Z-EIEMENTS AND z_j -EIEMENTS IN MULTIPLICATIVE LATTICES.

C.S. Manjarekar and A.N.Chavan

Communicated by A.N. Chavan

MSC 2010 Classifications: Primary 06F10, 06E20, 06E99.

Keywords and phrases: Prime element, compact element, z-element, z_i -element, minimal prime element.

Abstract. In this paper we introduced and studied the concepts of z-elements and z_j -elements as a generalization of a z-ideal and z_j ideal. Various properties and characterizations of z-elements and z_j -elements are obtained. It is shown that the Jacobson radical which is meet of all maximal elements is a z-element and is contained in every z-element.

1 Introduction

A multiplicative lattice L is a complete lattice provided with commutative, associative and join distributive multiplication in which the largest element 1 acts as a multiplicative identity. An element $a \in L$ is called proper if a < 1. A proper element p of L is said to be prime if $ab \leq p$ implies $a \leq p$ or $b \leq p$. If $a \in L$, $b \in L$, (a : b) is the join of all elements c in L such that $cb \leq a$. A proper element p of L is said to be primary if $ab \leq p$ implies $a \leq p$ or $b^n \leq p$ for some positive integer n. If $a \in L$, then $\sqrt{a} = \vee \{ x \in L_* \mid x^n \leq a, n \in Z_+ \}$. An element $a \in L$ is called a radical element if $a = \sqrt{a}$. Radical element is also called as a semi-prime element. An element $a \in L$ is called compact if $a \leq \bigvee_{\alpha} b_{\alpha}$ implies $a \leq b_{\alpha_1} \vee b_{\alpha_2} \dots \vee b_{\alpha_n}$ for some finite subset $\{\alpha_1, \alpha_2...\alpha_n\}$. An element m of L is called maximal element if $m \nleq x$ for any other $x \in L$. Throughout this paper, L denotes a compactly generated multiplicative lattice with 1 compact in which every finite product of compact element is compact. We shall denote by L_* , the set of compact elements of L. A nonempty subset of L_* is called a filter if the following conditions are satisfied.

i) $x, y \in F$ implies $xy \in F$

ii) $x \in F, x \leq y$ implies $y \in F$

Let $F(L_*)$ denotes a set of all filters of L. For a nonempty subset $\{F_\alpha\} \subseteq F(L_*)$, define $\bigcup F_\alpha = \{x \geq f_1 f_2 \dots f_n, f_i \in F_{\alpha_i} \text{ for some } i = 1, 2 \dots n\}$. Then it is observed that, $F(L_*) = \langle F(L_*), \bigcup, \cap \rangle$ is a complete distributive lattice with \bigcup as the supremum and the set theoretic \cap as the infimum. For $a \in L_*$ the smallest filter containing a is denoted by [a) and it is given by $[a] = \{x \in L_*/x \geq a^n \text{ for some non-negative integer } n\}$. For a filter $F \in F(L_*)$ we denote, $O_F = \vee \{x \in L_*/xs = 0, \text{for some } s \in F\}$.

A lattice L is called semi-complemented if for any element $a \in L$, $(a \neq 1)$ there exists a non-zero element $b \in L$ such that ab = 0. A lattice L is said to be dual semi-complemented if for every element $a \in L$, $(a \neq 0)$ there exists a non-zero element $b \neq 1$ such that $a \lor b = 1$.

A lattice L with 0 is section semi-complemented if $a \nleq b$ then there exists $c \in L$ such that $0 < c \le a$ and $b \land c = 0$.

For all these definitions one can refer R.P.Dilworth[11], F.Alarcon, Jayaram and Anderson [7].

2 Z-Elements in multiplicative lattices.

The concept of z-ideals was first introduced by Kohls[5] which played an important role in studying the ideal theory of C(X), the ring of continuous real valued functions on compactly regular Hausdroff space X: See Gillman and M. Jerison [8]. Mason [9]studied z-ideals in general commutative rings. He proved that maximal ideals, minimal prime ideals and some other deals in commutative rings are z-ideals. As a generalization of z-ideals the concept of z^0 -ideals

is introduced and studied in C(X). In [4] Huijsman and De-Pagter studied z^0 -ideals under the name of d-ideals in Riesz spaces. Speed [13]introduced and studied the concept of Baer ideals in commutative Baer rings which are essentially z^0 -ideals (equivalently d-ideals) and characterized regular rings and quasi regular rings. Jayaram [6], Anderson, Jayaram and Phiri [3]defined the concept of Baer ideals for lattice and multiplicative lattices respectively. The analogous concept of z-ideals is introduced by Kavishwar and Joshi[12].

We introduce the concept of z-elements in compactly generated multiplicative lattices in which 1 is compact and every finite product of compact elements is compact.

Let L denote a compactly generated multiplicative lattice with largest element 1 compact in which every finite product of compact elements is compact. Let $\mu = Max(L)$ denote the set of all maximal elements in a lattice L and $\mu(a) = \{m \in \mu | a \leq m\}$ for $a \in L$. For $a \in L$ the meet of all maximal elements in L containing a is denoted by M_a i.e. $M_a = \wedge(\mu(a)) = \wedge\{m \in \mu | a \leq m\}$. We introduce the concept of z-element in multiplicative lattices which is a generalization of z-ideals in a commutative ring.

Now we prove the properties of z-elements in multiplicative lattices.

Definition 2.1. An element h of L is called a z-element if $\mu(b) \subseteq \mu(a)$ and $b \leq h$ implies $a \leq h$.

Lemma 2.2. Every maximal element in L is a z- element.

Proof. Let m be a maximal element of L and $\mu(a) \subseteq \mu(b)$, $a \leq m$. Since $a \leq m$ we have $m \in \mu(a)$. But $\mu(a) \subseteq \mu(b)$ implies $m \in \mu(b)$. Thus $b \leq m$. Hence m is a z- element. \Box

Lemma 2.3. Let m be a unique maximal element of L such that $h \leq m$, then h is not a z-element.

