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Abstract. In this paper we introduced and studied the concepts of z-elements and z;-elements
as a generalization of a z-ideal and z; ideal. Various properties and characterizations of z-
elements and z;-elements are obtained. It is shown that the Jacobson radical which is meet
of all maximal elements is a z-element and is contained in every z-element.

1 Introduction

A multiplicative lattice L is a complete lattice provided with commutative, associative and join
distributive multiplication in which the largest element 1 acts as a multiplicative identity. An
element a € L is called proper if a < 1. A proper element p of L is said to be prime if ab < p
impliesa <porb<p.Ifa € L,b € L, (a:b) is the join of all elements c in L such that cb < a.
A proper element p of L is said to be primary if ab < p implies a < p or b < p for some positive
integern. Ifa € L, then\/Ja=V {xz € L, /2" < a,n € Z, }. Anelement a € L is called a
radical element ifa = /a. Radical element is also called as a semi-prime element. An element
a € L is called compact if a < \/_ b, implies a < by, V bg,...V by, for some finite subset
{a1,@...c,}. An element m of L is called maximal element if m f_ x for any other € L.
Throughout this paper, L denotes a compactly generated multiplicative lattice with 1 compact
in which every finite product of compact element is compact. We shall denote by L., the set of
compact elements of L. A nonempty subset of L., is called a filter if the following conditions are
satisfied.

)x,y € F implies zy € F

iz € F,xz <yimpliesy € F

Let F'(L.) denotes a set of all filters of L. For a nonempty subset {F,,} C F(L,), define U F,,=
{x > fifaefn, fi € F,, for some i = 1,2..n}. Then it is observed that, F'(L,) = ( F(L.),
W, N ) is a complete distributive lattice with U as the supremum and the set theoretic N as the
infimum. For a € L, the smallest filter containing a is denoted by [a) and it is given by [a)=
{z € L./x > a™ for some non-negative integer n}. For a filter F' € F(L,) we denote,

0p=V {z € L,/xzs = 0,for some s € F'}.

A lattice L is called semi-complemented if for any element a € L, (a # 1) there exists a non-zero
element b € L such that ab = 0. A lattice L is said to be dual semi-complemented if for every
element a € L, (a # 0) there exists a non-zero element b # 1 such thata vV b = 1.

A lattice L with 0 is section semi-complemented if a £ b then there exists ¢ € L such that
O0<c<aandbdbAc=0.

For all these definitions one can refer R.P.Dilworth[11], F.Alarcon, Jayaram and Anderson [7].

2 Z-Elements in multiplicative lattices.

The concept of z-ideals was first introduced by Kohls[S] which played an important role in
studying the ideal theory of C'(X), the ring of continuous real valued functions on compactly
regular Hausdroff space X: See Gillman and M. Jerison [8]. Mason [9]studied z-ideals in gen-
eral commutative rings. He proved that maximal ideals , minimal prime ideals and some other
deals in commutative rings are z-ideals. As a generalization of z-ideals the concept of z-ideals
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is introduced and studied in C'(X). In [4] Huijsman and De-Pagter studied 2°-ideals under the
name of d-ideals in Riesz spaces. Speed [13]introduced and studied the concept of Baer ideals in
commutative Baer rings which are essentially z°-ideals (equivalently d-ideals) and characterized
regular rings and quasi regular rings. Jayaram [6], Anderson, Jayaram and Phiri [3]defined the
concept of Baer ideals for lattice and multiplicative lattices respectively. The analogous concept
of z-ideals is introduced by Kavishwar and Joshi[12].

We introduce the concept of z-elements in compactly generated multiplicative lattices in which
1 is compact and every finite product of compact elements is compact.

Let L denote a compactly generated multiplicative lattice with largest element 1 compact in
which every finite product of compact elements is compact. Let 4 = Max (L) denote the set of
all maximal elements in a lattice L and p(a) = {m € ula < m} for a € L.For a € L the meet of
all maximal elements in L containing a is denoted by M, i.e. M, = A(u(a)) = A{m € pla < m}.
We introduce the concept of z-element in multiplicative lattices which is a generalization of z-
ideals in a commutative ring.

