Strength of Cartesian product of certain strong fuzzy graphs

Chithra K. P. and Raji Pilakkat
Communicated by Ayman Badawi

MSC 2010 Classifications: 05C72.
Keywords and phrases:Strength of fuzzy graphs, Cartesian product of fuzzy graphs, fuzzy cycle, fuzzy butterfly graph, fuzzy star graph, domino graph, fuzzy book.

Abstract

In this paper we prove the Cartesian product of two fuzzy paths is again a strong fuzzy path. Also we find the strength of Cartesian product of two strong fuzzy graphs with underlying crisp graphs are the paths P_{m} and P_{n}, for all values of m and n and that of P_{2} and C_{n} for all n. The strength of a strong fuzzy butterfly graph, Cartesian product of two strong fuzzy graphs with its underlying crisp graphs are P_{2} and a star graph S_{n} are also determined.

1 Introduction

In this paper we find the strength of Cartesian product of various fuzzy graphs. The notion of a fuzzy subset was introduced for the first time in 1965 by Lofti A. Zadeh [15]. Azriel Rosenfeld [11], in 1975, defined the fuzzy graph based on definitions of fuzzy sets and relations. He was the one who developed the theory of fuzzy graphs. J. N. Mordeson [6] together with Premchand S. Nair [4] studied different operations on fuzzy graphs and their properties. The concept of strength of connectivity between two vertices of a fuzzy graph was introduced by M. S. Sunitha [12] and extended by Sheeba M. B. [13], [14] to arbitrary fuzzy graphs. Sheeba called it, strength of the fuzzy graph and determined it, in two different ways, of which one is by introducing weight matrix of a fuzzy graph and other by introducing the concept of extra strong path between its vertices.

Throughout this paper only undirected fuzzy graphs are considered.

2 Preliminaries

A fuzzy graph $G=G(V, \mu, \sigma)$ [4] is a nonempty set V together with a pair of functions μ : $V \longrightarrow[0,1]$ and $\sigma: V \times V \longrightarrow[0,1]$ such that for all $u, v \in V, \sigma(u, v)=\sigma(u v) \leq \mu(u) \wedge \mu(v)$. We call μ the fuzzy vertex set of G and σ the fuzzy edge set of G.

Given any fuzzy graph there is a crisp graph associated with it called the underlying crisp graph. The vertex set of the crisp graph of a given fuzzy graph G is that of G and its edge set is $E=\{u v: u, v \in V$ such that $\sigma(u v)>0\}$. If $u v \in E$ we say that u and v are adjacent in the associated crisp of G and also in G for convenience.

A fuzzy graph G is complete [4] if $\sigma(u v)=\mu(u) \wedge \mu(v)$ for all $u, v \in V$. A fuzzy graph G is a strong fuzzy graph [4] if $\sigma(u v)=\mu(u) \wedge \mu(v), \forall u v \in E$. The strength of a strong fuzzy complete graph is one [13]. Let $G_{1}\left(V_{1}, \mu_{1}, \sigma_{1}\right)$ and $G_{2}\left(V_{2}, \mu_{2}, \sigma_{2}\right)$ be two fuzzy graphs with the underlying crisp graphs $G_{1}\left(V_{1}, E_{1}\right)$ and $G_{2}\left(V_{2}, E_{2}\right)$ respectively. If $V_{1} \cap V_{2}=\phi$ then their join [4] is the fuzzy graph $G=G_{1} \vee G_{2}\left(V_{1} \cup V_{2}, \mu_{1} \vee \mu_{2}, \sigma_{1} \vee \sigma_{2}\right)$ with the underlying crisp graph $G\left(V_{1} \cup V_{2}, E_{1} \cup E_{2} \cup E^{\prime}\right)$ where E^{\prime} is the set of all edges joining the vertices of V_{1} and V_{2} and

$$
\begin{gathered}
\left(\mu_{1} \vee \mu_{2}\right)(u)= \begin{cases}\mu_{1}(u) & \text { if } u \in V_{1} \\
\mu_{2}(u) & \text { if } u \in V 2\end{cases} \\
\left(\sigma_{1} \vee \sigma_{2}\right)(u v)= \begin{cases}\sigma_{1}(u v) & \text { if } u v \in E_{1} \\
\sigma_{2}(u v) & \text { if } u v \in E_{2} \\
\mu_{1}(u) \wedge \mu_{2}(v) & \text { if } u \in E_{1} \text { and } v \in E_{2}\end{cases}
\end{gathered}
$$

A strong fuzzy complete bipartite graph is a strong fuzzy graph with its underlying crisp graph is a complete bipartite graph [10]. A fuzzy graph G is called a path if its underlying crisp graph
is a path. A path P of length $n-1$ on n vertices in a fuzzy graph G [4] is a sequence of distinct vertices $v_{1}, v_{2}, v_{3}, \ldots, v_{n}$, such that $\sigma\left(v_{i}, v_{i+1}\right)>0, i=1,2,3, \ldots, n-1$, also we denote this by P_{n}. A path P on the vertices $v_{1}, v_{2}, \ldots, v_{n}, n \geq 3$ is called a fuzzy cycle if $\sigma\left(v_{1} v_{n}\right) \geq 0$ and there exists at least two edges e_{1} and e_{2} in P such that $\sigma\left(e_{1}\right)=\sigma\left(e_{2}\right)$ and is denoted by C_{n}.

The vertices v_{1} and v_{n} are called the end vertices of P. The strength of a path is defined as the weight of the weakest edge of the path [4]. A path in a fuzzy graph G is a partial fuzzy graph which itself is a path. A path P in a fuzzy graph is said to connect the vertices u and v of G strongly if its strength is maximum among all paths between u and v. Such paths are called strong paths [15]. Any strong path between two distinct vertices u and v in G with minimum length is called an extra strong path between them [13]. There may exists more than one extra strong paths between two vertices in a fuzzy graph G. But, by the definition of extra strong path, each such path between two vertices has the same length. The maximum length of extra strong paths between every pair of distinct vertices in G is called the strength of the graph G [13]. For a fuzzy graph G, with the underlying crisp graph is a path $P=v_{1} v_{2} \ldots v_{n}$ on n vertices then the strength of the graph G is its length $(n-1)$ [13]. The strength of a strong fuzzy complete graph is one [13].

Here after for a fuzzy graph G, we use $\mathscr{S}(G)$ to denote its strength. The following theorems determine the strength of a fuzzy cycle.

Theorem 2.1. [14] In a fuzzy cycle G of length n, suppose there are l weakest edges where $l \leq\left[\frac{n+1}{2}\right]$. If these weakest edges altogether form a subpath then $\mathscr{S}(G)$ is $n-l$.

Theorem 2.2. [14] Let G be a fuzzy cycle with crisp graph G^{*} a cycle of length n, having l weakest edges which altogether form a subpath. If $l>\left[\frac{n+1}{2}\right]$, then $\mathscr{S}(G)$ is $\left[\frac{n}{2}\right]$.