Proof.Since $h \nleq m$ there exists $x \leq m$ such that $x \nleq h$. Let $i \leq h$. Since m is a unique maximal element, we have $\mu(i) = \mu(x)$ and $x \nleq h$. Thus $\mu(i) \subseteq \mu(x), i \leq h$ but $x \nleq h$. Hence h is not a z-element. \Box

[Diagram (1)]

Ex.1)- Consider the lattice shown in diagram (1) with the trivial multiplication $x \cdot y = 0 = y \cdot x$, for each $x \neq 1 \neq y$ and $x \cdot 1 = x = 1 \cdot x$ for every $x \in L$. Then it is easy to show that L is a

multiplicative lattice.

d being a maximal is a z-element.

2)In the above diagram, a is not a z-element. Because $\mu(b) \subseteq \mu(c), b \leq a, \mu(b) = \mu(c) = \{d\}$ but $c \not\leq a$.

3)Let R = Z. Then L(Z) the lattice of ideals of Z is a multiplicative lattice. $\langle 4 \rangle$ is not a z-element in L(Z). Obviously $\langle 2 \rangle, \langle 3 \rangle, \langle 5 \rangle$ being maximal elements are z-elements.

Here is a characterization of dual semi complemented lattices in terms of maximal elements.

Lemma 2.4. A lattice L is dual semi complemented if and only if \land { $m | m \in Max(L)$ } = 0.

Proof. Let L be a dual semi complemented lattice. Suppose $\wedge \{m | m \in Max(L)\} \neq 0$, $a \leq \wedge \{m | m \in Max(L)\}$ and $a \neq 0$. Since L is dual semi complemented there exists $b \neq 1$ such that $a \vee b = 1$. This implies that $b \nleq \wedge \{m | m \in Max(L)\}$. Since $b \neq 1$, there exists a maximal element m_1 such that $b \leq m_1$. But $a \leq \wedge \{m | m \in Max(L)\}$ implies $a \leq m_1$. Thus $1 = a \vee b \leq m_1$, a contradiction. Hence $\wedge \{m | m \in Max(L)\} = 0$. Conversely, suppose $\wedge \{m | m \in Max(L)\} = 0$. We show that L is dual semi complemented. Let $0 \neq a \in L$. Since $a \neq 0$, we have $a \nleq \wedge \{m | m \in Max(L)\} = 0$. Then there exists a maximal element m_1 such that $a \nleq m_1$. Therefore $a \vee m_1 = 1$. Hence m is dual semi complemented. \Box

Using the above characterization we show that the least element of L is a z-element.

Lemma 2.5. Let L be a dual semi-complemented lattice. Then 0 is a z- element.

Proof.Let $\mu(a) \subseteq \mu(b)$ and $a \leq 0$. Then a = 0 and $\mu(a) = \mu(0) = max(L)$. So $\mu(b) = max(L)$ and $b \leq \wedge \{m|m \in Max(L)\} = 0$ implies b = 0. Hence 0 is a z- element. \Box

Lemma 2.6. Let $a, b \in L$. Then the following statements hold: $1 M_{a \wedge b} = M_a \wedge M_b = M_{ab}$. $2)\mu(b) \subseteq \mu(a)$ then $\mu(b \wedge c) \subseteq \mu(a \wedge c)$ and $\mu(bc) \leq \mu(ac)$ for any $c \in L$.

Proof. 1)We have, $M_{(a \wedge b)} = \wedge \{m \in \mu | (a \wedge b) \leq m\}$. Let $x \leq M_{(a \wedge b)}$ and $x \nleq M_a \wedge M_b$. Then $x \nleq M_a$ or $x \nleq M_b$. Suppose $x \nleq M_b = \wedge (\mu(b)) = \wedge \{m \in \mu | b \leq m\}$. Without loss of generality assume that, $x \nleq m_1$ for some maximal element m_1 such that $b \leq m_1$. But then, $x \leq M_{(a \wedge b)} \leq m_1$, a contradiction. Hence $x \leq M_a \wedge M_b$ and $M_{(a \wedge b)} \leq M_a \wedge M_b$. Let $x \leq M_a \wedge M_b$ and $x \nleq M_{(a \wedge b)}$. Then there exists a maximal element m_2 such that $(a \wedge b) \leq m_2$ but $x \nleq m_2$. Since m_2 is a maximal element, m_2 is prime and $ab \leq m_2$ implies $a \leq m_2$ or $b \leq m_2$. Without loss of generality, assume that $a \leq m_2$. Then $x \leq M_a \leq m_2$. This contradicts the fact that $x \nleq m_2$. Hence $M_a \wedge M_b \leq M_{(a \wedge b)}$ and $M_{(a \wedge b)} = M_a \wedge M_b$.

To prove that $M_a \wedge M_b = M_{ab}$. Let $x \leq M_{ab}$ and $x \notin M_a \wedge M_b$. Then $x \notin M_a$ or $x \notin M_b$. Suppose $x \notin M_a$. Then there exists a maximal element m_1 such that $x \notin m_1$ but $a \leq m_1$. Then $x \leq M_{ab} \leq m_1$, a contradiction. So $x \leq M_a \wedge M_b$ and $M_{ab} \leq M_a \wedge M_b$. Let $x \leq M_a \wedge M_b$, but $x \notin M_{ab}$. This implies there exists a maximal element m_2 such that $ab \leq m_2$ but $x \notin m_2$. Since m_2 is prime, $ab \leq m_2$ implies $a \leq m_2$ or $b \leq m_2$. If $a \leq m_2$, $x \leq M_a \leq m_2$, a contradiction and hence $M_a \wedge M_b = M_{ab}$.

2) To prove that if $\mu(b) \subseteq \mu(a)$ then $\mu(b \land c) \subseteq \mu(a \land c)$ for any $c \in L$. Let m be a maximal element such that $m \in \mu(b \land c)$. Since m is also a prime element, $bc \leq m$ implies $b \leq m$ or $c \leq m$. If $c \leq m, a \land c \leq m$ and $m \in \mu(a \land c)$. If $b \leq m, m \in \mu(b) \subseteq \mu(a)$ and we have, $a \leq m$. This shows that $(a \land c) \leq m$ and $m \in \mu(a \land c)$. Thus $\mu(b \land c) \subseteq \mu(a \land c)$ for any $c \in L$.