Now we prove the properties of z-elements in multiplicative lattices.

Definition 2.1. An element h of L is called a z-element if 1(b) C p(a) and b < h implies a < h.
Lemma 2.2. Every maximal element in L is a z- element.

Proof. Let m be a maximal element of L and p(a) C u(b), a < m. Since a < m we have
m € p(a). But p(a) C p(b) implies m € p(b). Thus b < m. Hence m is a z- element. O

Lemma 2.3. Let m be a unique maximal element of L such that h § m, then h is not a z-element.

Proof.Since h § m there exists z < m such that z fé h. Let i < h. Since m is a unique maximal
element, we have u(i) = p(z) and z £ h. Thus p(i) C pu(z),i < hbut z £ h. Hence h is not a
z-element. O

[Diagram (1)]

Ex.1)- Consider the lattice shown in diagram (1) with the trivial multiplication z.y = 0 = y.z,
foreachz # 1 # y and .1 = x = l.x for every x € L. Then it is easy to show that L is a
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multiplicative lattice.

d being a maximal is a z-element.

2)In the above diagram, a is not a z-element. Because u(b) C u(c),b < a,u(b) = u(c) = {d}
but ¢ £ a.

3)Let R = Z. Then L(Z) the lattice of ideals of Z is a multiplicative lattice. < 4 > is not a
z-element in L(Z). Obviously < 2 >, < 3 >, < 5 > being maximal elements are z-elements.

Here is a characterization of dual semi complemented lattices in terms of maximal elements.

Lemma 2.4. A lattice L is dual semi complemented if and only if N{m|m € Max(L)} = 0.

Proof. Let L be a dual semi complemented lattice. Suppose A{m|m € Maz(L)} # O,
a < A{m|m € Max(L)} and a # 0. Since L is dual semi complemented there exists b # 1
such that a V b = 1. This implies that b £ A{m|m € Maz(L)}. Since b # 1, there exists
a maximal element m; such that b < my. But a < A{m|m € Max(L)} implies a < my.
Thus 1 = a V b < my, a contradiction. Hence A{m|m € Max(L)} = 0. Conversely, suppose
AN{m|m € Max(L)} = 0. We show that L is dual semi complemented. Let 0 # a € L. Since
a # 0, we have @ £ A{m|m € Maz(L)} = 0. Then there exists a maximal element m; such
that a jé m,. Therefore a V m; = 1. Hence m is dual semi complemented. O

Using the above characterization we show that the least element of L is a z-element.

Lemma 2.5. Let L be a dual semi-complemented lattice. Then 0 is a z- element.

Proof.Let i(a) C p(b) and a < 0. Then a = 0 and p(a) = p(0) = maz(L). So u(b) = max(L)
and b < A{m|m € Maxz(L)} = 0 implies b = 0. Hence 0 is a z- element. O

Lemma 2.6. Let a,b € L. Then the following statements hold:- 1)Mny, = My A My = Mgy,
2)p(b) C pla) then u(b A c) C ula A c) and p(be) < p(ac) for any c € L.

Proof. 1)We have, M, = A{m € p|(a Ab) < m}. Letx < M,y and & £ My A M. Then
z £ My orz & M,. Suppose x & My, = A(u(b)) = A{m € pu|b < m}. Without loss of generality
assume that, x ﬁ my for some maximal element m; such that b < m;. But then, z < M4,y
< my, a contradiction. Hence z < M, A My and Mgpp) < Mo A My, Let x < M, A M, and
& % Mgnp). Then there exists a maximal element 1 such that (a A b) < m, but 2 £ ms. Since
my is a maximal element, m; is prime and ab < m; implies a < my or b < my. Without loss
of generality, assume that ¢ < m,. Then 2 < M, < mj. This contradicts the fact that « ﬁ ms.
Hence M, A M < M(a/\b) and M(a/\b) = My, N\ M.