Theorem 2.3. [14] Let G be a fuzzy cycle with crisp graph G^{*} a cycle of length n, having l weakest edges which do not altogether form a subpath. If $l>\left[\frac{n}{2}\right]-1$ then the strength of the graph is $\left[\frac{n}{2}\right]$ and if $l=\left[\frac{n}{2}\right]-1$ then $\mathscr{S}(G)$ is $\left[\frac{n+1}{2}\right]$.

Theorem 2.4. [14] In a fuzzy cycle of length n suppose there are $l<\left[\frac{n}{2}\right]-1$ weakest edges which do not altogether form a subpath. Let s denote the maximum length of a subpath which does not contain any weakest edge. If $s \leq\left[\frac{n}{2}\right]$ then the strength of the graph is $\left[\frac{n}{2}\right]$ and if $s>\left[\frac{n}{2}\right]$ then the strength of the graph is s.

Lemma 2.5. The diameter of the Cartesian product of the graphs P_{2} with vertex set $\left\{u_{1}, u_{2}\right\}$ and a butterfly graph with vertex set $\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right\}$ is 3 .

Lemma 2.6. [8] In a strong fuzzy graph G if any two vertices are adjacent the the strength of the $u-v$ path in G is 1 .

Theorem 2.7. [8] Let G be a strong fuzzy graph with its underlying crisp graph a butterfly graph. Then the strength of G is 2 .

Definition 2.8. [16] For $i=1,2$, let $G_{i}\left(V_{i}, \mu_{i}, \sigma_{i}\right)$ be two fuzzy graphs with underlying crisp graphs $G_{i}\left(V_{i}, E_{i}\right)$. Their Cartesian product G, denoted by $G_{1} \square G_{2}$ is the fuzzy graph $G(V, \mu, \sigma)$ with the underlying crisp graph $G(V, E)$, the Cartesian product of the crisp graphs $G_{1}\left(V_{1}, E_{1}\right)$ and $G_{2}\left(V_{2}, E_{2}\right)$ with vertex set $V=V_{1} \times V_{2}$ and edge set $E=\left\{\left(u, u_{2}\right)\left(u, v_{2}\right) \mid u \in V_{1}, u_{2} v_{2} \in\right.$ $\left.E_{2}\right\} \cup\left\{\left(u_{1}, w\right)\left(v_{1}, w\right) \mid w \in V_{2}, u_{1} v_{1} \in E_{1}\right\}$ and whose membership functions μ and σ are defined as

$$
\begin{gathered}
\mu\left(u_{1}, u_{2}\right)=\mu_{1}\left(u_{1}\right) \wedge \mu_{2}\left(u_{2}\right) ;\left(u_{1}, u_{2}\right) \in V, \\
\sigma\left(\left(u_{1}, u_{2}\right)\left(v_{1}, v_{2}\right)\right)= \begin{cases}\mu_{1}\left(u_{1}\right) \wedge \sigma_{2}\left(u_{2} v_{2}\right) & \text { if } u_{1}=v_{1} \text { and } u_{2} v_{2} \in E_{2}, \\
\mu_{2}\left(u_{2}\right) \wedge \sigma_{1}\left(u_{1} v_{1}\right) & \text { if } u_{2}=v_{2} \text { and } u_{1} v_{1} \in E_{1} .\end{cases}
\end{gathered}
$$

Notation 2.9. Unless otherwise specified for $V_{1}=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$ and $V_{2}=\left\{v_{1}, v_{2}, \ldots, v_{m}\right\}$ the notation $w_{i j}$ is used to denote the vertex $\left(u_{i}, v_{j}\right) \in V_{1} \times V_{2}$.

Lemma 2.10. Let $G_{1}\left(V_{1}, \mu_{1}, \sigma_{1}\right)$ and $G_{2}\left(V_{2}, \mu_{2}, \sigma_{2}\right)$ be two fuzzy paths, each has P_{2} as its underlying crisp graph. Then the Cartesian product $G_{1} \square G_{2}$ of G_{1} and G_{2} is a fuzzy cycle.

Proof. Let G_{1} and G_{2} be two fuzzy graphs with P_{2} as their underlying crisp graph. The fuzzy graph $G_{1} \square G_{2}$ is depicted in Figure 1.

Figure 1. The fuzzy paths G_{1}, G_{2} and their Cartesian product $G_{1} \square G_{2}$

Suppose that $\sigma_{1}\left(u_{1} u_{2}\right) \leq \sigma_{2}\left(v_{1} v_{2}\right)$. Then $\sigma\left(w_{11} w_{12}\right)=\sigma\left(w_{21} w_{22}\right)=\sigma\left(v_{1} v_{2}\right)$ and $\sigma\left(w_{11} w_{21}\right)=$ $\sigma\left(w_{12} w_{22}\right)=\sigma\left(u_{1} u_{2}\right)$. Thus there are at least two weakest edges in $G_{1} \square G_{2}$. Hence $G_{1} \square G_{2}$ is a fuzzy cycle since the underlying graph of $G_{1} \square G_{2}$ is a cycle.

Note 2.11. If G_{1} and G_{2} are two strong fuzzy graphs then $\sigma\left(u_{1} u_{2}\right)=\mu_{1}\left(u_{1}\right) \wedge \mu_{1}\left(u_{2}\right)$ and $\sigma_{2}\left(v_{1} v_{2}\right)=\mu_{2}\left(v_{1}\right) \wedge \mu_{2}\left(v_{2}\right)$. If let us suppose that $\mu_{1}\left(u_{1}\right)=\min \left\{\mu_{1}\left(u_{1}\right), \mu_{1}\left(u_{2}\right), \mu_{2}\left(v_{1}\right), \mu_{2}\left(v_{2}\right)\right\}$. Then $\sigma\left(w_{11} w_{12}\right)=\sigma\left(w_{11} w_{21}\right)=\sigma\left(w_{12} w_{22}\right)=a$ say and $\sigma\left(w_{21} w_{22}\right)$ is greater than or equal to this common value a. Thus if G_{1} and G_{2} are strong fuzzy graphs then at least three edges of $G_{1} \square G_{2}$ are weakest edges.

Lemma 2.12. Let G_{1} and G_{2} be two strong fuzzy graphs. Suppose both the graphs have underlying crisp graphs P_{2} on two vertices. Then the strength of the Cartesian product of G_{1} and G_{2} is two.

Lemma 2.13. Let G_{1} and G_{2} be two fuzzy graphs with crisp graphs P_{2} and P_{3} respectively. Then the strength of $G_{1} \square G_{2}$ is 3 .