To prove that $\mu(bc) \leq \mu(ac)$. Let $m \in \mu(bc)$. Since m is prime $bc \leq m$ implies $b \leq m$ or $a \leq m$. If $c \leq m$, $ac \leq m$ and $m \in \mu(ac)$. If $b \leq m$, $m \in \mu(b) \subseteq \mu(a)$ and we have $a \leq m$ and hence $ac \leq m$ so that $m \in \mu(ac)$. Thus $\mu(bc) \leq \mu(ac)$. \Box

Lemma 2.7. Every element *i* is contained in the least *z*-element namely, $i_z = \wedge \{j \ge i | j \text{ is } z\text{-element }\}$ is the smallest *z*-element containing *i*.

Proof. Let $\mu(b) \subseteq \mu(a)$ and $b \leq i_z$. Let j_1 be an arbitrary z-element such that $j_1 \geq i$. Since $b \leq j_1, j_1$ is a z-element and $\mu(b) \subseteq \mu(a)$ we have $a \leq j_1$. Thus $a \leq \wedge \{j \mid j \text{ is a z-element such that } j \geq i\} = i_z$. Hence i_z is a z-element. Now let j be any z-element containing i. Let $x \leq i_z$. Then clearly, $x \leq j$ and hence $i_z \leq j$. \Box

Lemma 2.8. Let *L* be a multiplicative lattice and *i*,*j* be any two elements of L. Then the following statements hold:- 1)If $i \le j$, then $i_z \le j_z$ 2) $(i_z)_z = i_z$.

Proof.1)Let $i \leq j$ and $x \leq i_z = \wedge \{k \mid k \text{ is a z-element and } k \geq i\}$.

If $x \nleq j_z = \wedge \{q \mid q \text{ is a z-element and } q \ge j\}$ then there exist z-element q_1 such that $x \nleq q_1$ and $j \le q_1$. This together with $i \le j$, implies $i \le q_1$. But $x \le i_z$ and $i \le q_1$ for some z-element q_1 gives $i_z \le q_1$. Therefore $x \le q_1$, a contradiction. Hence $i_z \le j_z$.

2)Clearly, $i_z \leq (i_z)_z$. Let $x \leq (i_z)_z = \wedge \{q | q \geq i_z \text{ q is a z-element }\}$. We know that i_z is a z-element and $i_z \leq i_z$. But $(i_z)_z$ is the least z element containing i_z . So $(i_z)_z \leq i_z$ and we have $i_z = (i_z)_z$. \Box

Lemma 2.9. Let *L* be a multiplicative lattice and $a, b \in L$, then $a \leq M_b$ if and only if $M_a \leq M_b$ if and only if $\mu(b) \subseteq \mu(a)$.

Proof. Let $M_a \leq M_b$. Obviously, $a \leq M_a$ implies $a \leq M_b$. Conversely $a \leq M_b$ implies $a \leq \wedge \{ m \in \mu | b \leq m \}$.

Let $x \leq M_a = \wedge \{ m | a \leq m \in \mu \}$. Let m_1 be any maximal element with $b \leq m_1$. Then $a \leq m_1$. This gives $x \leq m_1$ and hence $x \leq M_b$. Thus $M_a \leq M_b$. Obviously, $M_a \leq M_b$ if and only if $\mu(b) \subseteq \mu(a)$. \Box

In the next result we characterize z-elements.

Lemma 2.10. Let *i* be an element of *L*, then the following statements are equivalent:-1)*i* is a *z*-element. 2)u(a) = u(b) and $b \le i$ implies $a \le i$.

 $\begin{array}{l} 2)\mu(a) = \mu(b) \ and \ b \leq i \ implies \ a \leq i. \\ 3)M_a \leq i, \ for \ all \ a \leq i. \\ 4)M_b \leq M_a, \ a \leq i \ implies \ b \leq i. \end{array}$

Proof. (1) implies (2) is obvious. (2)implies (3) Let $x \leq M_a$. Then by lemma (2.9), $M_x \leq M_a$. Hence $M_x = M_x \wedge M_a = M_{a \wedge x}$ (by lemma (2.6)). This gives $\mu_x = \mu(a \wedge x)$. If $a \leq i$, then $(a \wedge x) \leq i$. But by (2) $x \leq i$. (3)implies (4) Assume that $M_a \leq i$, for all $a \leq i$. We assume that $M_b \leq M_a, a \leq i$. Then $M_a \leq i$ and $b \leq M_b \leq M_a$ implies $b \leq i$. (4)implies (1) We assume that $M_b \leq M_a$ and $a \leq i$ implies $b \leq i$. We show that i is a z-element. Let $\mu(b) \subseteq \mu(a)$ and $b \leq i$. Then $M_a \leq M_b$ and we have $b \leq i$, by hypothesis $a \leq i$. Hence i is a z-element. \Box

Separation lemma for z-element:-

Such type of Separation lemma is obtained by Anderson[2] and for z-ideals in lattices by Kavishwar and Joshi[12].

Lemma 2.11. Let *L* be a multiplicative lattice. Suppose $t \not\leq i$, for all $t \in S$, where *i* is *z*-element and *S* is multiplicatively closed in *L*. Then there exists a prime *z*-element *p* such that $i \leq p$ and $t \not\leq p$, for all $t \in S$.

Proof. Let $\mathscr{F} = \{j \mid j \text{ a z-element such that } i \leq j \text{ and } t \nleq j, \forall t \in S\}$. Then $\mathscr{F} \neq \emptyset$, since atleast $i \in \mathscr{F}$ and \mathscr{F} is a poset with respect to \leq . Let \mathscr{C} be a chain in \mathscr{F} and $m = \lor\{j \mid j \in \mathscr{C}\}$. We show

that m is a z-element.