To prove that M, A My, = Mgp. Let x < My, and © ¢ M, A M,. Then z £ M, or z £ M,
Suppose x ﬁ M,. Then there exists a maximal element m such that x f mp but a < my. Then
xz < My, < my, acontradiction. So z < M, A Myand My, < M, A M. Let x < M, A M,, but
T ﬁ M. This implies there exists a maximal element m, such that ab < m; but x f ms,. Since
my is prime, ab < my implies a < mp or b < my. If a < my, x < M, < my, a contradiction and
hence M, A My = M.

2) To prove that if ;(b) C p(a) then u(b A c) € p(a Ac) for any ¢ € L. Let m be a maximal
element such that m € u(b A ¢). Since m is also a prime element, bc < m implies b < m or
c<m.Ifc<m,anc<mandm € plaAc). Ifb <m,m € u(b) C u(a) and we have, a < m.
This shows that (a A ¢) < mand m € u(a A c). Thus u(bAc) C p(aAc) forany c € L.

To prove that p(bc) < p(ac).Let m € p(be). Since m is prime be < m implies b < m or a < m.
If c <m,ac <mandm € u(ac). Ifb < m, m € pu(b) C p(a) and we have a < m and hence
ac < m so that m € p(ac). Thus u(be) < p(ac). O

Lemma 2.7. Every element i is contained in the least z-element namely, i, = N{j > i| j is
z-element } is the smallest z-element containing i.
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Proof. Let x(b) C p(a) and b < i,. Let j; be an arbitrary z-element such that j; > 4. Since
b < j1, j1 is a z-element and (b)) C p(a) we have a < j;. Thus a < A {j| j is a z-element such
that j > i} = i,. Hence i, is a z-element. Now let j be any z-element containing i. Let z < i,.
Then clearly, z < j and hence i, < j. O

Lemma 2.8. Let L be a multiplicative lattice and i,j be any two elements of L. Then the following
statements hold:- 1)If i < j, then i, < j,
2) (iy)s =i,

Proof.1)Let i < j and z < i,= A{k| kis a z-element and k > i}.

If x ﬁ J= =N{q| qis a z-element and ¢ > j} then there exist z-element ¢, such that z ﬁ ¢ and
j < qi. This together with 7 < j, implies i < q;. But z < i, and i < ¢, for some z-element ¢
gives i, < q;. Therefore x < ¢, a contradiction. Hence i, < j,.

2)Clearly, i, < (i,),. Letz < (i,). = AM{qlqg > i, q is a z-element }. We know that i, is a
z-element and i, < i,. But (i,), is the least z element containing 4,. So (i,), < i, and we have
1y = (Z.z)z- a

Lemma 2.9. Let L be a multiplicative lattice and a,b € L, then a < My if and only if M, < M,
if and only if u(b) C i(a).

Proof. Let M, < M. Obviously, a < M, implies a < M,, . Conversely a < M, implies a < A{
m € plb < m}.
Letx < M, =A{ mla <m € u}. Let m; be any maximal element with b < m,. Then a < m,.
This gives z < m; and hence z < M;. Thus M, < M. Obviously, M, < M, if and only if
1(b) € p(a). O

In the next result we characterize z-elements.

Lemma 2.10. Let i be an element of L, then the following statements are equivalent.:-
1)i is a z-element.

2)p(a) = p(b) and b < i implies a < i.

3)M, <4, forall a < 1.

4)Mp < Mg, a < iimplies b < i.

Proof. (1) implies (2) is obvious.

(2)implies (3)

Let z < M,. Then by lemma (2.9), M, < M,. Hence M, = M, A M, = My, (by lemma (2.6)).
This gives p, = p(a Az). If a < i, then (a A z) <. Butby (2) z < i.

(3)implies (4)

Assume that M, < ¢, for all a < 7. We assume that M, < M,,a < i. Then M, < i and
b < M, < M, implies b < 3.

(4)implies (1)

We assume that M, < M, and ¢ < ¢ implies b < 7. We show that i is a z-element. Let
u(b) C p(a) and b < 4. Then M, < M, and we have b < i, by hypothesis a < i. Hence i is a
z-element. O

Separation lemma for z-element:-
Such type of Separation lemma is obtained by Anderson[2] and for z-ideals in lattices by Kav-
ishwar and Joshi[12].

