Z-EIEMENTS AND z_{j}-EIEMENTS IN MULTIPLICATIVE LATTICES.

C.S. Manjarekar and A.N.Chavan
Communicated by A.N. Chavan

MSC 2010 Classifications: Primary 06F10, 06E20, 06E99.
Keywords and phrases: Prime element, compact element, z-element, z_{j}-element, minimal prime element.

Abstract

In this paper we introduced and studied the concepts of z-elements and z_{j}-elements as a generalization of a z-ideal and z_{j} ideal. Various properties and characterizations of zelements and z_{j}-elements are obtained. It is shown that the Jacobson radical which is meet of all maximal elements is a z -element and is contained in every z -element.

1 Introduction

A multiplicative lattice L is a complete lattice provided with commutative, associative and join distributive multiplication in which the largest element 1 acts as a multiplicative identity. An element $a \in L$ is called proper if $a<1$. A proper element p of L is said to be prime if $a b \leq p$ implies $a \leq p$ or $b \leq p$. If $a \in L, b \in L,(a: b)$ is the join of all elements c in L such that $c b \leq a$. A proper element p of L is said to be primary if $a b \leq p$ implies $a \leq p$ or $b^{n} \leq p$ for some positive integer n . If $a \in L$, then $\sqrt{a}=\vee\left\{x \in L_{*} / x^{n} \leq a, n \in Z_{+}\right\}$. An element $a \in L$ is called a radical element if $a=\sqrt{a}$. Radical element is also called as a semi-prime element. An element $a \in L$ is called compact if $a \leq \bigvee_{\alpha} b_{\alpha}$ implies $a \leq b_{\alpha_{1}} \vee b_{\alpha_{2}} \ldots \vee b_{\alpha_{n}}$ for some finite subset $\left\{\alpha_{1}, \alpha_{2} \ldots \alpha_{n}\right\}$. An element m of L is called maximal element if $m \not \leq x$ for any other $x \in L$. Throughout this paper, L denotes a compactly generated multiplicative lattice with 1 compact in which every finite product of compact element is compact. We shall denote by L_{*}, the set of compact elements of L. A nonempty subset of L_{*} is called a filter if the following conditions are satisfied.
i) $x, y \in F$ implies $x y \in F$
ii) $x \in F, x \leq y$ implies $y \in F$

Let $F\left(L_{*}\right)$ denotes a set of all filters of L . For a nonempty subset $\left\{F_{\alpha}\right\} \subseteq F\left(L_{*}\right)$, define $巴 F_{\alpha}=$ $\left\{x \geq f_{1} f_{2} \ldots f_{n}, f_{i} \in F_{\alpha_{i}}\right.$ for some $\left.i=1,2 \ldots n\right\}$. Then it is observed that, $F\left(L_{*}\right)=\left\langle F\left(L_{*}\right)\right.$, $\mathbb{\Psi}, \cap\rangle$ is a complete distributive lattice with \mathbb{U} as the supremum and the set theoretic \cap as the infimum. For $a \in L_{*}$ the smallest filter containing a is denoted by $[a)$ and it is given by $[a)=$ $\left\{x \in L_{*} / x \geq a^{n}\right.$ for some non-negative integer $\left.n\right\}$. For a filter $F \in F\left(L_{*}\right)$ we denote, $0_{F}=\vee\left\{x \in L_{*} / x s=0\right.$,for some $\left.s \in F\right\}$.
A lattice L is called semi-complemented if for any element $a \in L,(a \neq 1)$ there exists a non-zero element $b \in L$ such that $a b=0$. A lattice L is said to be dual semi-complemented if for every element $a \in L,(a \neq 0)$ there exists a non-zero element $b \neq 1$ such that $a \vee b=1$.
A lattice L with 0 is section semi-complemented if $a \not \leq b$ then there exists $c \in L$ such that $0<c \leq a$ and $b \wedge c=0$.
For all these definitions one can refer R.P.Dilworth[11], F.Alarcon, Jayaram and Anderson [7].

2 Z-Elements in multiplicative lattices.

The concept of z-ideals was first introduced by Kohls[5] which played an important role in studying the ideal theory of $C(X)$, the ring of continuous real valued functions on compactly regular Hausdroff space X: See Gillman and M. Jerison [8]. Mason [9]studied z-ideals in general commutative rings. He proved that maximal ideals, minimal prime ideals and some other deals in commutative rings are z-ideals. As a generalization of z-ideals the concept of z^{0}-ideals
is introduced and studied in $C(X)$. In [4] Huijsman and De-Pagter studied z^{0}-ideals under the name of d-ideals in Riesz spaces. Speed [13]introduced and studied the concept of Baer ideals in commutative Baer rings which are essentially z^{0}-ideals (equivalently d-ideals) and characterized regular rings and quasi regular rings. Jayaram [6], Anderson, Jayaram and Phiri [3]defined the concept of Baer ideals for lattice and multiplicative lattices respectively. The analogous concept of z-ideals is introduced by Kavishwar and Joshi[12].
We introduce the concept of z-elements in compactly generated multiplicative lattices in which 1 is compact and every finite product of compact elements is compact.
Let L denote a compactly generated multiplicative lattice with largest element 1 compact in which every finite product of compact elements is compact. Let $\mu=\operatorname{Max}(L)$ denote the set of all maximal elements in a lattice L and $\mu(a)=\{m \in \mu \mid a \leq m\}$ for $a \in L$. For $a \in L$ the meet of all maximal elements in L containing a is denoted by M_{a} i.e. $M_{a}=\wedge(\mu(a))=\wedge\{m \in \mu \mid a \leq m\}$. We introduce the concept of z-element in multiplicative lattices which is a generalization of z ideals in a commutative ring.
Now we prove the properties of z-elements in multiplicative lattices.

Definition 2.1. An element h of L is called a z-element if $\mu(b) \subseteq \mu(a)$ and $b \leq h$ implies $a \leq h$.
Lemma 2.2. Every maximal element in L is a z - element.
Proof. Let m be a maximal element of L and $\mu(a) \subseteq \mu(b), a \leq m$. Since $a \leq m$ we have $m \in \mu(a)$. But $\mu(a) \subseteq \mu(b)$ implies $m \in \mu(b)$. Thus $b \leq m$. Hence m is a z- element.