Assume that $\mu(a) \subseteq \mu(b)$ and $a \leq m$. Then $a \leq j$ for some $j \in \mathscr{C}$. But j is a z-element and $\mu(a) \subseteq \mu(b)$ and $a \leq j$ implies $b \leq j$ and hence $b \leq m$. Hence m is a z-element. Obviously $j \leq m$ for all $j \in \mathscr{C}$. That is m is an upper bound of \mathscr{C} and $m \in \mathscr{F}$. Thus \mathscr{F} is a poset in which every chain has an upper bound in \mathscr{F} . Hence by Zorn's lemma, there exists a maximal element $p \in \mathscr{F}$ and clearly p is a z-element such that $i \leq p$ and $t \nleq p$, $\forall t \in S$. We claim that p is a prime element. Let $ab \leq p$ and $a \nleq p$, $b \nleq p$. Then $(p \lor a) > p$, $(p \lor b) > p$. Since p is a maximal element with respect to $t \nleq p$, $\forall t \in S$, it follows that there exists $t_1, t_2 \in S$ such that $t_1 \leq (p \lor a)$ and $t_2 \leq (p \lor b)$. Since S is a multiplicatively closed set $t_1t_2 \in S$. Also $t_1t_2 \leq (p \lor a)(p \lor b) \leq (p \lor ab) \leq p$. This contradicts the fact that $t \nleq p$, $\forall t \in S$. Hence p is a prime z-element. \Box

Lemma 2.12. Let *L* be a distributive multiplicative lattice. Then every strongly irreducible element is a *z*-element if and only if every element is a *z*-element.

Proof. Obviously, if every element is a z-element every strongly irreducible element is a zelement. Conversely, suppose every strongly irreducible element is a z-element. Let i be any element, $\mu(b) \subseteq \mu(a), b \leq i$. Suppose $a \notin i$. Let $\mathscr{P} = \{x | i \leq x, a \notin x\}$. Then \mathscr{P} is a partially ordered set with respect to \leq and $\mathscr{P} \neq \phi$, since $i \in \mathscr{P}$. Let \mathscr{C} be a chain in \mathscr{P} . Then $b = \vee\{y | y \in \mathscr{C}\}$ is an upper bound of \mathscr{C} in \mathscr{P} . Hence by Zorn's lemma \mathscr{P} has a maximal element p such that $i \leq p$ and $a \notin p$. We show that p is strongly irreducible. Suppose $x \land y \leq p$, $x \notin p, y \notin p$. Since p is a maximal with respect to $a \notin p$ we have $p \lor x > a, p \lor y > a$. Hence $a \leq (p \lor x) \land (p \lor y)$ that is $a \leq p$, a contradiction. Hence p is a strongly irreducible element. Clearly $b \leq p$ and $\mu(b) \subseteq \mu(a)$ implies $a \leq p$, since a strongly irreducible element p is a z-element. This is a contradiction. Hence $a \leq i$ and i is a z-element. \Box

Lemma 2.13. Let L be SSC lattice such that $\wedge \{m | m \in max(L)\} = 0$. Then every element is a *z*-element.

Proof. Let i be an element of SSC lattice L. Let $\mu(b) \subseteq \mu(a)$ and $b \leq i$. Suppose $a \nleq i$. Then there exists $c \neq 0$ such that $c \leq a$ and $c \wedge i = 0$. This gives $b \wedge c = 0$. Thus max (L) = $\mu(b \wedge c) \subseteq \mu(a \wedge c)$, by lemma (2.6). Then $c = a \wedge c \leq hm m \in max(L) = 0$. Therefore c = 0, a contradiction. Thus $a \leq i$ and hence i is a z-element. \Box

Let a be an element of L. Then $(0:a) = \forall \{x \in L | xa = 0\}$. In this case (0:a) is also denoted by a^{\perp} , i.e. $a^{\perp} = \forall \{x \in L | xa = 0\}$.

We shall denote (0:a) by a^{\perp} and obtained its property in terms of maximal elements.

Lemma 2.14. Let L be a dual semi complemented lattice. Then $a^{\perp} = \wedge \{m \in max(L) | a \nleq m\}$ for any $a \in L$.

Proof. Let $x \leq a^{\perp}$. Then ax = 0. Let $m \in max(L)$. As every maximal element is prime it follows that m is a prime element. If $a \not\leq m$ then $ax = 0 \leq m$ implies $x \leq m$. Thus $a^{\perp} \leq \wedge \{m \in max(L) | a \not\leq m\}$. Conversely, suppose $x \leq \wedge \{m \in max(L) | a \not\leq m\}$ and $x \not\leq a^{\perp}$. Hence $ax \neq 0$. This shows that $ax \not\leq \wedge \{m \in max(L) | a \not\leq m\} = 0$, by lemma (2.4). Therefore there exists a maximal element m_1 such that $ax \not\leq m_1$, where $a \not\leq m_1$ with $x \not\leq m_1$. This contradicts the fact that $x \leq \wedge \{m \in max(L) | a \not\leq m\}$. Hence $x \leq a^{\perp}$ and $\wedge \{m \in max(L) | a \not\leq m\} \leq a^{\perp}$. Therefore $a^{\perp} = \wedge \{m \in max(L) | a \not\leq m\}$ for any $a \in L$. \Box

We generalize the following concepts in lattices for multiplicative lattices.

Definition(2.14 (a)):- An element $i \in L$ is said to be **closed element** if $i^{\perp \perp} = i$. **Definition(2.14 (b)):-** An element i of a lattice L is called a **zero element** if there exists a proper filter F such that $i = \vee \{F^0\}$ where $F^0 = \{x \in L | xy = 0$, for some $y \in F\}$. **Definition(2.14 (c)):-**For an element i and a prime element p of a lattice L we define i(p) as follows, $i(p) = \vee \{x \in L | xy \leq i, \text{ for some } y \leq p\}$. If i = 0, then i(p) is denoted by 0(p). **Definition(2.14 (d)):-**An element i of a lattice L is called **dense** if $i^{\perp} = 0$. **Definition(2.14 (e)):-**An element i of a lattice L is called **non-dense** if $i^{\perp} \neq 0$. Under which condition an element is a z-element is proved in the next result.