Lemma 2.11. Let L be a multiplicative lattice. Suppose t £ i, for all t € S, where i is z-element
and S is multiplicatively closed in L. Then there exists a prime z-element p such that i < p and
tLp forallteS.

Proof. Let . = {jj| j a z-element such that i < j and ¢ £ j, Vt € S}. Then .# # 0, since atleast
i € % and . is a poset with respect to <. Let ¢ be a chain in .% and m = V{j|j € €}. We show
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that m is a z-element.

Assume that u(a) C p(b) and a < m. Then a < j for some j € €. Butj is a z-element and
p(a) C w(b) and a < j implies b < j and hence b < m. Hence m is a z-element. Obviously
j <mforall j € ¥. Thatis m is an upper bound of ¢ and m € .%. Thus .# is a poset in which
every chain has an upper bound in .%. Hence by Zorn’s lemma, there exists a maximal element
p € % and clearly p is a z-element such that ¢ < p and ¢ ﬁ p, Vt € S. We claim that p is a prime
element. Letab < panda % p, b £ p. Then (pV a) > p, (p vV b) > p. Since p is a maximal
element with respect to ¢ & p, Vt € S, it follows that there exists ¢1,¢, € S such thatt; < (pV a)
and t, < (p Vv b). Since S is a multiplicatively closed set ¢1t, € S. Also t1t2 < (pV a)(p V b)
< (p V ab) < p. This contradicts the fact that t £ p, V¢t € S. Hence p is a prime z-element. O

Lemma 2.12. Let L be a distributive multiplicative lattice. Then every strongly irreducible ele-
ment is a z-element if and only if every element is a z-element.

Proof.Obviously, if every element is a z-element every strongly irreducible element is a z-
element. Conversely, suppose every strongly irreducible element is a z-element. Let i be any
element, p(b) C p(a),b < i. Suppose a £ i. Let # = {z]i < z,a £ z}. Then & is a
partially ordered set with respect to < and & # ¢, since i € Z. Let € be a chain in &. Then
b = V{yly € €} is an upper bound of ¥ in &. Hence by Zorn’s lemma % has a maximal
element p such that ¢ < p and a & p. We show that p is strongly irreducible. Suppose z Ay < p,
z % p,y £ p. Since p is a maximal with respect to a £ p wehave pVz > a,pVy > a.
Hence a < (pV ) A (p V y) thatis a < p, a contradiction. Hence p is a strongly irreducible
element. Clearly b < p and u(b) C u(a) implies a < p, since a strongly irreducible element p is
a z-element. This is a contradiction. Hence a < ¢ and i is a z-element. O

Lemma 2.13. Let L be SSC lattice such that N{m|m € max(L)} = 0. Then every element is a
z-element.

Proof. Let i be an element of SSC lattice L. Let p(b) C p(a) and b < i. Suppose a £ i.
Then there exists ¢ # 0 such that ¢ < a and ¢ A ¢ = 0. This gives b A ¢ = 0. Thus max (L) =
u(bAc) C pla A c), by lemma (2.6). Then ¢ = a A c < A{m|m € max(L)} = 0. Therefore
¢ = 0, a contradiction. Thus a < 7 and hence i is a z-element. O

Let a be an element of L. Then (0 : a) = V{z € L|za = 0}. In this case (0 : a) is also
denoted by at, i.e. at = V{z € L|za = 0}.
We shall denote (0 : a) by a' and obtained its property in terms of maximal elements.

Lemma 2.14. Let L be a dual semi complemented lattice.
Then a* = N{m € maz(L)|a £ m} forany a € L.