Proof. Let the fuzzy graphs G_{1}, G_{2}, and their Cartesian product $G_{1} \square G_{2}$ be as depicted in Figure 2.

$$
\mathrm{G}=\mathrm{G}_{1} \square \mathrm{G}_{2}
$$

Figure 2. The fuzzy subgraphs G_{1} and G_{2}, their Cartesian product $G_{1} \square G_{2}$ and two partial fuzzy subgraphs H_{1} and H_{2} of $G_{1} \square G_{2}$

The two partial fuzzy subgraphs H_{1} and H_{2} of $G_{1} \square G_{2}$ shown in Figure 2 are fuzzy cycles by Lemma 2.10. Theorem 2.12 shows that both H_{1} and H_{2} have strength 2. Suppose the weakest edge of H_{1} has weight α and those of H_{2} have weight β.

Case 1. $\alpha \geq \beta$.
In this case $d \geq \alpha$.
Subcase 1. $d>\beta$. Then $e=g=f=\beta \longrightarrow(1)$. Let u and v be two vertices of G. If u and v are in $V\left(H_{1}\right)$, then the length of the extra strong path joining u and v is \leq the strength of H_{1}, ie 2. Because, if a $u-v$ path P passes through a vertex in $V(G) \backslash V\left(H_{1}\right)$ then it has strength \leq any $u-v$ path in H_{1} and its length must be greater than or equal to any $u-v$ path in H_{1}, then either its strength is α or β, according as the path is a subpath of H_{1} or it contains at least one edge of $G \backslash H_{1}$.

If u and v are in $V\left(G \backslash H_{1}\right)$ then $u, v \in\left\{w_{13}, w_{23}\right\}$ and hence adjacent. Therefore, the extra strong path joining u and v is $w_{13} w_{23}$, which is of length one.

If u is in $V\left(G \backslash H_{2}\right)$ and v is $\operatorname{in} V\left(G \backslash H_{1}\right)$. Then all the paths joining u and v must pass through an edge having weight β. Therefore, all the paths joining u and v have same strength. So, length of the extra strong path joining u and v is ≤ 3.

In particular if $u=w_{11}$ and $v=w_{23}$ or $u=w_{21}$ and $v=w_{13}$ then the length of extra strong path is equal to 3 .

Subcase 2. $d=\beta$.
Then $\mu_{1}\left(u_{1}\right)=\beta$ or $\mu_{1}\left(u_{2}\right)=\beta$ or $\mu_{2}\left(v_{2}\right)=\beta$. In the first case $d=f=e=\beta$. In the second case $d=e=g=\beta$. In these cases also as in Subcase 1 we can prove that the strength of G is 3 .

Case 2. $\alpha<\beta$.
The proof follows by interchanging the roles of H_{1} and H_{2}.

Theorem 2.14. Let G_{1} and G_{2} be two strong fuzzy graphs with respective underlying crisp graphs P_{2} and P_{n}. Then the strength of Cartesian product $G_{1} \square G_{2}$ of G_{1} and G_{2} is n.

Proof. Let $G_{1}\left(V_{1}, \mu_{1}, \sigma_{1}\right)$ and $G_{2}\left(V_{2}, \mu_{2}, \sigma_{2}\right)$ be two fuzzy graphs with underlying crisp graphs P_{2} with vertex set $\left\{u_{1}, u_{2}\right\}$ and P_{n} with vertex set $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ respectively.

Let $G(V, \mu, \sigma)$ be the Cartesian product $G_{1} \square G_{2}$ of G_{1} and G_{2} with underlying crisp graph $G(V, E)$ where the vertex set $V=\left\{\left(u_{i}, v_{j}\right)=w_{i j}: u_{i} \in V_{1}, v_{j} \in V_{2}, i=1,2, j=1,2, \ldots, n\right\}$ and edge set $E=\left\{w_{i j} w_{i j+1}: 1 \leq j \leq n-1, i=1,2\right\} \cup\left\{w_{1 j} w_{2 j}: j=1,2, \ldots, n\right\}$.

We prove the theorem by induction on n. The result is trivial when $n=1$ and the result is true for $n=2$, and $n=3$ by Lemmas 2.12 and 2.13. When $n=2$, ie, when G_{1} and G_{2} are two fuzzy graphs with respective crisp graphs P_{2}, we proved that, the strength of the graph is 2 , by showing that if $u=w_{11}$ and $v=w_{22}$ (or $u=w_{21}$ and $v=w_{12}$) then length of the extra strong $u-v$ path is 2 and for any other u and v, it is 1 . Also in the case, G_{1} is a fuzzy graph with the underlying crisp graph P_{2} and G_{2} a fuzzy graph with underlying crisp graph P_{3}, we proved that the length of any extra strong $u-v$ path is 3 , when $u=w_{11}$ and $v=w_{23}$ or $u=w_{21}$ and $v=w_{13}$. For all other choices of u and v the length of the extra strong $u-v$ path is <3 and the extra strong $w_{11}-w_{13}$ path is $w_{11} w_{12} w_{13}$.

We assume that the result is true for $n=m$, where $m \geq 3$. That is if G_{1} is the fuzzy path P_{2} with vertex set $\left\{u_{1}, u_{2}\right\}$ and G_{2} is a fuzzy path P_{m} with vertex set $\left\{v_{1}, v_{2}, \ldots, v_{m}\right\}$ then assume that length of the extra strong path joining the vertices w_{11} and $w_{2 m}$ or the vertices w_{21} and $w_{1 m}$ in $G_{1} \square G_{2}$ is m and if $u=w_{11}$ and $v=w_{1 m}$ or if $u=w_{21}$ and $v=w_{2 m}$ then the length of the extra strong $u-v$ path is $m-1$, and in fact $w_{11} w_{12} \ldots w_{1 m}$ is the extra strong $w_{11}-w_{1 m}$ path. u and v are any other vertices of $G_{1} \square G_{2}$ then the length of the extra strong $u-v$ path is $<m-1$

Let us suppose that G_{1} be the fuzzy path on the vertex set $\left\{u_{1}, u_{2}\right\}$ and G_{2} be the fuzzy path on the vertex set $\left\{v_{1}, v_{2}, \ldots, v_{m+1}\right\}$. For $1 \leq p<q \leq m+1, H_{p q}$ denotes the maximal partial fuzzy subgraph of G with vertex set $\left\{w_{i j} ; i=1,2, p \leq j \leq q\right\}$. (See Figure 3).

Clearly, $H_{1 n+1}=G_{1} \square G_{2}$.

Figure 3. Partial fuzzy subgraphs H_{12}, H_{13} and $H_{1 n+1}$ of $G=G_{1} \square G_{2}$

Let u and v be two non -adjacent vertices of $G_{1} \square G_{2}$. We assert that if $u=w_{i j}$ and $v=$ $w_{k l} \in H_{2 m+1}$ then any extra strong $u-v$ path of G lie in $H_{2 m+1}$ and the length of any extra strong $u-v$ path in $G_{1} \square G_{2}$ is $\leq m+1$, by the induction hypothesis when $u=w_{21}$ and when $v=w_{1 m+1}$ then the length of the extra strong $u-v$ path is $m+1$.