Lemma 2.3. Let m be a unique maximal element of L such that $h \supsetneqq m$, then h is not a z-element.
Proof.Since $h \supsetneqq m$ there exists $x \leq m$ such that $x \not \leq h$. Let $i \leq h$. Since m is a unique maximal element, we have $\mu(i)=\mu(x)$ and $x \not \leq h$. Thus $\mu(i) \subseteq \mu(x), i \leq h$ but $x \not \leq h$. Hence h is not a z-element.

[Diagram (1)]
Ex.1)- Consider the lattice shown in diagram (1) with the trivial multiplication $x . y=0=y \cdot x$, for each $x \neq 1 \neq y$ and $x .1=x=1 . x$ for every $x \in L$. Then it is easy to show that L is a
multiplicative lattice.
d being a maximal is a z -element.
2)In the above diagram, a is not a z-element. Because $\mu(b) \subseteq \mu(c), b \leq a, \mu(b)=\mu(c)=\{d\}$ but $c \not \leq a$.
3)Let $R=Z$. Then $L(Z)$ the lattice of ideals of Z is a multiplicative lattice. $<4>$ is not a z-element in $L(Z)$. Obviously $\langle 2\rangle,<3\rangle,<5\rangle$ being maximal elements are z-elements.

Here is a characterization of dual semi complemented lattices in terms of maximal elements.

Lemma 2.4. A lattice L is dual semi complemented if and only if $\wedge\{m \mid m \in \operatorname{Max}(L)\}=0$.
Proof. Let L be a dual semi complemented lattice. Suppose $\wedge\{m \mid m \in \operatorname{Max}(L)\} \neq 0$, $a \leq \wedge\{m \mid m \in \operatorname{Max}(L)\}$ and $a \neq 0$. Since L is dual semi complemented there exists $b \neq 1$ such that $a \vee b=1$. This implies that $b \not \leq \wedge\{m \mid m \in \operatorname{Max}(L)\}$. Since $b \neq 1$, there exists a maximal element m_{1} such that $b \leq m_{1}$. But $a \leq \wedge\{m \mid m \in \operatorname{Max}(L)\}$ implies $a \leq m_{1}$. Thus $1=a \vee b \leq m_{1}$, a contradiction. Hence $\wedge\{m \mid m \in \operatorname{Max}(L)\}=0$. Conversely, suppose $\wedge\{m \mid m \in \operatorname{Max}(L)\}=0$. We show that L is dual semi complemented. Let $0 \neq a \in L$. Since $a \neq 0$, we have $a \not \leq \wedge\{m \mid m \in \operatorname{Max}(L)\}=0$. Then there exists a maximal element m_{1} such that $a \not \leq m_{1}$. Therefore $a \vee m_{1}=1$. Hence m is dual semi complemented.

Using the above characterization we show that the least element of L is a z-element.

Lemma 2.5. Let L be a dual semi-complemented lattice. Then 0 is a z-element.
Proof.Let $\mu(a) \subseteq \mu(b)$ and $a \leq 0$. Then $a=0$ and $\mu(a)=\mu(0)=\max (L)$. So $\mu(b)=\max (L)$ and $b \leq \wedge\{m \mid m \in \operatorname{Max}(L)\}=0$ implies $b=0$. Hence 0 is a z- element.

Lemma 2.6. Let $a, b \in L$. Then the following statements hold:- 1) $M_{a \wedge b}=M_{a} \wedge M_{b}=M_{a b}$. 2) $\mu(b) \subseteq \mu(a)$ then $\mu(b \wedge c) \subseteq \mu(a \wedge c)$ and $\mu(b c) \leq \mu(a c)$ for any $c \in L$.

Proof. 1)We have, $M_{(a \wedge b)}=\wedge\{m \in \mu \mid(a \wedge b) \leq m\}$. Let $x \leq M_{(a \wedge b)}$ and $x \not \leq M_{a} \wedge M_{b}$. Then $x \not \leq M_{a}$ or $x \not \leq M_{b}$. Suppose $x \not \leq M_{b}=\wedge(\mu(b))=\wedge\{m \in \mu \mid b \leq m\}$. Without loss of generality assume that, $x \not \leq m_{1}$ for some maximal element m_{1} such that $b \leq m_{1}$. But then, $x \leq M_{(a \wedge b)}$ $\leq m_{1}$, a contradiction. Hence $x \leq M_{a} \wedge M_{b}$ and $M_{(a \wedge b)} \leq M_{a} \wedge M_{b}$. Let $x \leq M_{a} \wedge M_{b}$ and $x \not \leq M_{(a \wedge b)}$. Then there exists a maximal element m_{2} such that $(a \wedge b) \leq m_{2}$ but $x \not \leq m_{2}$. Since m_{2} is a maximal element, m_{2} is prime and $a b \leq m_{2}$ implies $a \leq m_{2}$ or $b \leq m_{2}$. Without loss of generality, assume that $a \leq m_{2}$. Then $x \leq M_{a} \leq m_{2}$. This contradicts the fact that $x \not \leq m_{2}$. Hence $M_{a} \wedge M_{b} \leq M_{(a \wedge b)}$ and $M_{(a \wedge b)}=M_{a} \wedge M_{b}$.
To prove that $M_{a} \wedge M_{b}=M_{a b}$. Let $x \leq M_{a b}$ and $x \not \leq M_{a} \wedge M_{b}$. Then $x \not \leq M_{a}$ or $x \not \leq M_{b}$. Suppose $x \not \leq M_{a}$. Then there exists a maximal element m_{1} such that $x \not \leq m_{1}$ but $a \leq m_{1}$. Then $x \leq M_{a b} \leq m_{1}$, a contradiction. So $x \leq M_{a} \wedge M_{b}$ and $M_{a b} \leq M_{a} \wedge M_{b}$. Let $x \leq M_{a} \wedge M_{b}$, but $x \not \leq M_{a b}$. This implies there exists a maximal element m_{2} such that $a b \leq m_{2}$ but $x \not \leq m_{2}$. Since m_{2} is prime, $a b \leq m_{2}$ implies $a \leq m_{2}$ or $b \leq m_{2}$. If $a \leq m_{2}, x \leq M_{a} \leq m_{2}$, a contradiction and hence $M_{a} \wedge M_{b}=M_{a b}$.
2) To prove that if $\mu(b) \subseteq \mu(a)$ then $\mu(b \wedge c) \subseteq \mu(a \wedge c)$ for any $c \in L$. Let m be a maximal element such that $m \in \mu(b \wedge c)$. Since m is also a prime element, $b c \leq m$ implies $b \leq m$ or $c \leq m$. If $c \leq m, a \wedge c \leq m$ and $m \in \mu(a \wedge c)$. If $b \leq m, m \in \mu(b) \subseteq \mu(a)$ and we have, $a \leq m$. This shows that $(a \wedge c) \leq m$ and $m \in \mu(a \wedge c)$. Thus $\mu(b \wedge c) \subseteq \mu(a \wedge c)$ for any $c \in L$.
To prove that $\mu(b c) \leq \mu(a c)$.Let $m \in \mu(b c)$. Since m is prime $b c \leq m$ implies $b \leq m$ or $a \leq m$. If $c \leq m, a c \leq m$ and $m \in \mu(a c)$. If $b \leq m, m \in \mu(b) \subseteq \mu(a)$ and we have $a \leq m$ and hence $a c \leq m$ so that $m \in \mu(a c)$. Thus $\mu(b c) \leq \mu(a c)$.