Proof. Let z < at. Then az = 0. Let m € maxz(L). As every maximal element is prime
it follows that m is a prime element. If a f m then az = 0 < m implies x < m. Thus
at < A{m € maz(L)|la £ m}. Conversely, suppose z < A{m € maxz(L)la £ m} and
z £ a’. Hence az # 0. This shows that az £ A{m € maz(L)la ¢« m} = 0, by lemma
(2.4). Therefore there exists a maximal element m; such that az ﬁ my, where a jé my with
z % my. This contradicts the fact that z < A{m € maxz(L)la £ m}. Hence z < a' and
Am € maz(L)|a « m} < at. Therefore a* = A{m € maz(L)|a £ m} forany a € L. O

We generalize the following concepts in lattices for multiplicative lattices.

Definition(2.14 (a)):- An element i € L is said to be closed element if i+ = 1.
Definition(2.14 (b)):- An element i of a lattice L is called a zero element if there exists a proper
filter F such that i = V{F°} where F° = {z € L|zy = 0, for some y € F}.

Definition(2.14 (c)):-For an element i and a prime element p of a lattice L we define i(p) as
follows, i(p) = V{z € L|zy < i, for some y £ p}. If i = 0, then i(p) is denoted by O(p).
Definition(2.14 (d)):-An element i of a lattice L is called dense if i~ = 0.

Definition(2.14 (e)):-An element i of a lattice L is called non-dense if i~ # 0.
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Under which condition an element is a z-element is proved in the next result.

Lemma 2.15. Let L be a lattice without zero divisors such that AN{m|m € max(L)} = 0. Ifi is
an element of L satisfying any one of the following conditions then i is a z-element.

1) If i is a non-dense prime element.

2) If i is a closed element.

3) If i is a zero element.

4) If i = 0(p) for any prime element p.

5)Ifi = a™ for any element a € L.

Proof.1) Let i be a non-dense element and p(b) C p(a),b < i. Since i is a non-dense el-
ement, it = V{zr € Ll|iz = 0} # 0. Then there exists a non-zero element < i+ such
that ¢z = 0. In particular, zb = 0(b < 7). Since u(b) C p(a), by lemma (2.6), we have,
max(L) = p(bz) C p(ax). Thus (ax) < m, for all m € maxz(L). Hence ax = 0 as
ANm|m € max(L) = 0. This implies that (az) < ¢ and since i is a prime element a < i or
x <. Ifx <ithenz < it implies 2?> < i.it = 0i.e. 22 = 0, (x # 0). This contradicts the fact
that L has no divisors of zero. Hence axz < 7 = a < 4. Thus i1is a z-element.

2) Let i be a closed element i.e. i = i+ and pu(b) C p(a),b <i. Now b < i =ittt = bz <
bAx =0, forallz < it = v{yliy = 0}. Since u(b) C u(a), we have max(L) = u(by) C pu(ay)
fory < it. Hence (ay) = A{m € maz(L)} = 0. Therefore ay = 0 for all y < it. Then
ait = 0 and hence a < i*+ = 4, since i is a closed element. Thus x(b) C u(a),b < i implies
a < 1i. Soiis az-element.

3) Let i be a zero element. Then i = V{F°} = v{z € L|zy = 0 for some y € F}, for some
proper filter F. Let p(b) C u(a) and b < i. Since b < 7. We have, by = 0 for some y € F. Now
w(b) C u(a) = maz(L) = p(by) C u(ay), by (2.6). Hence ay < m, for all m € max(L). Thus
ay < AM{m|m € max(L)} = 0. Hence ay = 0 for some y € F. Thus a < V{F°} =i. Hence i is
a z-element.

4) Suppose i = O(p) for some prime element p, where O(p) = V{z € L|zy = 0, for some
y £ p}. Then F = L — (p] is a filter. Also i = V{x € L|zy = 0, for some y € F} = F°. Now
the result follows by (3).

5)Let i = at = V{zlax = 0}, u(b) C p(a),b < i. Now b < i = a* implies ba = 0. So
bc = 0 for all ¢ < a. Since p(b) C p(a) we have u(be) C p(ac)[by (2.6)]. But be = 0 implies
Maz(L) = p(be) C plac). This gives, ac < A{m|m € Max(L)} = 0 and hence ac = 0 when
¢ < a. Hence aa = 0 and a < a+ = i. Therefore i is a z-element. O

3 z;-Elements in multiplicative lattices.