Case 1. Suppose that u and v are in $\left\{w_{i j}: i=1,2 ; j=2,3, \ldots, m\right\}$.
Then any path joining u and v in G can be viewed either as a path in the maximal partial fuzzy graph $H_{1 n}$ with vertex set $\left\{w_{i j}: i=1,2,1 \leq j \leq m\right\}$ or as a path in the maximal partial fuzzy graph $H_{2 m+1}$ with vertex set $\left\{w_{i j}: i=1,2 ; 2 \leq j \leq(m+1)\right\}$. Note that both these graphs have $P_{2} \square P_{m}$ as their underlying crisp graphs. Therefore by induction hypothesis the length of the extra strong $u-v$ path is $\leq m<(m+1)$

Case 2. $u, v \in\left\{w_{11}, w_{21}, w_{1 m+1}, w_{2 m+1}\right\}$.
Suppose $u \in\left\{w_{11}, w_{21}\right\}$ and $v \in\left\{w_{1 m+1}, w_{2 m+1}\right\}$. Then we can prove the result in two steps.
(i) If $u=w_{11}$ and $v=w_{1 m+1}$ (or $u=w_{21}$ and $v=w_{2 m+1}$). Any path P_{m} in $H_{1 m+1}$ joining w_{11} and $w_{1 m+1}$ can be considered as sum of two paths P^{1} and P^{2} where P^{1} is a path in $H_{1 m}$ joining w_{11} and $w_{1 m}$ or it is a path joining w_{11} and $w_{2 m}$ in $H_{1 m}$ and P^{2} is $P \cap H_{m}{ }_{m+1}$. Note that the strength of the path P is minimum of strength of the paths $P^{i}: i=1,2$. By induction hypothesis if P^{1} is a path joining w_{11} and $w_{1 m}$ then it has maximum strength if $P^{1}=w_{11} w_{12 \ldots w_{1 m}}$. Since $w_{1 m}$ and $w_{1 m+1}$ are adjacent, the path $w_{1 m} w_{1 m+1}$ is the extra strong path joining $w_{1 m}$ and $w_{1 m+1}$. In the second case, that is P^{\prime} is a path from w_{11} to $w_{2 m}$ in $H_{1 m}$ and $P^{2}=P \cap H_{m} m+1$ then by induction hypothesis P^{1} has length m when P^{1} is an extra strong path. Therefore in this length of the path P is $m+2$ and it has strength \leq the strength of the path $w_{11} w_{12} \ldots w_{1 m+1}$. Therefore, we can conclude that the path P has maximum strength if $P^{1}=w_{11} w_{12} \ldots w_{1 m}$ and $P^{2}=w_{1 m} w_{1 m+1}$. Also the length of P^{\prime} is minimum among all paths in $H_{1 m}$ between w_{11} and $w_{1 m}$.
(ii) If $u=w_{11}$ and $v=w_{2 m+1}$ (or $u=w_{21}$ and $v=w_{1 m+1}$).

In this case as in the proof of (i) we can prove that the strength of $u-v$ path is $m+1$ in $H_{1 m+1}$.

Hence the theorem.
Theorem 2.15. Let G_{1} and G_{2} be two strong fuzzy graphs with the underlying crisp graphs the path P_{m} and the path P_{n} on m and n vertices respectively. Then the strength of the Cartesian product $G=G_{1} \square G_{2}$ of G_{1} and G_{2} is $m+n-2$.

Proof. For a fixed n, we prove this theorem by induction on m. If $m=1$ then G_{1} is a fuzzy trivial graph. Thus when $m=1, G=G_{1} \square G_{2}$ is a copy of P_{n}, a fuzzy path on n vertices. If $n=1$, its strength is zero. If $n>1$ then its strength is $n-1$. In either case we have the strength is $m+n-2$. Assume that the result is true for $m=k>1$. To prove the result for $m=k+1$, let G_{1} and G_{2} be strong fuzzy graphs with underlying crisp graphs P_{k+1} and P_{n} respectively and let G be their Cartesian product. If $n=1$ then G is a copy of G_{1}. Therefore strength of G is $k=m+n-2$ thus in this case the theorem holds. So assume that $n>1$. Also let $u, v \in V(G)$.

Figure 4. Cartesian product of two fuzzy graphs with underlying graphs P_{k+1} and P_{n}.

Case 1. $u, v \in\left\{w_{i j}: 1 \leq i \leq k, 1 \leq j \leq n\right\}$ or $u, v \in\left\{w_{i j}: 2 \leq i \leq k+1,1 \leq j \leq n\right\}$. Let H_{1} and H_{2} be the two maximal partial fuzzy subgraphs of G with vertex set $\left\{w_{i j}: 1 \leq i \leq k, 1 \leq\right.$ $j \leq n\},\left\{w_{i j}: 2 \leq i \leq k+1,1 \leq j \leq n\right\}$ respectively. Then any extra strong path joining u and v in G can be either a path in H_{1} or in H_{2} of G.

To prove this assertion we proceed as follows. Let us suppose that $u, v \in V\left(H_{1}\right)$. Suppose P is an extra strong $u-v$ path in G, which passes through at least one of the vertices $w_{11}, w_{12}, \ldots, w_{1 n}$. Then, we claim that P does not pass through any of the vertices w_{k+11}, w_{k+12}, $\ldots, w_{k+1 n}$. If so, it contains a subpath $w_{k l} w_{k+1 l} w_{k+1 l+1} \ldots w_{k+1 j} w_{k j}$ of G, which can be viewed as a path of the maximal partial fuzzy subgraph with vertex set $\left\{w_{k 1} w_{k 2} \ldots w_{k n} w_{k+11} \ldots\right.$ $\left.w_{k+1 n-1} w_{k+1 n}\right\}$ of G which is of the form $P_{2} \square P_{n}$. Therefore the extra strong path joining $w_{k l}$ and $w_{k j}$ is $w_{k l} w_{k l+1} \ldots w_{k j}$ by the proof of Theorem 2.14. Therefore we can conclude that every path like P is contained in H_{1}. Hence its length by induction $\leq k+n-2$. Similar is the case when $u, v \in V\left(H_{2}\right)$.
Case 2. $u \in\left\{w_{1 l}: l=1,2, \ldots, n\right\}$ and $v \in\left\{w_{k+1 l}: l=1,2, \ldots, n\right\}$.
Let us suppose that $u=w_{1 j}$ and $v=w_{k+1 l}$. For $l=1,2, \ldots, k+1$ we denote the path $w_{i 1} w_{i 2} \ldots w_{i n}$ with vertices $w_{i 1}, w_{i 2}, \ldots, w_{i n}$ in G by L_{i}. We claim that for a fixed $l, l=$ $1,2, \ldots, n$ the edge $w_{k+1 l} w_{k l}$ has strength greater than or equal to the strength of any path from v to any vertex w of L_{k}. Suppose a path P_{1} from v to a vertex of L_{k} contains a subpath $Q_{1}=w_{k+1 j} w_{k+1 j-1} \ldots w_{k+1 l}$ of L_{k+1}, then the path P_{1} has strength less than or equal to that of the edge $w_{k+1 l} w_{k l}$. For if the edge $w_{k+1 l} w_{k l}$ is not a weakest edge of the cycle $C: w_{k l+1} w_{k+1 l+1} w_{k+1 l} w_{k l} w_{k l+1}$ then weight of $w_{k+1} w_{k+1 l+1}<$ weight of $w_{k+1 l} w_{k l}$. Therefore the strength of $P_{1}<$ strength of $w_{k+1 l} w_{k l}$.