Lemma 2.7. Every element i is contained in the least z-element namely, $i_{z}=\wedge\{j \geq i \mid j$ is z-element $\}$ is the smallest z-element containing i.

Proof. Let $\mu(b) \subseteq \mu(a)$ and $b \leq i_{z}$. Let j_{1} be an arbitrary z-element such that $j_{1} \geq i$. Since $b \leq j_{1}, j_{1}$ is a z-element and $\mu(b) \subseteq \mu(a)$ we have $a \leq j_{1}$. Thus $a \leq \wedge\{j \mid \mathrm{j}$ is a z-element such that $j \geq i\}=i_{z}$. Hence i_{z} is a z-element. Now let j be any z -element containing i. Let $x \leq i_{z}$. Then clearly, $x \leq j$ and hence $i_{z} \leq j$.

Lemma 2.8. Let L be a multiplicative lattice and i, j be any two elements of L. Then the following statements hold:- 1)If $i \leq j$, then $i_{z} \leq j_{z}$
2) $\left(i_{z}\right)_{z}=i_{z}$.

Proof.1)Let $i \leq j$ and $x \leq i_{z}=\wedge\{k \mid \mathrm{k}$ is a z-element and $k \geq i\}$.
If $x \not \leq j_{z}=\wedge\{q \mid \mathrm{q}$ is a z-element and $q \geq j\}$ then there exist z-element q_{1} such that $x \not \leq q_{1}$ and $j \leq q_{1}$. This together with $i \leq j$, implies $i \leq q_{1}$. But $x \leq i_{z}$ and $i \leq q_{1}$ for some z-element q_{1} gives $i_{z} \leq q_{1}$. Therefore $x \leq q_{1}$, a contradiction. Hence $i_{z} \leq j_{z}$.
2)Clearly, $i_{z} \leq\left(i_{z}\right)_{z}$. Let $x \leq\left(i_{z}\right)_{z}=\wedge\left\{q \mid q \geq i_{z} \mathrm{q}\right.$ is a z-element $\}$. We know that i_{z} is a z-element and $i_{z} \leq i_{z}$. But $\left(i_{z}\right)_{z}$ is the least z element containing i_{z}. So $\left(i_{z}\right)_{z} \leq i_{z}$ and we have $i_{z}=\left(i_{z}\right)_{z}$.

Lemma 2.9. Let L be a multiplicative lattice and $a, b \in L$, then $a \leq M_{b}$ if and only if $M_{a} \leq M_{b}$ if and only if $\mu(b) \subseteq \mu(a)$.

Proof. Let $M_{a} \leq M_{b}$. Obviously, $a \leq M_{a}$ implies $a \leq M_{b}$. Conversely $a \leq M_{b}$ implies $a \leq \wedge\{$ $m \in \mu \mid b \leq m\}$.
Let $x \leq M_{a}=\wedge\{m \mid a \leq m \in \mu\}$. Let m_{1} be any maximal element with $b \leq m_{1}$. Then $a \leq m_{1}$. This gives $x \leq m_{1}$ and hence $x \leq M_{b}$. Thus $M_{a} \leq M_{b}$. Obviously, $M_{a} \leq M_{b}$ if and only if $\mu(b) \subseteq \mu(a)$.

In the next result we characterize z-elements.

Lemma 2.10. Let i be an element of L, then the following statements are equivalent:-
1)i is a z-element.
2) $\mu(a)=\mu(b)$ and $b \leq i$ implies $a \leq i$.
3) $M_{a} \leq i$, for all $a \leq i$.
4) $M_{b} \leq M_{a}, a \leq i$ implies $b \leq i$.

Proof. (1) implies (2) is obvious.
(2)implies (3)

Let $x \leq M_{a}$. Then by lemma (2.9), $M_{x} \leq M_{a}$. Hence $M_{x}=M_{x} \wedge M_{a}=M_{a \wedge x}$ (by lemma (2.6)). This gives $\mu_{x}=\mu(a \wedge x)$. If $a \leq i$, then $(a \wedge x) \leq i$. But by (2) $x \leq i$.
(3)implies (4)

Assume that $M_{a} \leq i$, for all $a \leq i$. We assume that $M_{b} \leq M_{a}, a \leq i$. Then $M_{a} \leq i$ and $b \leq M_{b} \leq M_{a}$ implies $b \leq i$.
(4)implies (1)

We assume that $M_{b} \leq M_{a}$ and $a \leq i$ implies $b \leq i$. We show that i is a z-element. Let $\mu(b) \subseteq \mu(a)$ and $b \leq i$. Then $M_{a} \leq M_{b}$ and we have $b \leq i$, by hypothesis $a \leq i$. Hence i is a z-element.

Separation lemma for z-element:-

Such type of Separation lemma is obtained by Anderson[2] and for z-ideals in lattices by Kavishwar and Joshi[12].

Lemma 2.11. Let L be a multiplicative lattice. Suppose $t \not \leq i$, for all $t \in S$, where i is z-element and S is multiplicatively closed in L. Then there exists a prime z-element p such that $i \leq p$ and $t \not \leq p$, for all $t \in S$.