Lemma 2.15. Let L be a lattice without zero divisors such that $\land \{m | m \in max(L)\} = 0$. If i is an element of L satisfying any one of the following conditions then i is a z-element. 1) If i is a non-dense prime element.

2) If i is a closed element.
3) If i is a zero element.
4) If i = 0(p) for any prime element p.
5) If i = a[⊥] for any element a ∈ L.

Proof.1) Let i be a non-dense element and $\mu(b) \subseteq \mu(a), b \leq i$. Since i is a non-dense element, $i^{\perp} = \bigvee \{x \in L | ix = 0\} \neq 0$. Then there exists a non-zero element $x \leq i^{\perp}$ such that ix = 0. In particular, $xb = 0(b \leq i)$. Since $\mu(b) \subseteq \mu(a)$, by lemma (2.6), we have, $max(L) = \mu(bx) \subseteq \mu(ax)$. Thus $(ax) \leq m$, for all $m \in max(L)$. Hence ax = 0 as $\wedge \{m | m \in max(L) = 0$. This implies that $(ax) \leq i$ and since i is a prime element $a \leq i$ or $x \leq i$. If $x \leq i$ then $x \leq i^{\perp}$ implies $x^2 \leq i.i^{\perp} = 0$ i.e. $x^2 = 0, (x \neq 0)$. This contradicts the fact that L has no divisors of zero. Hence $ax \leq i \Rightarrow a \leq i$. Thus i is a z-element. 2) Let i be a closed element i.e. $i = i^{\perp \perp}$ and $\mu(b) \subseteq \mu(a), b \leq i$. Now $b \leq i = i^{\perp \perp} \Rightarrow bx \leq i$.

2) Let i be a closed element i.e. $i = i^{\perp \perp}$ and $\mu(b) \subseteq \mu(a), b \leq i$. Now $b \leq i = i^{\perp \perp} \Rightarrow bx \leq b \land x = 0$, for all $x \leq i^{\perp} = \lor \{y | iy = 0\}$. Since $\mu(b) \subseteq \mu(a)$, we have $max(L) = \mu(by) \subseteq \mu(ay)$ for $y \leq i^{\perp}$. Hence $(ay) = \land \{m \in max(L)\} = 0$. Therefore ay = 0 for all $y \leq i^{\perp}$. Then $ai^{\perp} = 0$ and hence $a \leq i^{\perp \perp} = i$, since i is a closed element. Thus $\mu(b) \subseteq \mu(a), b \leq i$ implies $a \leq i$. So i is a z-element.

3) Let i be a zero element. Then $i = \forall \{F^0\} = \forall \{x \in L | xy = 0 \text{ for some } y \in F\}$, for some proper filter F. Let $\mu(b) \subseteq \mu(a)$ and $b \leq i$. Since $b \leq i$. We have, by = 0 for some $y \in F$. Now $\mu(b) \subseteq \mu(a) \Rightarrow max(L) = \mu(by) \subseteq \mu(ay)$, by (2.6). Hence $ay \leq m$, for all $m \in max(L)$. Thus $ay \leq \wedge \{m|m \in max(L)\} = 0$. Hence ay = 0 for some $y \in F$. Thus $a \leq \vee \{F^0\} = i$. Hence i is a z-element.

4) Suppose i = 0(p) for some prime element p, where $0(p) = \forall \{x \in L | xy = 0, \text{ for some } y \notin p\}$. Then F = L - (p] is a filter. Also $i = \forall \{x \in L | xy = 0, \text{ for some } y \in F\} = F^0$. Now the result follows by (3).

5)Let $i = a^{\perp} = \forall \{x | ax = 0\}, \mu(b) \subseteq \mu(a), b \leq i$. Now $b \leq i = a^{\perp}$ implies ba = 0. So bc = 0 for all $c \leq a$. Since $\mu(b) \subseteq \mu(a)$ we have $\mu(bc) \subseteq \mu(ac)$ [by (2.6)]. But bc = 0 implies $Max(L) = \mu(bc) \subseteq \mu(ac)$. This gives, $ac \leq \wedge \{m | m \in Max(L)\} = 0$ and hence ac = 0 when $c \leq a$. Hence aa = 0 and $a \leq a^{\perp} = i$. Therefore i is a z-element. \Box

3 z_i -Elements in multiplicative lattices.

Kavishwar and Joshi have studied z_j -ideals on the lines of Alibad, Azarpanah and Taherifar[1]. We extend this concept to z_j -elements in compactly generated multiplicative lattices.

Definition 3.1. Let i and j be the two elements of L. The element i is said to be a z_j -element if $M_a \wedge j \leq i$, for all $a \leq i$ where $M_a = \wedge \{m | a \leq m\}$.

Ex. 1)From the diagram (1) b is a z_j -element for j = c. 2) a is not a z-element but a is a z_j -element for j = b.

Note:- Clearly if $j \leq i$ then i is always a z_j -element and hence an element i is always a z_i -element. Further if j = 1 then z_1 element is nothing but a z-element. \Box

Lemma 3.2. If *i* is a *z*-element then *i* is a z_j -element for any element *j* of a lattice *L*.

Proof. Let $a \leq i$ and $x \leq M_a \wedge j$. Then $x \leq M_a$ implies $M_x \leq M_a$. Since i is a z-element, $\mu(a) \subseteq \mu(x)$ and $a \leq i$ implies $x \leq i$. Thus $M_a \wedge j \leq i$, for all $a \leq i$. Hence i is a z_j -element. \Box

Definition 3.3. An element $x \in L$ is called semi primary if \sqrt{x} is a prime element. An element $a \in L$ is called semi prime if $\sqrt{a} = a$.

Lemma 3.4. *Let i be a semi prime element and j be any element of L. Then the following state-ments hold:-*

1) If i is a z_j -element (z-element) and p is a minimal prime containing i, then p is also a z_j -element (z-element).