If $w_{k+1 l} w_{k l}$ is a weakest edge of C then the subpath Q_{1} of P_{1} which belongs to L_{k+1} has strength \geq strength of $w_{k+1 l} w_{k l}$. If Q_{1} has strength greater than that of $w_{k+1 l} w_{k l}$ then all the edges $w_{k+1 l} w_{k l}, \ldots, w_{k+1 j} w_{k j}$ have weight equal to that of $w_{k+1 l} w_{k l}$. Therefore we can conclude that in this case the path P_{1} has strength \leq that of $w_{k+1 l} w_{k l}$. If P_{1} contains no subpath of L_{k+1} then any path from v to a vertex of L_{k} pass through the edge $v w_{k l}$. Hence its strength must be less than or equal to the strength of the edge $v w_{k l}$. Hence the path having minimum length and with maximum strength from $w_{k+1 l}$ to a vertex of L_{k} is just the edge $w_{k+1 l} w_{k l}$.

By the same argument, the edge $w_{k l} w_{k-1 l}$ has the maximum strength and minimum length from $w_{k l}$ to any vertex in L_{k-1}. Therefore the path $w_{k+1 l} w_{k l} w_{k-1 l}$ is the path from $w_{k+1 l}$ to L_{k-1}. Proceeding similarly we get the path $w_{k+1 l} \ldots w_{1 l}$ is the path with maximum strength and minimum length from $w_{k+1 l}$ to any vertex of L_{1}. Proceeding similarly $w_{1 l} \ldots w_{1 j}$ is the path with maximum strength and minimum length path joining $w_{1 j}$ and $w_{1 l}$. Therefore the strength of the $u-v$ path is $\leq(n-1)+k=k+n-1$.

When $u=w_{11}$ and $v=w_{k+1 n}$, the strength of the $u-v$ path is equal to $k+n-1$. Thus the theorem is true for $m=k+1$. Therefore the theorem follows by induction.

Next we consider the Cartesian product of the fuzzy graphs P_{2} and a fuzzy cycle C_{n}. Suppose $V_{1}=\left\{u_{1}, u_{2}\right\}$, and $V_{2}=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ are the vertex set of G_{1} and G_{2} respectively. Then the Cartesian product of G_{1} and G_{2} is the fuzzy graph $G(V, \mu, \sigma)$ where the underlying crisp graph is $G(V, E)$ with vertex set $V=\left\{w_{i j}, i=1,2, j=1,2, \ldots, n\right\}$ and edge set $E=\left\{w_{i j} w_{i j+1}, 1 \leq\right.$ $j<n, i=1,2\} \cup\left\{w_{1 j} w_{2 j}, 1 \leq j<n\right\} \cup\left\{w_{i 1} w_{i n}, i=1,2\right\}$ where $\mu\left(w_{i j}\right)=\mu_{1}\left(u_{i}\right) \wedge$ $\mu_{2}\left(v_{j}\right), \forall w_{i j} \in V$
$\sigma\left(w_{i j} w_{i j+1}\right)=\mu_{1}\left(u_{i}\right) \wedge \sigma_{2}\left(v_{j} v_{j+1}\right), u_{i} \in V_{1},\left(v_{j}, v_{j+1}\right) \in E_{2}$; $\sigma\left(w_{1 j} w_{2 j}\right)=\sigma_{1}\left(u_{1} u_{2}\right) \wedge \mu_{2}\left(v_{j}\right) ; \sigma\left(w_{i 1} w_{i n}\right)=\mu_{1}\left(u_{i}\right) \wedge \sigma_{2}\left(v_{1} v_{n}\right)$.

For example

Figure 5. Cartesian product of the fuzzy graphs G_{1} with underlying crisp graph P_{2} and G_{2} with underlying crisp graph C_{n}.

Theorem 2.16. Suppose G_{1} and G_{2} are two strong fuzzy graphs with underlying crisp graphs the path P_{2} with vertex set $V_{1}=\left\{u_{1}, u_{2}\right\}$ and the cycle C_{n} with vertex set $V_{2}=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ respectively and the weight of the weakest vertices of G_{1} is greater than the weight of the weakest vertices of G_{2}. If the weakest vertices of G_{2} altogether form a subpath of length l in G_{2} then the strength of the Cartesian product of G_{1} and G_{2} is $(n-l+1)$ if $l<\left[\frac{n+1}{2}\right]$ and $\left[\frac{n}{2}\right]$ if $l \geq\left[\frac{n+1}{2}\right]$.

Proof. Let u and v be two non-adjacent vertices of G. Without loss of generality assume that $v_{1}, v_{2}, \ldots, v_{l-1}$ are the weakest vertices of G_{2}. Also assume that the weight of each $v_{i}, i=$ $1,2, \ldots, l-1$ is w and these vertices altogether form a subpath in G_{2}. Then in G, the vertices $w_{11}, w_{12}, \ldots, w_{1 l-1}$ and $w_{21}, w_{22}, \ldots, w_{2 l-1}$ have the same weight w (See Figure 6).

Figure 6. The Cartesian product of G_{1} and $G_{2}-\left\{v_{1}, \ldots, v_{l-1}\right\}$.

Case 1. $l<\left[\frac{n+1}{2}\right]$.
If $u, v \in V(G)-\left\{w_{11}, \ldots, w_{1 l-1}, w_{21}, \ldots w_{2 l-1}\right\}$ then the strength of the $u-v$ path in G is $\leq n-l+1$, since the extra strong paths joining u and v lie completely in the maximal
partial subgraph $G_{1} \square\left(G_{2}-\left\{v_{1}, v_{2}, \ldots, v_{l-1}\right\}\right)$ of G with underlying crisp graph $P_{2} \square P_{n-(l-1)}$. Therefore by Theorem 2.15 the length of the extra strong $u-v$ path in $G \leq n-l+1$.

If $u, v \in\left\{w_{11}, \ldots, w_{1 l-1}, w_{21}, \ldots, w_{2 l-1}\right\}$ then all the $u-v$ paths have same strength in G. So all the extra strong paths joining u and v lie in the maximal partial subgraph $G_{1} \square G_{2}^{\prime}$ of G, where G_{2}^{\prime} is the maximal partial fuzzy graph of G_{2} with vertex set $\left\{v_{1}, v_{2}, \ldots, v_{l-1}\right\}$ as shown in Figure 6. Also since $l \leq\left[\frac{n+1}{2}\right]$ the length of the extra strong $u-v$ path is $\leq l-1 \leq n-l+1$.