Proof. Let $\mathscr{F}=\{j \mid \mathrm{j}$ a z-element such that $i \leq j$ and $t \not \leq j, \forall t \in S\}$. Then $\mathscr{F} \neq \emptyset$, since atleast $i \in \mathscr{F}$ and \mathscr{F} is a poset with respect to \leq. Let \mathscr{C} be a chain in \mathscr{F} and $\mathrm{m}=\vee\{j \mid j \in \mathscr{C}\}$. We show
that m is a z -element.
Assume that $\mu(a) \subseteq \mu(b)$ and $a \leq m$. Then $a \leq j$ for some $j \in \mathscr{C}$. But j is a z-element and $\mu(a) \subseteq \mu(b)$ and $a \leq j$ implies $b \leq j$ and hence $b \leq m$. Hence m is a z-element. Obviously $j \leq m$ for all $j \in \mathscr{C}$. That is m is an upper bound of \mathscr{C} and $m \in \mathscr{F}$. Thus \mathscr{F} is a poset in which every chain has an upper bound in \mathscr{F}. Hence by Zorn's lemma, there exists a maximal element $p \in \mathscr{F}$ and clearly p is a z-element such that $i \leq p$ and $t \not \leq p, \forall t \in S$. We claim that p is a prime element. Let $a b \leq p$ and $a \not \leq p, b \not \leq p$. Then $(p \vee a)>p,(p \vee b)>p$. Since p is a maximal element with respect to $t \not \leq p, \forall t \in S$, it follows that there exists $t_{1}, t_{2} \in S$ such that $t_{1} \leq(p \vee a)$ and $t_{2} \leq(p \vee b)$. Since S is a multiplicatively closed set $t_{1} t_{2} \in S$. Also $t_{1} t_{2} \leq(p \vee a)(p \vee b)$ $\leq(p \vee a b) \leq p$. This contradicts the fact that $t \not \leq p, \forall t \in S$. Hence p is a prime z-element.

Lemma 2.12. Let L be a distributive multiplicative lattice. Then every strongly irreducible element is a z-element if and only if every element is a z-element.

Proof.Obviously, if every element is a z-element every strongly irreducible element is a zelement. Conversely, suppose every strongly irreducible element is a z-element. Let i be any element, $\mu(b) \subseteq \mu(a), b \leq i$. Suppose $a \not \leq i$. Let $\mathscr{P}=\{x \mid i \leq x, a \not \leq x\}$. Then \mathscr{P} is a partially ordered set with respect to \leq and $\mathscr{P} \neq \phi$, since $i \in \mathscr{P}$. Let \mathscr{C} be a chain in \mathscr{P}. Then $b=\vee\{y \mid y \in \mathscr{C}\}$ is an upper bound of \mathscr{C} in \mathscr{P}. Hence by Zorn's lemma \mathscr{P} has a maximal element p such that $i \leq p$ and $a \not \leq p$. We show that p is strongly irreducible. Suppose $x \wedge y \leq p$, $x \not \leq p, y \not \leq p$. Since p in a maximal with respect to $a \not \leq p$ we have $p \vee x>a, p \vee y>a$. Hence $a \leq(p \vee x) \wedge(p \vee y)$ that is $a \leq p$, a contradiction. Hence p is a strongly irreducible element. Clearly $b \leq p$ and $\mu(b) \subseteq \mu(a)$ implies $a \leq p$, since a strongly irreducible element p is a z-element. This is a contradiction. Hence $a \leq i$ and i is a z-element.

Lemma 2.13. Let L be SSC lattice such that $\wedge\{m \mid m \in \max (L)\}=0$. Then every element is a z-element.

Proof. Let i be an element of SSC lattice L. Let $\mu(b) \subseteq \mu(a)$ and $b \leq i$. Suppose $a \not \leq i$. Then there exists $c \neq 0$ such that $c \leq a$ and $c \wedge i=0$. This gives $b \wedge c=0$. Thus max (L) $=$ $\mu(b \wedge c) \subseteq \mu(a \wedge c)$, by lemma (2.6). Then $c=a \wedge c \leq \wedge\{m \mid m \in \max (L)\}=0$. Therefore $c=0$, a contradiction. Thus $a \leq i$ and hence i is a z-element.

Let a be an element of L. Then $(0: a)=\vee\{x \in L \mid x a=0\}$. In this case $(0: a)$ is also denoted by a^{\perp}, i.e. $a^{\perp}=\vee\{x \in L \mid x a=0\}$.
We shall denote $(0: a)$ by a^{\perp} and obtained its property in terms of maximal elements.
Lemma 2.14. Let L be a dual semi complemented lattice.
Then $a^{\perp}=\wedge\{m \in \max (L) \mid a \not \leq m\}$ for any $a \in L$.
Proof. Let $x \leq a^{\perp}$. Then $a x=0$. Let $m \in \max (L)$. As every maximal element is prime it follows that m is a prime element. If $a \not \leq m$ then $a x=0 \leq m$ implies $x \leq m$. Thus $a^{\perp} \leq \wedge\{m \in \max (L) \mid a \not \leq m\}$. Conversely, suppose $x \leq \wedge\{m \in \max (L) \mid a \not \leq m\}$ and $x \not \leq a^{\perp}$. Hence $a x \neq 0$. This shows that $a x \not \leq \wedge\{m \in \max (L) \mid a \not \leq m\}=0$, by lemma (2.4). Therefore there exists a maximal element m_{1} such that $a x \not \leq m_{1}$, where $a \not \leq m_{1}$ with $x \not \leq m_{1}$. This contradicts the fact that $x \leq \wedge\{m \in \max (L) \mid a \not \leq m\}$. Hence $x \leq a^{\perp}$ and $\wedge\{m \in \max (L) \mid a \not \leq m\} \leq a^{\perp}$. Therefore $a^{\perp}=\wedge\{m \in \max (L) \mid a \not \leq m\}$ for any $a \in L$.

We generalize the following concepts in lattices for multiplicative lattices.
Definition(2.14 (a)):- An element $i \in L$ is said to be closed element if $i^{\perp \perp}=i$.
Definition($\mathbf{2 . 1 4 (b)) : - ~ A n ~ e l e m e n t ~} i$ of a lattice L is called a zero element if there exists a proper filter F such that $i=\vee\left\{F^{0}\right\}$ where $F^{0}=\{x \in L \mid x y=0$, for some $y \in F\}$.
Definition(2.14 (c)):-For an element i and a prime element p of a lattice L we define $i(p)$ as follows, $i(p)=\vee\{x \in L \mid x y \leq i$, for some $y \not \leq p\}$. If $i=0$, then $i(p)$ is denoted by $0(p)$.
Definition(2.14 (d)):-An element i of a lattice L is called dense if $i^{\perp}=0$.
Definition(2.14 (e)):-An element i of a lattice L is called non-dense if $i^{\perp} \neq 0$.