Kavishwar and Joshi have studied z;-ideals on the lines of Alibad, Azarpanah and Taherifar[1].
We extend this concept to z;-elements in compactly generated multiplicative lattices.

Definition 3.1. Let i and j be the two elements of L. The element i is said to be a z;-element if
M, A j <i,forall a <iwhere M, = A{ml|a < m}.

Ex. 1)From the diagram (1) b is a z;-element for j = c.
2) ais not a z-element but a is a z;-element for j = b.

Note:- Clearly if j < ¢ then i is always a z;-element and hence an element i is always a
z;-element. Further if j = 1 then z; element is nothing but a z-element. O
Lemma 3.2. If i is a z-element then i is a zj-element for any element j of a lattice L.

Proof. Let a < iand x < M, A j. Then x < M, implies M, < M,. Since i is a z-element,
p(a) C p(x) and a < i implies « < 7. Thus M, A j < i, for all @ <. Hence i is a z;-element. O
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Definition 3.3. An element = € L is called semi primary if 1/ is a prime element.
An element a € L is called semi prime if v/a = a.

Lemma 3.4. Let i be a semi prime element and j be any element of L. Then the following state-
ments hold.:-

1) If i is a zj-element (z-element) and p is a minimal prime containing i, then p is also a z;-
element (z-element).

2) A prime element p in L is a zj-element if and only if p is either a z-element or j < p.

Proof. 1) Let p be minimal prime containing i and suppose x < p. We claim that M, A j < p.
Since x < p there exists y ﬁ p such that 2"y < 4, for some integer n > 1. (See [10]). Since i
is a z;-element Myny A j = Myn A My A M; < i@ < pby (2.6). Also note that M» = M, for
any positive integer n. Since y £ p, M, £ p and p is a prime element gives M, A j < p. Thus
M, N j < p,forall z < p. Hence p is a z;- element.

2) Let p be a prime z;- element such that j £ p. Suppose u(b) C p(a) and b < p. Since p is
a z;- element, we have M, A j < p. This together with j ﬁ p implies M, < p. But M, < M,
gives a < M, < p. Hence p is a z-element. Conversely assume that p is a z-element or j < p.
Suppose j < p. Let a < p. Then M, A j < p. This holds for all « < p. Hence p is a z;-element.
Now suppose j £ p and p is a z-element. By lemma (3.2), it follows that p is a z;-element. O

Lemma 3.5. Let i be a semi-prime element, j be any element and p,q be prime elements of L.
Then the following statements hold:-

DIfi AN pis a zj-element then either i or p is a z;-element.

2)Ifp A qis a zj-element and p and q are not comparable then p and q are z;-elements.

Proof. 1) Let i A p be a zj-element. If i < p, then clearly i is a z;-element. Now suppose
i £ p. Let b < p. Then there exists an element a < i but a % p. Hence ab < p, ab < a < i
implies ab < ¢ A p. Since ¢ A pis a zj-element. ab < i A p implies My A J < i A p. By (2.6),
M, A My, A j < p. Since p is prime and M, (M, A j) < p and M, £ p, we have M, A j < p for
all b < p. Hence p is a z;- element.

2) Suppose p A g is a z;- element, where p and q are not comparable, so that p ﬁ g and ¢ ﬁ p.
Now p £ ¢ implies q is a z;- element (by 1) and ¢ £ p implies p is a z;- element (by 1). O

Lemma 3.6. Let i and j be two elements of L. Then (i A j), =i, A j..