2) A prime element p in L is a z_j -element if and only if p is either a z-element or $j \le p$.

Proof. 1) Let p be minimal prime containing i and suppose $x \le p$. We claim that $M_x \land j \le p$. Since $x \le p$ there exists $y \le p$ such that $x^n y \le i$, for some integer $n \ge 1$. (See [10]). Since i is a z_j -element $M_{x^n y} \land j = M_{x^n} \land M_y \land M_j \le i \le p$ by (2.6). Also note that $M_{x^n} = M_x$ for any positive integer n. Since $y \le p$, $M_y \le p$ and p is a prime element gives $M_x \land j \le p$. Thus $M_x \land j \le p$, for all $x \le p$. Hence p is a z_j - element.

2) Let p be a prime z_j - element such that $j \not\leq p$. Suppose $\mu(b) \subseteq \mu(a)$ and $b \leq p$. Since p is a z_j - element, we have $M_b \land j \leq p$. This together with $j \not\leq p$ implies $M_b \leq p$. But $M_a \leq M_b$ gives $a \leq M_a \leq p$. Hence p is a z-element. Conversely assume that p is a z-element or $j \leq p$. Suppose $j \leq p$. Let $a \leq p$. Then $M_a \land j \leq p$. This holds for all $a \leq p$. Hence p is a z_j -element. Now suppose $j \not\leq p$ and p is a z-element. By lemma (3.2), it follows that p is a z_j -element. \Box

Lemma 3.5. *Let i be a semi-prime element, j be any element and p,q be prime elements of L. Then the following statements hold:-*

1)If $i \wedge p$ *is a* z_j *-element then either i or* p *is a* z_j *-element.*

2) If $p \wedge q$ is a z_j -element and p and q are not comparable then p and q are z_j -elements.

Proof. 1) Let $i \wedge p$ be a z_j -element. If $i \leq p$, then clearly i is a z_j -element. Now suppose $i \not\leq p$. Let $b \leq p$. Then there exists an element $a \leq i$ but $a \not\leq p$. Hence $ab \leq p$, $ab \leq a \leq i$ implies $ab \leq i \wedge p$. Since $i \wedge p$ is a z_j -element. $ab \leq i \wedge p$ implies $M_{a \wedge b} \wedge j \leq i \wedge p$. By (2.6), $M_a \wedge M_b \wedge j \leq p$. Since p is prime and $M_a(M_b \wedge j) \leq p$ and $M_a \not\leq p$, we have $M_b \wedge j \leq p$ for all $b \leq p$. Hence p is a z_j -element.

2) Suppose $p \land q$ is a z_j - element, where p and q are not comparable, so that $p \nleq q$ and $q \nleq p$. Now $p \nleq q$ implies q is a z_j - element (by 1) and $q \nleq p$ implies p is a z_j - element (by 1). \Box

Lemma 3.6. Let *i* and *j* be two elements of *L*. Then $(i \wedge j)_z = i_z \wedge j_z$.

Proof.Clearly $i_z \wedge j_z$ is an element containing $i \wedge j$. Since i_z is the smallest z-element containing i and j_z is the smallest z-element containing j. It follows that $i_z \wedge j_z \ge (i \wedge j)$. To show that $i_z \wedge j_z$ is a z-element, let $\mu(b) \subseteq \mu(a)$ and $b \le i_z \wedge j_z$ so $b \le i_z \ b \le j_z$. Since i_z, j_z are z-elements, we have $a \le i_z, a \le j_z$. Hence $i_z \wedge j_z$ is a z-element and $i \wedge j \le i_z \wedge j_z$. To prove that $(i \wedge j)_z = i_z \wedge j_z$, it is enough to show that $i_z \wedge j_z$ is the smallest z-element containing $(i \wedge j)$. To see this let k be a z-element such that $(i \wedge j) \le k$. If each element of L is a radical element i.e. $\sqrt{a} = a$ for each a in L then $\sqrt{k} = k$. In this case $k = \wedge \{p | p$ is minimal prime containing k}. Since for each $p \in Min(k)$, we have $(i \wedge j) \le p$, it follows that $i_z \wedge j_z \ge h$. By lemma (3.4) each $p \in Min(k)$ is a z-element. Using this fact along with i_z is the smallest z-element containing i, it follows that $i_z \wedge j_z \le p$, for each $p \in Min(k)$. Therefore $(i_z \wedge j_z) \le \wedge \{p | p \in Min(k)\} = k$. It follows that $i_z \wedge j_z$ is the smallest z-element containing i. Let $(i \wedge j) \le k$. It follows that $i_z \wedge j_z \le p$, for each $p \in Min(k)$. Therefore $(i_z \wedge j_z) \le \wedge \{p | p \in Min(k)\} = k$. It follows that $i_z \wedge j_z$ is the smallest z-element containing i. $(i \wedge j) \ge i_z \wedge j_z$.

Now we characterize z_j -elements in different ways. We write Min(i)= the set of all minimal primes containing i.

Lemma 3.7. Let *i* be a semi prime element of a lattice *L* and *j* be an element of *L*. Then the following statements are equivalent: -1)*i* is a z_j -element. $2)i_z \wedge j \leq i$ (equivalently $i_z \wedge j = i \wedge j$) 3) If there is a *z*-element *k* containing *i*, then $k \wedge j \leq i$. 4)For each $a \leq i$ and $b \leq j$, if $M_b \leq M_a$, then $b \leq i$.

Proof. (1) implies (2)

Let i be a semi prime z_j -element. Then $i = \wedge \{p | p \text{ is a minimal prime such that } i \leq p\}$. Hence $i_z = \{\wedge_{p \in Min(i)} p\}_z \leq (\wedge_{p \in Min(i)} p_z)$. By lemma (3.4) $p_z = p$ or $j \leq p$. Hence in any case we have, $i_z \wedge j \leq (\wedge_{p \in Min(i)} p_z) \wedge j = [\wedge_{p \in Min(i)} p] \wedge j = i \wedge j \leq i$. (2) implies (3)

Assume that $i_z \wedge j \leq i$ (equivalently $i_z \wedge j = i \wedge j$). Take $k = i_z$ then i_z is the smallest z-element containing i and hence $i_z \wedge j \leq i$ (by hypothesis).