Under which condition an element is a z-element is proved in the next result.

Lemma 2.15. Let L be a lattice without zero divisors such that $\wedge\{m \mid m \in \max (L)\}=0$. If i is an element of L satisfying any one of the following conditions then i is a z-element.

1) If i is a non-dense prime element.
2) If i is a closed element.
3) If is a zero element.
4) If $i=0(p)$ for any prime element p.
5) If $i=a^{\perp}$ for any element $a \in L$.

Proof.1) Let i be a non-dense element and $\mu(b) \subseteq \mu(a), b \leq i$. Since i is a non-dense element, $i^{\perp}=\vee\{x \in L \mid i x=0\} \neq 0$. Then there exists a non-zero element $x \leq i^{\perp}$ such that $i x=0$. In particular, $x b=0(b \leq i)$. Since $\mu(b) \subseteq \mu(a)$, by lemma (2.6), we have, $\max (L)=\mu(b x) \subseteq \mu(a x)$. Thus $(a x) \leq m$, for all $m \in \max (L)$. Hence $a x=0$ as $\wedge\{m \mid m \in \max (L)=0$. This implies that $(a x) \leq i$ and since i is a prime element $a \leq i$ or $x \leq i$. If $x \leq i$ then $x \leq i^{\perp}$ implies $x^{2} \leq i . i^{\perp}=0$ i.e. $x^{2}=0,(x \neq 0)$. This contradicts the fact that L has no divisors of zero. Hence $a x \leq i \Rightarrow a \leq i$. Thus i is a z-element.
2) Let i be a closed element i.e. $i=i^{\perp \perp}$ and $\mu(b) \subseteq \mu(a), b \leq i$. Now $b \leq i=i^{\perp \perp} \Rightarrow b x \leq$ $b \wedge x=0$, for all $x \leq i^{\perp}=\vee\{y \mid i y=0\}$. Since $\mu(b) \subseteq \mu(a)$, we have $\max (\bar{L})=\mu(b y) \subseteq \mu(a y)$ fory $\leq i^{\perp}$. Hence $(a y)=\wedge\{m \in \max (L)\}=0$. Therefore $a y=0$ for all $y \leq i^{\perp}$. Then $a i^{\perp}=0$ and hence $a \leq i^{\perp \perp}=i$, since i is a closed element. Thus $\mu(b) \subseteq \mu(a), b \leq i$ implies $a \leq i$. So i is a z-element.
3) Let i be a zero element. Then $i=\vee\left\{F^{0}\right\}=\vee\{x \in L \mid x y=0$ for some $y \in F\}$, for some proper filter F. Let $\mu(b) \subseteq \mu(a)$ and $b \leq i$. Since $b \leq i$. We have, $b y=0$ for some $y \in F$. Now $\mu(b) \subseteq \mu(a) \Rightarrow \max (L)=\mu(b y) \subseteq \mu(a y)$, by (2.6). Hence $a y \leq m$, for all $m \in \max (L)$. Thus $a y \leq \wedge\{m \mid m \in \max (L)\}=0$. Hence $a y=0$ for some $y \in F$. Thus $a \leq \vee\left\{F^{0}\right\}=i$. Hence i is a z-element.
4) Suppose $i=0(p)$ for some prime element p , where $0(p)=\vee\{x \in L \mid x y=0$, for some $y \not \leq p\}$. Then $F=L-(p]$ is a filter. Also $i=\vee\{x \in L \mid x y=0$, for some $y \in F\}=F^{0}$. Now the result follows by (3).
5)Let $i=a^{\perp}=\vee\{x \mid a x=0\}, \mu(b) \subseteq \mu(a), b \leq i$. Now $b \leq i=a^{\perp}$ implies $b a=0$. So $b c=0$ for all $c \leq a$. Since $\mu(b) \subseteq \mu(a)$ we have $\mu(b c) \subseteq \mu(a c)[$ by (2.6)]. But $b c=0$ implies $\operatorname{Max}(L)=\mu(b c) \subseteq \mu(a c)$. This gives, $a c \leq \wedge\{m \mid m \in \operatorname{Max}(L)\}=0$ and hence $a c=0$ when $c \leq a$. Hence $a a=0$ and $a \leq a^{\perp}=i$. Therefore i is a z-element.

$3 z_{j}$-Elements in multiplicative lattices.

Kavishwar and Joshi have studied z_{j}-ideals on the lines of Alibad, Azarpanah and Taherifar[1]. We extend this concept to z_{j}-elements in compactly generated multiplicative lattices.

Definition 3.1. Let i and j be the two elements of L . The element i is said to be a z_{j}-element if $M_{a} \wedge j \leq i$, for all $a \leq i$ where $M_{a}=\wedge\{m \mid a \leq m\}$.

Ex. 1)From the diagram (1) b is a z_{j}-element for $j=c$.
2) a is not a z -element but a is a z_{j}-element for $j=b$.

Note:- Clearly if $j \leq i$ then i is always a z_{j}-element and hence an element i is always a z_{i}-element. Further if $j=1$ then z_{1} element is nothing but a z-element.

Lemma 3.2. If i is a z-element then i is a z_{j}-element for any element j of a lattice L.
Proof. Let $a \leq i$ and $x \leq M_{a} \wedge j$. Then $x \leq M_{a}$ implies $M_{x} \leq M_{a}$. Since i is a z-element, $\mu(a) \subseteq \mu(x)$ and $a \leq i$ implies $x \leq i$. Thus $M_{a} \wedge j \leq i$, for all $a \leq i$. Hence i is a z_{j}-element.

Definition 3.3. An element $x \in L$ is called semi primary if \sqrt{x} is a prime element.
An element $a \in L$ is called semi prime if $\sqrt{a}=a$.

Lemma 3.4. Let i be a semi prime element and j be any element of L. Then the following statements hold:-

1) If i is $a z_{j}$-element (z-element) and p is a minimal prime containing i, then p is also $a z_{j}$ element (z-element).
2) A prime element p in L is $a z_{j}$-element if and only if p is either a z-element or $j \leq p$.