Proof.Clearly i, A j. is an element containing 7 A j. Since i, is the smallest z-element containing
iand j, is the smallest z-element containing j. It follows that i, Aj, > (iAj). To show thati, Aj,
is a z-element, let u(b) C p(a) and b < i, Aj, sob < i, b < j,. Since i, j, are z-elements, we
have a < i,,a < j,. Hence i, A j, is a z-element and i A j < i, A j,. To prove that (i A j), =
i, A jz, it is enough to show that i, A j, is the smallest z-element containing (z A j). To see this
let k be a z-element such that (i A j) < k. If each element of L is a radical elementi.e. \/a = a
for each a in L then vk = k. In this case k = A{p|p is minimal prime containing k}. Since for
each p € Min(k), we have (i A j) < p, it follows that i < p or j < p. By lemma (3.4) each
p € Min(k) is a z-element. Using this fact along with i, is the smallest z-element containing i,
it follows that i, A j, < p, for each p € Min(k). Therefore (i, A j.) < A {plp € Min(k)} = k.
It follows that i, A j, is the smallest z-element containing i A j. Hence (i A j),= 14, A j,. O

Now we characterize z;-elements in different ways.
We write Min(i)= the set of all minimal primes containing i.

Lemma 3.7. Let i be a semi prime element of a lattice L and j be an element of L. Then the
following statements are equivalent:-1)i is a z;-element.

2)i, Nj <'i(equivalentlyi, Nj =i j)

3) If there is a z-element k containing i, then k N\ j < i.

4)For each a < iand b < j,if My < M,, then b < 1.
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Proof. (1)implies (2)

Let i be a semi prime z;-element. Then i = A{p|p is a minimal prime such that ¢ < p}. Hence
iz = {Apemin(@)Ptz < (Apemin(i)P=). By lemma (3.4) p. = p or j < p. Hence in any case we
have, 1y /\] < (/\pGJWin(i)pz) A j= [/\pEJVIin(i)p] /\.7 =i /\.] <.

(2) implies (3)

Assume that i, A j < i (equivalently i, A j = i A j). Take k = i, then i, is the smallest z-element
containing i and hence i, A j < i(by hypothesis).

(3)implies (4)

Assume that if there is a z- element k containing i then kA j <. Leta < i,b < jand M, < M,.
By (3) there exists a z-element k containing i such that £ A j < 4. Then by lemma (2.10)M, < k.
Clearly ,b < My < M,. Hence b < My ANj < kANj<i Thusb <i.

(4) implies (1)

Assume that for eacha < iand b < jif M, < M, thenb <i. Leta <iand x < M, A j. Then
by lemma (2.9) x < M, implies M, < M,. Now a < i,z < j and M, < M, implies x < i (by
assumption). Thus M, A j <4, forall a <. Hence iis a z;-element. O

Lemma 3.8. The following statements hold in L:-

DIfi =11 Nia, j = 51 A jo and iy is a zj, - element, i, is a zj,- element, then i is a z;-element.
2)Ifj < kandiis a z,- element then i is also a z;-element.

3) The meet of zj-elements is a zj-element and meet of z-elements is a z-element.

4)Ifi < j,iis a zj-element and j is a z-element then i is a zj-element.

Proof. 1) Let ¢ = ¢ = i1 A4p. Since 7,7, are z;, and z;-elements respectively, we have
M. A g1 <ipand M, A jo <ip. This gives M. A j1 A jo < i1 Ay for all ¢ <4y A dp. This shows
thatiis a z;-element.

2)Suppose j < k and i is a zx-element. Let a < i. Then M, A k < i(since i is a zx-element.) Let
a < j. Then a < k and by hypothesis, M, A k < i. Then M, A j <, for all @ <4 and hence i is
a z; — element.

3)Let ix,(k € A) be collection of all z;-elements. Let a < Ageair = 4. Then a < iy for all
k € A. We have M, A j < iy, since each iy, is a z;-element. Hence M, A j < Apenty =i forall
a < i. Hence i = Apeaiy is a zj-element. Let h;,7 € A be the collection of z-elements of L and
h = Nieahi. Let u(b) C pu(a) and b < h. Then b < h; for each i € A. As each h; is a z-element,
we have a < h; foreach i € A. Hence a < A;eah; = h and h = A;eah; is a z-element.

4) Let¢ < j where i is a z;-element and j is a z-element. Let a < ¢. Since i is a z;-element and
j is a zx-element, we have M, A j <iand M, A k < j. This gives M, Ak < M, A j < iforall
a < 1. This shows that i is a z;-element. O

Now we obtain the property of a Jacobson radical[7],and establish the relation between the
Jacobson radical and z-element.