If $u \in\left\{w_{11}, \ldots, w_{1 l-1}, w_{21}, \ldots, w_{2 l-1}\right\}$ and $v \in V(G)-\left\{w_{11}, \ldots, w_{1 l-2}, w_{21}, \ldots\right.$, $\left.w_{2 l-2}\right\}$ or vice versa then all the paths joining u and v have same strength. So the length of the extra strong $u-v$ path is the minimum distance between u and v in the underlying crisp graph of $G, P_{2} \square C_{n}$ which is $\leq(n-l+1)$.

If $u=w_{2 l}$ and $v=w_{1 n}$ then the length of the extra strong $u-v$ path is equal to $n-l+1$.
Case 2. $l \geq\left[\frac{n+1}{2}\right]$.
If $u, v \in V(G) \backslash\left\{w_{11}, \ldots, w_{1 l-1}, w_{21}, \ldots, w_{2 l-1}\right\}$ then as in Case 1 strength of $u-v$ path in G is $n-l+1 \leq\left[\frac{n}{2}\right]$. If $u, v \in\left\{w_{11}, \ldots, w_{1 l-1}, w_{21}, \ldots, w_{2 l-1}\right\}$ or $u \in G-\left\{w_{11}, \ldots, w_{1 l-1}, w_{21}\right.$, $\left.\ldots, w_{2 l-1}\right\}$ and $v \in\left\{w_{11}, \ldots, w_{1 l-1}, w_{21}, \ldots, w_{2 l-1}\right\}$ then all the $u-v$ paths must have same strength in G, and therefore the length of the extra strong path joining u and v is $\leq\left[\frac{n}{2}\right]$, since $l>\left[\frac{n+1}{2}\right]$. When $u=w_{11}$ and $v=w_{1 k}$ where $k=\left[\frac{n}{2}\right]$ then strength of the $u-v$ path in G is exactly equal to $\left[\frac{n}{2}\right]$. Hence the Theorem.

Theorem 2.17. Let $G_{1}\left(V_{1}, \mu_{1}, \sigma_{1}\right)$ and $G_{2}\left(V_{2}, \mu_{2}, \sigma_{2}\right)$ be two strong fuzzy graphs with underlying crisp graphs $K_{1}=\langle u\rangle$ and the cycle $C_{n}=v_{1}, v_{2}, \ldots, v_{n}, v_{1}$ respectively. Let $G(V, \mu, \sigma)$ be the Cartesian product of G_{1} and G_{2}. If v be a weakest vertex of G_{2} then

$$
\mathscr{S}(G)= \begin{cases}{\left[\frac{n}{2}\right]} & \text { if } \mu_{1}(u) \leq \mu_{2}(v) \\ \mathscr{S}\left(G_{2}\right) & \text { otherwise }\end{cases}
$$

Proof. If $\mu_{1}(u) \leq \mu_{2}(v)$ then all the vertices of $G_{1} \square G_{2}$ have the same weight $\mu_{1}(u)$. Therefore it is a regular fuzzy cycle. Hence by Theorem 2.2 , strength of $G_{1} \square G_{2}$ is $\left[\frac{n}{2}\right]$.

If $\mu_{1}(u)>\mu_{2}(v)$, then,

$$
\mu\left(u, v_{i}\right)= \begin{cases}\mu_{2}\left(v_{i}\right) & \text { if } \mu_{2}\left(v_{i}\right) \leq \mu_{1}(u) \\ \mu_{1}(u) & \text { otherwise }\end{cases}
$$

Thus a vertex $\left(u, v_{i}\right)$ of G is a weakest vertex of G if and only if v_{i} is a weakest vertex of G_{2}. Therefore, the strength $\mathscr{S}(G)$ of G is that of G_{2}.

Theorem 2.18. Suppose $G_{1}\left(V_{1}, \mu_{1}, \sigma_{1}\right)$ and $G_{2}\left(V_{2}, \mu_{2}, \sigma_{2}\right)$ are two strong fuzzy graphs with underlying crisp graphs the path $P_{2}=u_{1} u_{2}$ and $C_{n}=v_{1} v_{2} \ldots v_{n} v_{1}$ respectively. Suppose that $\mu_{1}\left(u_{1}\right) \leq \mu_{1}\left(u_{2}\right) \wedge \mu_{2}\left(v_{1}\right) \wedge \mu_{2}\left(v_{2}\right) \wedge \ldots \wedge \mu_{2}\left(v_{n}\right)$. Let $G=G_{1} \square G_{2}$ be the Cartesian product of G_{1} and G_{2}. Then the strength $\mathscr{S}(G)$ of the Cartesian product G of G_{1} and G_{2} is,

$$
\mathscr{S}(G)=\max \left\{\mathscr{S}\left(G_{2} \square G_{3}\right),\left\lceil\frac{n+1}{2}\right\rceil\right\} ;
$$

where G_{3} is the null graph with vertex set $\left\{u_{2}\right\}$.
Proof. Let u and v be two distinct vertices of G.
Case 1. $\mu_{1}\left(u_{2}\right)>\mu_{2}\left(v_{1}\right) \wedge \mu_{2}\left(v_{2}\right) \ldots \wedge \mu_{2}\left(v_{n}\right)$

Subcase 1. Let $u, v \in\left\{w_{1 j}, 1 \leq j \leq n\right\}$. Since $\mu\left(w_{1 j}\right)=\mu_{1}\left(u_{1}\right) ; 1 \leq j \leq n$, all the edges having $w_{1 j}$ as one of the end vertices, $1 \leq j \leq n$ have weight equal to $\mu_{1}\left(u_{1}\right)$. Therefore, the length of the extra strong path joining u and v is the minimum length of the path joining u and v in G. That is less than or equal to $\left[\frac{n}{2}\right]$.

Subcase 2. Let $u, v \in\left\{w_{2 j}, 1 \leq j \leq n\right\}$
Since $\mu\left(w_{1 j}\right) \leq \mu\left(w_{2 j}\right)$, the extra strong path joining u and v lies in the maximal partial fuzzy subgraph $G_{3} \square G_{2}$ of G. So we have by Theorem 2.17, the length of the extra strong $u-v$ path is the strength of G_{2}.

Subcase 3. Let $u \in\left\{w_{1 j}: 1 \leq j \leq n\right\}$ and $v \in\left\{w_{2 j}: 1 \leq j \leq n\right\}$.
Since $\mu_{1}\left(u_{1}\right) \leq \mu_{1}\left(u_{2}\right) \wedge \mu_{2}\left(v_{1}\right) \wedge \ldots \wedge \mu_{2}\left(v_{n}\right)$, all the $u-v$ paths in G have the strength $\mu_{1}\left(u_{1}\right)$. So length of the extra strong $u-v$ path in G is the length of the shortest $u-v$ path in G which is $\leq\left\lceil\frac{n+1}{2}\right\rceil$.