Proof. 1) Let p be minimal prime containing i and suppose $x \leq p$. We claim that $M_{x} \wedge j \leq p$. Since $x \leq p$ there exists $y \not \leq p$ such that $x^{n} y \leq i$, for some integer $n \geq 1$. (See [10]). Since i is a z_{j}-element $M_{x^{n} y} \wedge j=M_{x^{n}} \wedge M_{y} \wedge M_{j} \leq i \leq p$ by (2.6). Also note that $M_{x^{n}}=M_{x}$ for any positive integer n . Since $y \not \leq p, M_{y} \not \leq p$ and p is a prime element gives $M_{x} \wedge j \leq p$. Thus $M_{x} \wedge j \leq p$, for all $x \leq p$. Hence p is a z_{j} - element.
2) Let p be a prime z_{j} - element such that $j \not \approx p$. Suppose $\mu(b) \subseteq \mu(a)$ and $b \leq p$. Since p is a z_{j} - element, we have $M_{b} \wedge j \leq p$. This together with $j \not \leq p$ implies $M_{b} \leq p$. But $M_{a} \leq M_{b}$ gives $a \leq M_{a} \leq p$. Hence p is a z-element. Conversely assume that p is a z-element or $j \leq p$. Suppose $j \leq p$. Let $a \leq p$. Then $M_{a} \wedge j \leq p$. This holds for all $a \leq p$. Hence p is a z_{j}-element. Now suppose $j \not \leq p$ and p is a z-element. By lemma (3.2), it follows that p is a z_{j}-element.

Lemma 3.5. Let i be a semi-prime element, j be any element and p, q be prime elements of L. Then the following statements hold:-
1)If $i \wedge p$ is a z_{j}-element then either i or p is a z_{j}-element.
2) If $p \wedge q$ is a z_{j}-element and p and q are not comparable then p and q are z_{j}-elements.

Proof. 1) Let $i \wedge p$ be a z_{j}-element. If $i \leq p$, then clearly i is a z_{j}-element. Now suppose $i \not \leq p$. Let $b \leq p$. Then there exists an element $a \leq i$ but $a \not \leq p$. Hence $a b \leq p, a b \leq a \leq i$ implies $a b \leq i \wedge p$. Since $i \wedge p$ is a z_{j}-element. $a b \leq i \wedge p$ implies $M_{a \wedge b} \wedge j \leq i \wedge p$. By (2.6), $M_{a} \wedge M_{b} \wedge j \leq p$. Since p is prime and $M_{a}\left(M_{b} \wedge j\right) \leq p$ and $M_{a} \not \leq p$, we have $M_{b} \wedge j \leq p$ for all $b \leq p$. Hence p is a z_{j} - element.
2) Suppose $p \wedge q$ is a z_{j} - element, where p and q are not comparable, so that $p \not \leq q$ and $q \not \leq p$. Now $p \not \leq q$ implies q is a z_{j} - element (by 1) and $q \not \leq p$ implies p is a z_{j} - element (by 1).

Lemma 3.6. Let i and j be two elements of L. Then $(i \wedge j)_{z}=i_{z} \wedge j_{z}$.
Proof.Clearly $i_{z} \wedge j_{z}$ is an element containing $i \wedge j$. Since i_{z} is the smallest z-element containing i and j_{z} is the smallest z-element containing j . It follows that $i_{z} \wedge j_{z} \geq(i \wedge j)$. To show that $i_{z} \wedge j_{z}$ is a z-element, let $\mu(b) \subseteq \mu(a)$ and $b \leq i_{z} \wedge j_{z}$ so $b \leq i_{z} b \leq j_{z}$. Since i_{z}, j_{z} are z-elements, we have $a \leq i_{z}, a \leq j_{z}$. Hence $i_{z} \wedge j_{z}$ is a z-element and $i \wedge j \leq i_{z} \wedge j_{z}$. To prove that $(i \wedge j)_{z}=$ $i_{z} \wedge j_{z}$, it is enough to show that $i_{z} \wedge j_{z}$ is the smallest z-element containing $(i \wedge j)$. To see this let k be a z-element such that $(i \wedge j) \leq k$. If each element of L is a radical element i.e. $\sqrt{a}=a$ for each a in L then $\sqrt{k}=k$. In this case $k=\wedge\{p \mid p$ is minimal prime containing k$\}$. Since for each $p \in \operatorname{Min}(k)$, we have $(i \wedge j) \leq p$, it follows that $i \leq p$ or $j \leq p$. By lemma (3.4) each $p \in \operatorname{Min}(k)$ is a z -element. Using this fact along with i_{z} is the smallest z-element containing i , it follows that $i_{z} \wedge j_{z} \leq p$, for each $p \in \operatorname{Min}(k)$. Therefore $\left(i_{z} \wedge j_{z}\right) \leq \wedge\{p \mid p \in \operatorname{Min}(k)\}=k$. It follows that $i_{z} \wedge j_{z}$ is the smallest z-element containing $i \wedge j$. Hence $(i \wedge j)_{z}=i_{z} \wedge j_{z}$. \square

Now we characterize z_{j}-elements in different ways.
We write $\operatorname{Min}(i)=$ the set of all minimal primes containing i.

Lemma 3.7. Let i be a semi prime element of a lattice L and j be an element of L. Then the following statements are equivalent:-1)i is a z_{j}-element.
2) $i_{z} \wedge j \leq i$ (equivalently $i_{z} \wedge j=i \wedge j$)
3) If there is a z-element k containing i, then $k \wedge j \leq i$.
4)For each $a \leq i$ and $b \leq j$, if $M_{b} \leq M_{a}$, then $b \leq i$.