Lemma 3.9. The Jacobson radical j = Npcpran(n)ym is a z-element and is contained in every
z-element.

Proof.The proof follows from lemma (2.2) and(3) of lemma (3.8). O

Lemma 3.10. Let L be a multiplicative lattice. Then i is a z;-element if and only if i A j is a
zj-element.

Proof.Letibe a z;-element and @ < i A j. Then a < i andiis a z;-element implies M, A j < i.
Also M, AN j < j. Hence M, A j < (i Aj)foralla < (i A j). Hence (i A j) is a z;-element.
Conversely assume that (i A j) is a z;-element. Let a < ¢ and 2 < M, A j. Thena Az < i and
aANz <z <jimpliesa Az < (iAj). Since (i A j) is a z;-element, we have Mop, Aj < (i A j).
By lemma (2.6),Mypn, = M, A M. Since x < M,, we have M, < M,. Now M, Nj < My Aj.
SoM,ANj<(iNj).Nowax < M, ANj<iAj<i. ThusM,Aj<iforalla <i. Henceiisa
zj-element. O
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Finally we obtain the characterization of z;-element and some properties of z-elements and
zj-elements.

Lemma 3.11. Let i,j,k be elements of a distributive lattice L. Then the following statements hold.:-
1) An element i of L is a zj-element if and only if i is z; j-element.

2)Ifj is a z-element then i is a zj-element if and only if i \ j is a z-element.

3)i A j is both z;-element and z;-element if and only if i is a zj-element and j is z;-element.

4)If m is a maximal element then i A m is a z-element if and only if i is a z-element.

5)i. A j is the smallest zj-element containing i A j.

6)i < ki, =k, iis a zj-element, then k is also a z;-element.

Proof.1) Let i be a zj-element. Then M, A j < 4, for all a < i. Clearly M, A4 < 7. Since
L is distributive , we have , M, A (i V j) = (M, Ai) V (M, A j) < 4, for all a < 4. Hence i
is a z;v,-element. Conversely, Suppose i is a z;y,-element. Let a < i. Then a < (¢ V j) and
My A (GEVg) <iie (MyAi)V (MgAj) <4 Hence My Aj <iforalla <. Henceiisa
zj-element.

2) Let j be a z-element. Assume that i is a z;-element. We show that i A j is a z-element. Let
w(b) € pla), b < (i Aj). Since p(b) C p(a), b < j and j is a z-element, we have a < j. Since
My, < My,b < 4,by (2.10), a < i. Now a < M, A jand M, A j < i, since i is a z;-element
and a < 4. Thus a < (¢ A j). Hence (i A j) is a z-element. Conversely assume that ¢ A j is a
z-element. We show that i is a z;-element. Let a < 4 and x < M, A j. Then x < M, implies
M, < M,. But u(z) C p(a),a < ¢ implies z < i(by 2.10). Hence M, A j < iforalla < iandi
is a zj-element.

3)The proof follows by (3.10).

4)Let m be the maximal element of L. Let (i A m) be a z-element. We show that i is a z-element.
If i < m, theni = i A m and hence i is a z-element. Suppose i ﬁ m. Then1iis a z,,-element
by (2). Then i is a z;m-element by (1)i.e. iis a zj-element. Let u(b) C pu(a),a < 4. Then
My < M, N1 <i(sincea <iandiisa zj-element). Hence b < i and i is a z-element.

5) We know that if i is a z-element then i is a z;-element for any element j. As ¢, is a z-element.
it follows that 7, is a z;-element. We know that (by lemma 3.10), i is a z; -element if and only if
(¢ \j)isazj-element. Hence i, A jis a zj-element and i A j < i, A j. Let k be any z;-element
suchthatiAj < k. Theni, Aj =i, Aj. Aj=(iA]),ANj <k, ANj <k (Bylemma3.7). Hence
i. A j is the smallest z;-element containing 7 A j.

6)By (3.7),since i is a z;-element i, A j < 4. By hypothesis, k., A j =i, A j < ¢ < k. Hence
again by (3.7), k is a z;-element. O
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