = i1 ∧ i2, j = j1 ∧ j2 and i1 is a zj1 - element, i2 is a zj2 - element, then i is a zj-element.
2) If j ≤ k and i is a zk- element then i is also a zj-element.
3) The meet of zj-elements is a zj-element and meet of z-elements is a z-element.
4) If i ≤ j,i is a zj-element and j is a zk-element then i is a zk-element.

Proof. 1) Let c = i = i1 ∧ i2. Since i1, i2 are zj1 and zj2 -elements respectively, we have
Mc ∧ j1 ≤ i1 and Mc ∧ j2 ≤ i2. This gives Mc ∧ j1 ∧ j2 ≤ i1 ∧ i2 for all c ≤ i1 ∧ i2. This shows
that i is a zj-element.
2)Suppose j ≤ k and i is a zk-element. Let a ≤ i. Then Ma ∧ k ≤ i(since i is a zk-element.) Let
a ≤ j. Then a ≤ k and by hypothesis, Ma ∧ k ≤ i. Then Ma ∧ j ≤ i, for all a ≤ i and hence i is
a zj − element.
3)Let ik(k ∈ 4) be collection of all zj-elements. Let a ≤ ∧k∈4ik = i. Then a ≤ ik for all
k ∈ 4. We have Ma ∧ j ≤ ik, since each ik is a zj-element. Hence Ma ∧ j ≤ ∧k∈4ik = i for all
a ≤ i. Hence i = ∧k∈4ik is a zj-element. Let hi, i ∈ 4 be the collection of z-elements of L and
h = ∧i∈4hi. Let µ(b) ⊆ µ(a) and b ≤ h. Then b ≤ hi for each i ∈ 4. As each hi is a z-element,
we have a ≤ hi for each i ∈ 4. Hence a ≤ ∧i∈4hi = h and h = ∧i∈4hi is a z-element.
4) Let i ≤ j where i is a zj-element and j is a zk-element. Let a ≤ i. Since i is a zj-element and
j is a zk-element, we have Ma ∧ j ≤ i and Ma ∧ k ≤ j. This gives Ma ∧ k ≤Ma ∧ j ≤ i for all
a ≤ i. This shows that i is a zk-element. 2

Now we obtain the property of a Jacobson radical[7],and establish the relation between the
Jacobson radical and z-element.

Lemma 3.9. The Jacobson radical j = ∧m∈Max(L)m is a z-element and is contained in every
z-element.

Proof.The proof follows from lemma (2.2) and(3) of lemma (3.8). 2

Lemma 3.10. Let L be a multiplicative lattice. Then i is a zj-element if and only if i ∧ j is a
zj-element.

Proof.Let i be a zj-element and a ≤ i ∧ j. Then a ≤ i and i is a zj-element implies Ma ∧ j ≤ i.
Also Ma ∧ j ≤ j. Hence Ma ∧ j ≤ (i ∧ j) for all a ≤ (i ∧ j). Hence (i ∧ j) is a zj-element.
Conversely assume that (i ∧ j) is a zj-element. Let a ≤ i and x ≤ Ma ∧ j. Then a ∧ x ≤ i and
a∧x ≤ x ≤ j implies a∧x ≤ (i∧ j). Since (i∧ j) is a zj-element, we have Ma∧x ∧ j ≤ (i∧ j).
By lemma (2.6),Ma∧x =Ma ∧Mx. Since x ≤Ma, we have Mx ≤Ma. Now Mx ∧ j ≤Ma ∧ j.
So Mx ∧ j ≤ (i ∧ j). Now x ≤Mx ∧ j ≤ i ∧ j ≤ i. Thus Ma ∧ j ≤ i for all a ≤ i. Hence i is a
zj-element. 2
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Finally we obtain the characterization of zj-element and some properties of z-elements and
zj-elements.

Lemma 3.11. Let i,j,k be elements of a distributive lattice L. Then the following statements hold:-
1) An element i of L is a zj-element if and only if i is zi∨j-element.
2)If j is a z-element then i is a zj-element if and only if i ∧ j is a z-element.
3)i ∧ j is both zi-element and zj-element if and only if i is a zj-element and j is zi-element.
4)If m is a maximal element then i ∧m is a z-element if and only if i is a z-element.
5)iz ∧ j is the smallest zj-element containing i ∧ j.
6) i ≤ k,iz = kz , i is a zj-element, then k is also a zj-element.

Proof.1) Let i be a zj-element. Then Ma ∧ j ≤ i, for all a ≤ i. Clearly Ma ∧ i ≤ i. Since
L is distributive , we have , Ma ∧ (i ∨ j) = (Ma ∧ i) ∨ (Ma ∧ j) ≤ i, for all a ≤ i. Hence i
is a zi∨j-element. Conversely, Suppose i is a zi∨j-element. Let a ≤ i. Then a ≤ (i ∨ j) and
Ma ∧ (i ∨ j) ≤ i i.e. (Ma ∧ i) ∨ (Ma ∧ j) ≤ i. Hence Ma ∧ j ≤ i for all a ≤ i. Hence i is a
zj-element.
2) Let j be a z-element. Assume that i is a zj-element. We show that i ∧ j is a z-element. Let
µ(b) ⊆ µ(a), b ≤ (i ∧ j). Since µ(b) ⊆ µ(a), b ≤ j and j is a z-element, we have a ≤ j. Since
Ma ≤ Mb, b ≤ i, by (2.10), a ≤ i. Now a ≤ Ma ∧ j and Ma ∧ j ≤ i, since i is a zj-element
and a ≤ i. Thus a ≤ (i ∧ j). Hence (i ∧ j) is a z-element. Conversely assume that i ∧ j is a
z-element. We show that i is a zj-element. Let a ≤ i and x ≤ Ma ∧ j. Then x ≤ Ma implies
Mx ≤Ma. But µ(x) ⊆ µ(a), a ≤ i implies x ≤ i(by 2.10). Hence Ma ∧ j ≤ i for all a ≤ i and i
is a zj-element.
3)The proof follows by (3.10).
4)Let m be the maximal element of L. Let (i∧m) be a z-element. We show that i is a z-element.
If i ≤ m, then i = i ∧m and hence i is a z-element. Suppose i � m. Then i is a zm-element
by (2). Then i is a zi∨m-element by (1)i.e. i is a z1-element. Let µ(b) ⊆ µ(a), a ≤ i. Then
Mb ≤Ma ∧ 1 ≤ i (since a ≤ i and i is a z1-element). Hence b ≤ i and i is a z-element.
5) We know that if i is a z-element then i is a zj-element for any element j. As iz is a z-element.
it follows that iz is a zj-element. We know that (by lemma 3.10), i is a zj -element if and only if
(i ∧ j) is a zj-element. Hence iz ∧ j is a zj-element and i ∧ j ≤ iz ∧ j. Let k be any zj-element
such that i∧ j ≤ k. Then iz ∧ j = iz ∧ jz ∧ j = (i∧ j)z ∧ j ≤ kz ∧ j ≤ k. (By lemma 3.7). Hence
iz ∧ j is the smallest zj-element containing i ∧ j.
6)By (3.7),since i is a zj-element iz ∧ j ≤ i. By hypothesis, kz ∧ j = iz ∧ j ≤ i ≤ k. Hence
again by (3.7), k is a zj-element. 2
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