Proof. (1)implies (2)
Let i be a semi prime z_{j}-element. Then $i=\wedge\{p \mid p$ is a minimal prime such that $i \leq p\}$. Hence $i_{z}=\left\{\wedge_{p \in \operatorname{Min}(i)} p\right\}_{z} \leq\left(\wedge_{p \in \operatorname{Min}(i)} p_{z}\right)$. By lemma (3.4) $p_{z}=p$ or $j \leq p$. Hence in any case we have, $i_{z} \wedge j \leq\left(\wedge_{p \in \operatorname{Min}(i)} p_{z}\right) \wedge j=\left[\wedge_{p \in \operatorname{Min}(i)} p\right] \wedge j=i \wedge j \leq i$.
(2) implies (3)

Assume that $i_{z} \wedge j \leq i$ (equivalently $i_{z} \wedge j=i \wedge j$). Take $k=i_{z}$ then i_{z} is the smallest z-element containing i and hence $i_{z} \wedge j \leq i$ (by hypothesis).
(3)implies (4)

Assume that if there is a z - element k containing i then $k \wedge j \leq i$. Let $a \leq i, b \leq j$ and $M_{b} \leq M_{a}$. By (3) there exists a z-element k containing i such that $k \wedge j \leq i$. Then by lemma (2.10) $M_{a} \leq k$.
Clearly, $b \leq M_{b} \leq M_{a}$. Hence $b \leq M_{b} \wedge j \leq k \wedge j \leq i$. Thus $b \leq i$.
(4) implies (1)

Assume that for each $a \leq i$ and $b \leq j$ if $M_{b} \leq M_{a}$ then $b \leq i$. Let $a \leq i$ and $x \leq M_{a} \wedge j$. Then by lemma (2.9) $x \leq M_{a}$ implies $M_{x} \leq M_{a}$. Now $a \leq i, x \leq j$ and $M_{x} \leq M_{a}$ implies $x \leq i$ (by assumption). Thus $M_{a} \wedge j \leq i$, for all $a \leq i$. Hence i is a z_{j}-element.

Lemma 3.8. The following statements hold in L:-

1)If $i=i_{1} \wedge i_{2}, j=j_{1} \wedge j_{2}$ and i_{1} is a $z_{j_{1}}$ - element, i_{2} is a $z_{j_{2}}$ - element, then i is a z_{j}-element.
2) If $j \leq k$ and i is a z_{k} - element then i is also a z_{j}-element.
3) The meet of z_{j}-elements is a z_{j}-element and meet of z-elements is a z-element.
4) If $i \leq j, i$ is $a z_{j}$-element and j is $a z_{k}$-element then i is $a z_{k}$-element.

Proof. 1) Let $c=i=i_{1} \wedge i_{2}$. Since i_{1}, i_{2} are $z_{j_{1}}$ and $z_{j_{2}}$-elements respectively, we have $M_{c} \wedge j_{1} \leq i_{1}$ and $M_{c} \wedge j_{2} \leq i_{2}$. This gives $M_{c} \wedge j_{1} \wedge j_{2} \leq i_{1} \wedge i_{2}$ for all $c \leq i_{1} \wedge i_{2}$. This shows that i is a z_{j}-element.
2)Suppose $j \leq k$ and i is a z_{k}-element. Let $a \leq i$. Then $M_{a} \wedge k \leq i$ (since i is a z_{k}-element.) Let $a \leq j$. Then $a \leq k$ and by hypothesis, $M_{a} \wedge k \leq i$. Then $M_{a} \wedge j \leq i$, for all $a \leq i$ and hence i is a z_{j}-element.
3)Let $i_{k}(k \in \triangle)$ be collection of all z_{j}-elements. Let $a \leq \wedge_{k \in \triangle} i_{k}=i$. Then $a \leq i_{k}$ for all $k \in \triangle$. We have $M_{a} \wedge j \leq i_{k}$, since each i_{k} is a z_{j}-element. Hence $M_{a} \wedge j \leq \wedge_{k \in \Delta} i_{k}=i$ for all $a \leq i$. Hence $i=\wedge_{k \in \Delta} i_{k}$ is a z_{j}-element. Let $h_{i}, i \in \triangle$ be the collection of z-elements of L and $h=\wedge_{i \in \Delta} h_{i}$. Let $\mu(b) \subseteq \mu(a)$ and $b \leq h$. Then $b \leq h_{i}$ for each $i \in \triangle$. As each h_{i} is a z-element, we have $a \leq h_{i}$ for each $i \in \triangle$. Hence $a \leq \wedge_{i \in \triangle} h_{i}=h$ and $h=\wedge_{i \in \triangle} h_{i}$ is a z-element.
4) Let $i \leq j$ where i is a z_{j}-element and j is a z_{k}-element. Let $a \leq i$. Since i is a z_{j}-element and j is a z_{k}-element, we have $M_{a} \wedge j \leq i$ and $M_{a} \wedge k \leq j$. This gives $M_{a} \wedge k \leq M_{a} \wedge j \leq i$ for all $a \leq i$. This shows that i is a z_{k}-element.

Now we obtain the property of a Jacobson radical[7], and establish the relation between the Jacobson radical and z-element.

Lemma 3.9. The Jacobson radical $j=\wedge_{m \in M a x(L)} m$ is a z-element and is contained in every z-element.

Proof.The proof follows from lemma (2.2) and(3) of lemma (3.8).

Lemma 3.10. Let L be a multiplicative lattice. Then i is $a z_{j}$-element if and only if $i \wedge j$ is a z_{j}-element.

Proof.Let i be a z_{j}-element and $a \leq i \wedge j$. Then $a \leq i$ and i is a z_{j}-element implies $M_{a} \wedge j \leq i$. Also $M_{a} \wedge j \leq j$. Hence $M_{a} \wedge j \leq(i \wedge j)$ for all $a \leq(i \wedge j)$. Hence $(i \wedge j)$ is a z_{j}-element. Conversely assume that $(i \wedge j)$ is a z_{j}-element. Let $a \leq i$ and $x \leq M_{a} \wedge j$. Then $a \wedge x \leq i$ and $a \wedge x \leq x \leq j$ implies $a \wedge x \leq(i \wedge j)$. Since $(i \wedge j)$ is a z_{j}-element, we have $M_{a \wedge x} \wedge j \leq(i \wedge j)$. By lemma (2.6), $M_{a \wedge x}=M_{a} \wedge M_{x}$. Since $x \leq M_{a}$, we have $M_{x} \leq M_{a}$. Now $M_{x} \wedge j \leq M_{a} \wedge j$. So $M_{x} \wedge j \leq(i \wedge j)$. Now $x \leq M_{x} \wedge j \leq i \wedge j \leq i$. Thus $M_{a} \wedge j \leq i$ for all $a \leq i$. Hence i is a z_{j}-element.

Finally we obtain the characterization of z_{j}-element and some properties of z-elements and z_{j}-elements.

Lemma 3.11. Let i, j, k be elements of a distributive lattice L. Then the following statements hold:1) An element i of L is a z_{j}-element if and only if i is $z_{i \vee j}$-element.
2)If j is a z-element then i is a z_{j}-element if and only if $i \wedge j$ is a z-element.
3) $i \wedge j$ is both z_{i}-element and z_{j}-element if and only if is $a z_{j}$-element and j is z_{i}-element.
4)If m is a maximal element then $i \wedge m$ is a z-element if and only if is a z-element.
5) $i_{z} \wedge j$ is the smallest z_{j}-element containing $i \wedge j$.
6) $i \leq k, i_{z}=k_{z}$, i is a z_{j}-element, then k is also a z_{j}-element.