(3)implies (4)

Assume that if there is a z- element k containing i then $k \wedge j \leq i$. Let $a \leq i, b \leq j$ and $M_b \leq M_a$. By (3) there exists a z-element k containing i such that $k \wedge j \leq i$. Then by lemma (2.10) $M_a \leq k$. Clearly, $b \leq M_b \leq M_a$. Hence $b \leq M_b \wedge j \leq k \wedge j \leq i$. Thus $b \leq i$.

(4) implies (1)

Assume that for each $a \leq i$ and $b \leq j$ if $M_b \leq M_a$ then $b \leq i$. Let $a \leq i$ and $x \leq M_a \wedge j$. Then by lemma (2.9) $x \leq M_a$ implies $M_x \leq M_a$. Now $a \leq i$, $x \leq j$ and $M_x \leq M_a$ implies $x \leq i$ (by assumption). Thus $M_a \wedge j \leq i$, for all $a \leq i$. Hence i is a z_j -element. \Box

Lemma 3.8. The following statements hold in L:-

1) If $i = i_1 \land i_2$, $j = j_1 \land j_2$ and i_1 is a z_{j_1} -element, i_2 is a z_{j_2} -element, then i is a z_j -element. 2) If $j \le k$ and i is a z_k -element then i is also a z_j -element. 3) The meet of z_j -elements is a z_j -element and meet of z-elements is a z-element. 4) If $i \le j$, i is a z_j -element and j is a z_k -element then i is a z_k -element.

Proof. 1) Let $c = i = i_1 \wedge i_2$. Since i_1, i_2 are z_{j_1} and z_{j_2} -elements respectively, we have $M_c \wedge j_1 \leq i_1$ and $M_c \wedge j_2 \leq i_2$. This gives $M_c \wedge j_1 \wedge j_2 \leq i_1 \wedge i_2$ for all $c \leq i_1 \wedge i_2$. This shows that i is a z_j -element.

2)Suppose $j \le k$ and i is a z_k -element. Let $a \le i$. Then $M_a \land k \le i$ (since i is a z_k -element.) Let $a \le j$. Then $a \le k$ and by hypothesis, $M_a \land k \le i$. Then $M_a \land j \le i$, for all $a \le i$ and hence i is a z_j - element.

3)Let $i_k(k \in \triangle)$ be collection of all z_j -elements. Let $a \leq \wedge_{k \in \triangle} i_k = i$. Then $a \leq i_k$ for all $k \in \triangle$. We have $M_a \wedge j \leq i_k$, since each i_k is a z_j -element. Hence $M_a \wedge j \leq \wedge_{k \in \triangle} i_k = i$ for all $a \leq i$. Hence $i = \wedge_{k \in \triangle} i_k$ is a z_j -element. Let $h_i, i \in \triangle$ be the collection of z-elements of L and $h = \wedge_{i \in \triangle} h_i$. Let $\mu(b) \subseteq \mu(a)$ and $b \leq h$. Then $b \leq h_i$ for each $i \in \triangle$. As each h_i is a z-element, we have $a \leq h_i$ for each $i \in \triangle$. Hence $a \leq \wedge_{i \in \triangle} h_i = h$ and $h = \wedge_{i \in \triangle} h_i$ is a z-element.

4) Let $i \leq j$ where i is a z_j -element and j is a z_k -element. Let $a \leq i$. Since i is a z_j -element and j is a z_k -element, we have $M_a \wedge j \leq i$ and $M_a \wedge k \leq j$. This gives $M_a \wedge k \leq M_a \wedge j \leq i$ for all $a \leq i$. This shows that i is a z_k -element. \Box

Now we obtain the property of a Jacobson radical[7], and establish the relation between the Jacobson radical and z-element.

Lemma 3.9. The Jacobson radical $j = \wedge_{m \in Max(L)} m$ is a z-element and is contained in every *z*-element.

Proof. The proof follows from lemma (2.2) and (3) of lemma (3.8). \Box

Lemma 3.10. Let L be a multiplicative lattice. Then i is a z_j -element if and only if $i \land j$ is a z_j -element.

Proof.Let i be a z_j -element and $a \leq i \wedge j$. Then $a \leq i$ and i is a z_j -element implies $M_a \wedge j \leq i$. Also $M_a \wedge j \leq j$. Hence $M_a \wedge j \leq (i \wedge j)$ for all $a \leq (i \wedge j)$. Hence $(i \wedge j)$ is a z_j -element. Conversely assume that $(i \wedge j)$ is a z_j -element. Let $a \leq i$ and $x \leq M_a \wedge j$. Then $a \wedge x \leq i$ and $a \wedge x \leq x \leq j$ implies $a \wedge x \leq (i \wedge j)$. Since $(i \wedge j)$ is a z_j -element, we have $M_{a \wedge x} \wedge j \leq (i \wedge j)$. By lemma (2.6), $M_{a \wedge x} = M_a \wedge M_x$. Since $x \leq M_a$, we have $M_x \leq M_a$. Now $M_x \wedge j \leq M_a \wedge j$. So $M_x \wedge j \leq (i \wedge j)$. Now $x \leq M_x \wedge j \leq i \wedge j \leq i$. Thus $M_a \wedge j \leq i$ for all $a \leq i$. Hence i is a z_j -element. \Box Finally we obtain the characterization of z_j -element and some properties of z-elements and z_j -elements.

Lemma 3.11. Let *i*, *j*, *k* be elements of a distributive lattice L. Then the following statements hold:-1) An element *i* of *L* is a z_j -element if and only if *i* is $z_{i \lor j}$ -element.