Case 2. $\mu_{1}\left(u_{2}\right) \leq \mu_{2}\left(v_{1}\right) \wedge \mu_{2}\left(v_{2}\right) \ldots \wedge \mu_{2}\left(v_{n}\right)$.
Subcase 1. $\mu_{1}\left(u_{1}\right)=\mu_{1}\left(u_{2}\right)$. Then $\mu\left(w_{i j}\right)=\mu_{1}\left(u_{1}\right) \forall i, j$. Therefore, the length of the extra strong path joining u and v in G is the minimum length of the path joining u and v in G, which is less than or equal to $\left[\frac{n+1}{2}\right]$.

Subcase 2. $\mu_{1}\left(u_{1}\right)<\mu_{1}\left(u_{2}\right)$. Then $\mu\left(w_{1 j}\right)=\mu_{1}\left(u_{1}\right)$ and $\mu\left(w_{2 j}\right)=\mu_{1}\left(u_{2}\right) \forall i, j$.
If u or $v \in\left\{w_{1 j}, 1 \leq j \leq n\right\}$, then all the paths joining u and v have weight $\mu_{1}\left(u_{1}\right)$. Therefore, the length of the extra strong path joining u and v is the minimum length of the path joining u and v in G which is $\left[\frac{n}{2}\right]$.

If u and $v \in\left\{w_{2 j}, 1 \leq j \leq n\right\}$, then the extra strong path joining u and v lie in the subgraph $G_{3} \square G_{2}$. So by Theorem 2.17 the strength of G is $\left[\frac{n}{2}\right]$.

Note 2.19. Let $G(V, \mu, \sigma)$ be a fuzzy graph. If W is a subset of V then $<W>$ denotes the maximal partial fuzzy subgraph of G on W.

Definition 2.20. The fuzzy book is defined as the Cartesian product of graphs G_{1} with underlying crisp graph P_{2} and fuzzy star graph S_{n}, where $n>2$. Let $V\left(P_{2}\right)=\left\{u_{1}, u_{2}\right\}$ and $V\left(S_{n}\right)=$ $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$. For $i=2,3, \ldots, n$, the maximal partial fuzzy subgraph $<\left\{w_{11}, w_{21}, w_{1 i}, w_{2 i}\right\}>$ with vertex set $<\left\{w_{11}, w_{21}, w_{1 i}, w_{2 i}\right\}>$ is called a fuzzy page of the fuzzy book.

The underlying crisp graph of any fuzzy page is $P_{2} \square P_{2}$.
Note 2.21. The crisp graph of the union of two fuzzy pages $<\left\{w_{11}, w_{21}, w_{1 i}, w_{2 i}\right\}$ $>$ and $<\left\{w_{11}, w_{21}, w_{1 j}, w_{2 j}\right\}>$ is $P_{2} \square P_{3}, 2 \leq i \neq j \leq n$. It is called a fuzzy Domino graph.

Figure 7. (a)The fuzzy path $G_{1}=P_{2}$, (b) the fuzzy star graph $G_{2}=S_{5}$, (c) the Cartesian product of G_{1} and G_{2}

Theorem 2.22. Let G_{1} and G_{2} be two strong fuzzy graphs with underlying crisp graphs the path P_{2} and the star graph S_{n} respectively. Let $V\left(P_{2}\right)=\left\{u_{1}, u_{2}\right\}$ and $V\left(S_{n}\right)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ with v_{1} as the central vertex. Then the strength of the Cartesian product $G=G_{1} \square G_{2}$ is 3 .

Proof. Let $\left\{w_{11}, w_{12}, \ldots, w_{1 n}, w_{21}, w_{22}, \ldots, w_{2 n}\right\}$, where $n \geq 3$, be the vertex set of G. Clearly $w_{11} w_{21}$ is the common edge of the pages of $G_{1} \square G_{2}$. Let u and v be two non-adjacent vertices of G (See Figure 7). Then u and v lie on the same page or different pages of G. For $i \neq j$, denote
the partial fuzzy subgraph $<\left\{w_{11}, w_{21}, w_{1 i}, w_{2 i}\right\}>\cup<\left\{w_{11}, w_{21}, w_{1 j}, w_{2 j}\right\}>$ of $P_{2} \square S_{n}$ by $H_{i j}$. Therefore any extra strong path joining u and v can be considered as a path in $H_{i j}$ for some i and j. Since the underlying crisp graph of $H_{i j}$ is $P_{2} \square P_{3}$, the length of any extra strong path joining u and v in G is less than or equal to 3 , by Theorem 2.13.

In particular if $u=w_{12}$ and $v=w_{23}$, then any extra strong path joining u and v lie completely in H_{23} and hence has length exactly 3. Hence the theorem.

Now we are going to find the strength of the Cartesian product of fuzzy path and a fuzzy butterfly graph.

Theorem 2.23. Let $G_{1}\left(V_{1}, \mu_{1}, \sigma_{1}\right)$ and $G_{2}\left(V_{2}, \mu_{2}, \sigma_{2}\right)$ be two strong fuzzy graphs with crisp graphs the path P_{2} with vertex set $\left\{u_{1}, u_{2}\right\}$ and the butterfly graph with vertex set $\left\{v_{1}, v_{2}, \ldots, v_{5}\right\}$ respectively. Then the strength of the Cartesian product $G(V, \mu, \sigma)$ of G_{1} and G_{2} is 3 .

Proof. First of all assume that the degree of the vertex v_{1} of G_{2} is 4 and $\mu_{1}\left(u_{1}\right) \leq \mu_{1}\left(u_{2}\right)$.
Let u and v be any two non-adjacent vertices of $G=G_{1} \square G_{2}$ with vertex set $\left\{w_{11}, w_{12}, \ldots, w_{15}\right.$, $\left.w_{21}, w_{22}, \ldots, w_{25}\right\}$.

Case 1. $\mu_{1}\left(u_{1}\right)$ or $\mu_{1}\left(u_{2}\right) \leq \mu_{2}\left(v_{1}\right) \wedge \mu_{2}\left(v_{2}\right) \wedge \ldots \wedge \mu_{2}\left(v_{5}\right)$.
Then all the $u-v$ paths passing through any of $w_{1 j}, j=1,2, \ldots, 5$ have strength $\mu_{1}\left(u_{1}\right)$, because every edge incident with $w_{1 j}$ has weight $\mu_{1}\left(u_{1}\right)$. Therefore if at least one of u and v belongs to $\left\{w_{11}, w_{12}, \ldots, w_{15}\right\}$ then the extra strong $u-v$ paths are the shortest $u-v$ paths in the underlying crisp graph of G and therefore has length less than or equal to 3 .

If $u, v \in\left\{w_{21}, w_{22}, \ldots, w_{25}\right\}$ then any extra strong $u-v$ path lie in the maximal partial fuzzy subgraph with vertex set $\left\{w_{21}, w_{22}, \ldots, w_{25}\right\}$ which is a strong fuzzy butterfly graph. Therefore, the length of any extra strong $u-v$ path in G is 2 .