Proof.1) Let i be a z_{j}-element. Then $M_{a} \wedge j \leq i$, for all $a \leq i$. Clearly $M_{a} \wedge i \leq i$. Since L is distributive, we have, $M_{a} \wedge(i \vee j)=\left(M_{a} \wedge i\right) \vee\left(M_{a} \wedge j\right) \leq i$, for all $a \leq i$. Hence i is a $z_{i \vee j}$-element. Conversely, Suppose i is a $z_{i \vee j}$-element. Let $a \leq i$. Then $a \leq(i \vee j)$ and $M_{a} \wedge(i \vee j) \leq i$ i.e. $\left(M_{a} \wedge i\right) \vee\left(M_{a} \wedge j\right) \leq i$. Hence $M_{a} \wedge j \leq i$ for all $a \leq i$. Hence i is a z_{j}-element.
2) Let j be a z -element. Assume that i is $\mathrm{a} z_{j}$-element. We show that $i \wedge j$ is a z-element. Let $\mu(b) \subseteq \mu(a), b \leq(i \wedge j)$. Since $\mu(b) \subseteq \mu(a), b \leq j$ and j is a z-element, we have $a \leq j$. Since $M_{a} \leq M_{b}, b \leq i$, by (2.10), $a \leq i$. Now $a \leq M_{a} \wedge j$ and $M_{a} \wedge j \leq i$, since i is a z_{j}-element and $a \leq i$. Thus $a \leq(i \wedge j)$. Hence $(i \wedge j)$ is a z-element. Conversely assume that $i \wedge j$ is a z-element. We show that i is a z_{j}-element. Let $a \leq i$ and $x \leq M_{a} \wedge j$. Then $x \leq M_{a}$ implies $M_{x} \leq M_{a}$. But $\mu(x) \subseteq \mu(a), a \leq i$ implies $x \leq i\left(\right.$ by 2.10). Hence $M_{a} \wedge j \leq i$ for all $a \leq i$ and i is a z_{j}-element.
3)The proof follows by (3.10).
4)Let m be the maximal element of L. Let $(i \wedge m)$ be a z-element. We show that i is a z-element. If $i \leq m$, then $i=i \wedge m$ and hence i is a z-element. Suppose $i \not \approx m$. Then i is a z_{m}-element by (2). Then i is a $z_{i \vee m}$-element by (1)i.e. i is a z_{1}-element. Let $\mu(b) \subseteq \mu(a), a \leq i$. Then $M_{b} \leq M_{a} \wedge 1 \leq i$ (since $a \leq i$ and i is a z_{1}-element). Hence $b \leq i$ and i is a z-element.
5) We know that if i is a z-element then i is a z_{j}-element for any element j . As i_{z} is a z -element. it follows that i_{z} is a z_{j}-element. We know that (by lemma 3.10), i is a z_{j}-element if and only if $(i \wedge j)$ is a z_{j}-element. Hence $i_{z} \wedge j$ is a z_{j}-element and $i \wedge j \leq i_{z} \wedge j$. Let k be any z_{j}-element such that $i \wedge j \leq k$. Then $i_{z} \wedge j=i_{z} \wedge j_{z} \wedge j=(i \wedge j)_{z} \wedge j \leq k_{z} \wedge j \leq k$. (By lemma 3.7). Hence $i_{z} \wedge j$ is the smallest z_{j}-element containing $i \wedge j$.
6)By (3.7),since i is a z_{j}-element $i_{z} \wedge j \leq i$. By hypothesis, $k_{z} \wedge j=i_{z} \wedge j \leq i \leq k$. Hence again by (3.7), k is a z_{j}-element.

References

[1] A.R. Aliabad, F.Azarpanah and A. Taherifar, Relative z-ideals in commutative rings, Comm.Algebra 41(1),325-341 (2013).
[2] D.D. Anderson, Abstract Commutative Ideal Theory Without Chain Condition, Algebra Universalis 6, 131-145 (1976).
[3] D.D. Anderson, Jayaram C., Phiri, Baer Lattices, Acta Sci. Math.(Szeged), 52(1-2) 61-74 (1994).
[4] C.B.Huijsmans, B. De. Pagter, On z-ideals and d-ideals in Riesz Spaces I, Nederl. Akad. Wetensch. Indag. Math., 42(2), 183-195 (1980).
[5] C.W. Kohls, Ideals in Rings of Continuous Functions, Fund. Math., 45, 28-50 (1957).
[6] C.Jayaram, Baer Ideals In Commutative Rings, Indian J. Pure appl. Math., 15(8), 855-864 (1984).
[7] F. Alarcon, D.D. Anderson, C. Jayaram, Some results on abstract commutative ideal theory, Periodica Mathematica Hungerica, Vol 30 (1), 1-26 (1995).
[8] Gillman and Jerison, Rings of Continuous Functions, The University Series in Higher Mathematics, D. Van Nostrand Co., Inc.,Princeton, N.J.-Toronto-London-New York (1960).
[9] G. Mason, z-ideals and prime ideals, J. Algebra, 26, 280-197 (1973).
[10] N.K. Thakare, C.S. Manjarekar and Maida S., Abstract spectral theory II, Minimal characters and minimal spectrum of multiplicative lattices, Acta Sci. Math., 52, 53-67 (1988).
[11] R.P. Dilworth, Abstract Commutative Ideal Theory, Pacific. J. Math.,12, 481-498 (1962).
[12] S.P.Kavishwar, A study of Algebraic and Combinatorial Aspects of Ordered Structures,Ph.D.Thesis submitted to SPPU.
[13] T.P. Speed, A note on Commutative Baer Rings, J.Austral. Math.Soc.,14, 257-263 (1972).

Author information

C.S. Manjarekar and A.N.Chavan, Department of Mathematics, R.L.S. College, Belgum (Karnataka), Department of Mathematics, Shivaji University, Kolhapur(Maharashtra), India.
E-mail: csmanjrekar@yahoo.co.in, ashwinichavan1@gmail.com
Received: Jan 30, 2017.
Accepted: November 11, 2017.