2) If *j* is a *z*-element then *i* is a z_j -element if and only if $i \land j$ is a *z*-element. 3) $i \land j$ is both z_i -element and z_j -element if and only if *i* is a z_j -element and *j* is z_i -element. 4) If *m* is a maximal element then $i \land m$ is a *z*-element if and only if *i* is a *z*-element. 5) $i_z \land j$ is the smallest z_j -element containing $i \land j$. 6) $i \le k, i_z = k_z$, *i* is a z_j -element, then *k* is also a z_j -element.

Proof.1) Let i be a z_j -element. Then $M_a \wedge j \leq i$, for all $a \leq i$. Clearly $M_a \wedge i \leq i$. Since L is distributive, we have, $M_a \wedge (i \vee j) = (M_a \wedge i) \vee (M_a \wedge j) \leq i$, for all $a \leq i$. Hence i is a $z_{i \vee j}$ -element. Conversely, Suppose i is a $z_{i \vee j}$ -element. Let $a \leq i$. Then $a \leq (i \vee j)$ and $M_a \wedge (i \vee j) \leq i$ i.e. $(M_a \wedge i) \vee (M_a \wedge j) \leq i$. Hence $M_a \wedge j \leq i$ for all $a \leq i$. Hence i is a z_j -element.

2) Let j be a z-element. Assume that i is a z_j -element. We show that $i \wedge j$ is a z-element. Let $\mu(b) \subseteq \mu(a), b \leq (i \wedge j)$. Since $\mu(b) \subseteq \mu(a), b \leq j$ and j is a z-element, we have $a \leq j$. Since $M_a \leq M_b, b \leq i$, by (2.10), $a \leq i$. Now $a \leq M_a \wedge j$ and $M_a \wedge j \leq i$, since i is a z_j -element and $a \leq i$. Thus $a \leq (i \wedge j)$. Hence $(i \wedge j)$ is a z-element. Conversely assume that $i \wedge j$ is a z-element. We show that i is a z_j -element. Let $a \leq i$ and $x \leq M_a \wedge j$. Then $x \leq M_a$ implies $M_x \leq M_a$. But $\mu(x) \subseteq \mu(a), a \leq i$ implies $x \leq i$ (by 2.10). Hence $M_a \wedge j \leq i$ for all $a \leq i$ and i is a z_j -element.

3)The proof follows by (3.10).

4)Let m be the maximal element of L. Let $(i \land m)$ be a z-element. We show that i is a z-element. If $i \le m$, then $i = i \land m$ and hence i is a z-element. Suppose $i \nleq m$. Then i is a z_m -element by (2). Then i is a $z_{i \lor m}$ -element by (1)i.e. i is a z_1 -element. Let $\mu(b) \subseteq \mu(a), a \le i$. Then $M_b \le M_a \land 1 \le i$ (since $a \le i$ and i is a z_1 -element). Hence $b \le i$ and i is a z-element.

5) We know that if i is a z-element then i is a z_j -element for any element j. As i_z is a z-element. it follows that i_z is a z_j -element. We know that (by lemma 3.10), i is a z_j -element if and only if $(i \land j)$ is a z_j -element. Hence $i_z \land j$ is a z_j -element and $i \land j \le i_z \land j$. Let k be any z_j -element such that $i \land j \le k$. Then $i_z \land j = i_z \land j_z \land j = (i \land j)_z \land j \le k_z \land j \le k$. (By lemma 3.7). Hence $i_z \land j$ is the smallest z_j -element containing $i \land j$.

6)By (3.7),since i is a z_j -element $i_z \wedge j \leq i$. By hypothesis, $k_z \wedge j = i_z \wedge j \leq i \leq k$. Hence again by (3.7), k is a z_j -element. \Box

References

- A.R. Aliabad, F.Azarpanah and A. Taherifar, Relative z-ideals in commutative rings, *Comm.Algebra* 41(1),325–341 (2013).
- [2] D.D. Anderson, Abstract Commutative Ideal Theory Without Chain Condition, Algebra Universalis 6, 131–145 (1976).
- [3] D.D. Anderson, Jayaram C., Phiri, Baer Lattices, Acta Sci. Math. (Szeged), 52(1-2) 61–74 (1994).
- [4] C.B.Huijsmans, B. De. Pagter, On z-ideals and d-ideals in Riesz Spaces I, Nederl. Akad. Wetensch. Indag. Math., 42(2), 183–195 (1980).
- [5] C.W. Kohls, Ideals in Rings of Continuous Functions, Fund. Math., 45, 28–50 (1957).
- [6] C.Jayaram, Baer Ideals In Commutative Rings, Indian J. Pure appl. Math., 15(8),855-864 (1984).
- [7] F. Alarcon, D.D. Anderson, C. Jayaram, Some results on abstract commutative ideal theory, Periodica Mathematica Hungerica, Vol 30 (1), 1–26 (1995).
- [8] Gillman and Jerison, Rings of Continuous Functions, The University Series in Higher Mathematics, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto-London-New York (1960).
- [9] G. Mason, z-ideals and prime ideals, J. Algebra, 26, 280–197 (1973).
- [10] N.K. Thakare, C.S. Manjarekar and Maida S., Abstract spectral theory II, Minimal characters and minimal spectrum of multiplicative lattices, Acta Sci. Math., 52, 53–67 (1988).
- [11] R.P. Dilworth, Abstract Commutative Ideal Theory, Pacific. J. Math., 12, 481–498 (1962).

- [12] S.P.Kavishwar, A study of Algebraic and Combinatorial Aspects of Ordered Structures, Ph.D. Thesis submitted to SPPU.
- [13] T.P. Speed, A note on Commutative Baer Rings, J.Austral. Math.Soc., 14, 257–263 (1972).

Author information

C.S. Manjarekar and A.N.Chavan, Department of Mathematics, R.L.S. College, Belgum (Karnataka), Department of Mathematics, Shivaji University, Kolhapur(Maharashtra), India. E-mail: csmanjrekar@yahoo.co.in,ashwinichavan1@gmail.com

Received: Jan 30, 2017. Accepted: November 11, 2017.