Case 2. $\mu_{2}\left(v_{j}\right)$ less than $\mu_{1}\left(u_{1}\right)$ for at least one j. Let us suppose that $\mu_{2}\left(v_{j}\right) \leq \mu_{2}\left(v_{1}\right) \wedge$ $\mu_{2}\left(v_{2}\right) \ldots \wedge \mu_{2}\left(v_{5}\right)$.

Subcase 1. $v_{j}=v_{1}$
Then all the paths passing through $w_{i 1}, i=1,2$ have strength $\mu_{2}\left(v_{1}\right)$. The fuzzy graph of G can be viewed as the union of two fuzzy subgraphs H_{1} and H_{2}, as shown in Figure 8. Note that $P_{2} \square C_{2}$ is the underlying crisp graph of both H_{1} and H_{2}.

Figure 8. Cartesian product $G=G_{1} \square G_{2}$ of a fuzzy path G_{1} on 2 vertices and G_{2}, a fuzzy butterfly graph and the fuzzy subgraphs H_{1} and H_{2} of G

Suppose u and v belong to $V\left(H_{1}\right)$. Then any extra strong $u-v$ path lie in H_{1}, since $\mu\left(w_{11}\right)=$ $\mu\left(w_{21}\right)=\mu_{2}\left(v_{1}\right)$, all the $u-v$ paths through w_{11} and w_{21} have the same strength. Therefore the length of the extra strong $u-v$ path is ≤ 2. Similarly if u and $v \in V\left(H_{2}\right)$ the length of any extra strong $u-v$ path is ≤ 2.

Let $u \in V\left(H_{1}\right)$ and $v \in V\left(H_{2}\right) \backslash V\left(H_{1}\right)$. In this case all the $u-v$ paths pass through w_{11} or w_{21} or both. Therefore all the $u-v$ paths have same strength. Hence the length of the extra strong path joining u and v is less than or equal to the minimum distance between u and v in G which is 3 .

Subcase 2. $v_{j} \neq v_{1}$
Without loss of generality assume that $v_{j}=v_{2}$. Then by our assumption, $\mu_{2}\left(v_{2}\right) \leq \mu_{2}\left(v_{1}\right) \wedge$ $\mu_{2}\left(v_{2}\right) \wedge \ldots \wedge \mu_{2}\left(v_{5}\right)$,

Let u or $v \in V\left(H_{1}\right)$. If at least one of the vertices u and $v \in\left\{w_{12}, w_{22}\right\}$, then all the $u-v$ paths have strength $\mu_{2}\left(v_{2}\right)$. So the length of any extra strong $u-v$ path in G is ≤ 3. If u and $v \notin\left\{w_{12}, w_{22}\right\}$ then all the extra strong $u-v$ paths lie in the graph H in Figure 9 , which is obtained by deleting the vertices w_{12}, w_{22} from G.

Figure 9. A fuzzy subgraph H of G

In this case if u and $v \in V\left(H_{1}\right)$ then either $u=w_{13}$, and $v=w_{21}$ or $u=w_{11}$ and $v=w_{23}$. In both these cases if a path joining u and v pass through a vertex of H_{2} then it must pass through w_{11} and w_{21} and any such path have strength $\leq \mu\left(w_{11}\right) \wedge \mu\left(w_{21}\right)$. Thus each extra strong path lies in the maximal partial fuzzy subgraph with vertex set $\left\{w_{11}, w_{21}, w_{13}, w_{23}\right\}$. Hence the length of the extra strong $u-v$ path is 2 by Theorem 2.12. Now suppose u and $v \in V\left(H_{2}\right)$, if any of the $u-v$ path through w_{13} (or w_{23}), definitely will pass through w_{23} (or w_{13}), w_{11} and w_{21}. Any such path has strength $\leq \mu\left(w_{11}\right) \wedge \mu\left(w_{21}\right)$. So every extra strong path lies in H_{2}. Therefore, the length of any extra strong $u-v$ path is 2 .

If $u=w_{13}$ and $v=w_{25}$ then any $u-v$ path in H has length ≥ 3, Also any $u-v$ path through the vertices w_{14} or w_{24} has length >3 and strength \leq any other $u-v$ path in H. Therefore the strength of the $u-v$ path is the minimum distance between u and v, which is 3 . Hence we can conclude that $\mathscr{S}(G)=3$.

References

[1] N. Anjali and Sunil Mathew, Energy of a fuzzy graphs, AFMI, 6(3) (2013) 455-465.
[2] R. Balakrishnan, K. Ranganathan, Text Book of Graph Theory, Springer, (2008).
[3] J. A. Bondy and U. S. R. Murty, Graph Theory, Springer, (2008).
[4] N. John Mordeson and S. Premchand Nair, Fuzzy Graphs and Fuzzy Hypergraphs, Physica-Verlag, Heidelberg, Second Edition, (2001).
[5] K. R. Bhutani and Abdella Battou, On M-strong fuzzy graphs, Information Sciences 155(1) (2003) 103109.
[6] J. N. Mordeson, Fuzzy line graphs, Pattern Recognition Letters, 14(5) (1993) 381-384.
[7] J. N. Mordeson and C. S. Peng, Operations on fuzzy graphs, Information Sciences 79(3) (1994) 169-170.
[8] Chithra K. P.,Raji Pilakkat, Strength of certain fuzzy graphs, IJPAM, Volume 106, No. 3, (2016), 883-892.
[9] Chithra K. P. and Raji Pilakkat, Strength of line graph of certain fuzzy graphs, Annals of fuzzy mathematics and informatics, Vol 12, No : 4(2016) 585-596 .
[10] A. Nagoorgani and D. Rajalaxmi Subahashini, Fuzzy labeling tree, International Journal of Pure and Applied Mathematics, Volume 90, No. 2, (2014), 131-141.
[11] A. Rosenfeld, Fuzzy sets and their applications to cognitive and decision process, Academic press, New York (1975), 75-95.
[12] K. Sameena and M. S. Sunitha, Strong arcs and maximum spanning trees in fuzzy graphs, International Journal of Mathematical Sciences 5(1) (2006) 17-20.
[13] M. B. Sheeba and Raji Pilakkat, Strength of fuzzy graphs, Far East Journal of Mathematics, Pushpa publishing company, 73(2) (2013) 273-288.
[14] M. B. Sheeba and Raji Pilakkat, Strength of fuzzy cycles, South Asian Journal of Mathematics, Vol 1, (2013), 8-28.
[15] L. A. Zadeh, Fuzzy sets, Information and Control, California (1965), 338-353.
[16] Sandi Klavžar, Alenka Lipovec and Marko Petkovšek, On subgraphs of Cartesian product graphs, Discrete mathematics, 244(1-3), (2002): 223-230.

Author information

Chithra K. P. and Raji Pilakkat, Department of Mathematics, University of Calicut, Thenjippalam, Malappuram, Kerala, 673635, India.
E-mail: chithrakuppadakath@gmail.com
Received: March 30, 2017.
Accepted: December 21, 2017.

