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Abstract. In this paper, using the shear construction method, Inequalities that are both neces-
sary and sufficient for the harmonic shears of analytic functions involving Wright’s generalized
hypergeometric functions are derived. As in special case, some inequalities for harmonic shears
of analytic functions involving generalized hypergeometric functions are also obtained.

1 Introduction and preliminaries

Let Sy denotes a class of functions f which are harmonic, univalent and orientation preserving
in the open unit disc A = {z : |z| < 1} and are normalized by f(0) = h(0) = f,(0) — 1 = 0.
Since A is simply connected, a function f € Sy has the canonical representation given by A+ g,
where h and g are the members of linear space A(A) of all analytic functions in A and where h
and g can be written as a power series representation

h(z) =2+ anz",g(z) =Y bp2" |by| < L. (1.1)
n=2 n=1

We call h the analytic part and g the co-analytic part of f. A necessary and sufficient condition
for a harmonic function of the form f = h 4+ g to be locally univalent and sense preserving in A
is that |¢(z)| < |W/(z)| for all z in A. The analytic dilatation of a harmonic mapping f = h+g is
defined by w(z) = (¢'(z)/h/(z)) . Thus if f is locally univalent and sense preserving, then |w(z)]
< linA.

A subclass T'Syy of Sy is well known in the literature. A function f = h + g is said to be in
the class T'Sy; if h and g are of the form

h(z) =z — Z lan|z" and g(z) = Z |br| 2™, [b1| < 1. (1.2)
n=2 n=1

In case g(z) = 0, Vz € A, the class Sy reduces to a well known class S of univalent functions
and the class 7S i reduces to T introduced and studied by Silverman [18, 19]. We further denote
a subclass TSY of 7Sy for which f(0) = 0.

A domain D C C is said to be convex in the direction o (0 < a < 27), if forall a € C, the
set DN {a + te!® : t € R} is either connected or empty. In particular, a domain D C C is said to
be convex in the horizontal direction (or a CHD domain) if its intersection with each horizontal
line is connected (or empty). The domains which are convex in every direction are called convex
domains.

We say a univalent harmonic function f is convex in the direction o (0 < o < 27) if the
domain f (D) is convex in the direction . In particular, a univalent harmonic function f is
called a CHD map if its range is a CHD domain.

Construction of a univalent harmonic mapping f with prescribed dilatation w can be done
effectively by a method known as the “shear construction” method which was devised by Clunie
and Sheil-Small [7] (see also [8, 9, 10, 14]). The basic shear construction theorem of a harmonic
univalent function discovered by Clunie and Sheil-Small [7] is as follows.



170 V. K. Gupta and P. Sharma

Theorem A: For analytic functions h and g, assume the harmonic function f = h + g is locally
univalent in a simply connected domain ID. Then a univalent function f maps ID onto a CHD
domain if and only if the analytic function ~ — ¢ is univalent and maps D onto a CHD domain.

For more details on "shear construction" method one may refers [5, 7, 8, 9, 10, 14, 17].

We also have following result of Clunie and Sheil-Small [7].
Theorem B: A functions f = h + g is harmonic convex if and only if the analytic functions
h —ei®g, 0 < o < 2, are convex in the direction 5 and f is suitably normalized.

The following two subclasses 7 [A, B] and C [A, B] of the class T introduced and studied by
Silverman [18, 19].

Definition 1.1. [15] A function h € T of the form given in (1.2) is said to be in 7 [A, B] if, for
some constant A and B such that —1 < B < A < 1, it satisfies

i{(n— 1)114:]; + 1} lan) < 1;

n=2

and is said to be in the class C [A, B] , if zh/ € T [A, B].

It was observed in [15] that the functions of the classes 7 [A, B] and C [A, B] are univalent.
Note that the class 7 [1, —1] = T* was studied in [18, 19].

Adopting the "shear construction” method, introduced by Clunie and Sheil-Small [7] (see also
[8, 9, 10, 14]), Sharma, Ahuja and Gupta in 2014 defined two classes Ty [A, B] and Cy [A, B]
as follows:

Definition 1.2. [17] Let a function ¢,, defined by
ba(2) = Ho(2) — e¥9Gy(2) (1.3)

be convex in the direction « € {0, 7/2} , where

== Z 1 — 621(1 |b | Z 1 — 62104 |b | (14)

are analytic in A, |b;| < 1 and o € {0,7/2}). Then the harmonic shear F,, = Hy, + G4 0f ¢q, is
said to be in the class Ty [A, B| if ¢, € T [A, B]. Further, we say that F,, = H, + G, is in the
class Cy [A, B] if z¢), (2) € T [A, B].

They [17] also observe that the analytic function ¢, considered in (1.3) may also be expressed

h(z) — e¥g(z)
1 — eZio by

as
¢a(z) -

where h and g are of the form (1.2).
Here it is worth mentioning that for a CHD map ¢, defined by

¢o(2) = Ho(z) — Go(2),

where
o

= |an|
Hy(z) =z — 2", 1.5

are analytic in A, |b;| < 1, there exists a dilatation wp, such that the harmonic shear Fy = Hy+Go
of ¢y may be obtained by solving the differential equations:

— Gy = ¢, woH) — G = 0.
Also, for a map ¢, /2 convex in vertical direction, defined by

brp2(2) = Hrpo(2) + Grpa(2),
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where

3

|an| o

— 1+ b1

71'/2(’2) =

(1.6)

71'/2

are analytic in A, there exists a dilatation w />, such that the harmonic shear F; , = Hy 2 +Gr 2
of ¢/, may be obtained by solving the differential equations:

H )y + Gy = O oy WappHy = Gy = 0.

The Wgh functions have an increasingly significant role in various types of applications (see [20,
21]). Generalized hypergeometric functions, generalized Mittag-Leffler functions and Bessel-
Maitland (Wright generalized Bessel) functions are some special cases of Wgh functions; one
may refer to [22, 23]. Several results on harmonic functions by involving hypergeometric func-
tions have recently been studied in [1] to [4]. Involvement of the Wright generalized hypergeo-
metric function (Wgh) in the harmonic functions has recently been investigated amongst others
in [6, 12, 13, 16].

Let A, >0(i=1,...,p)and B; >0 (i=1,...,¢) such that 1 + > | B; — >" | A; > 0.
Following the definition and terminology in [20, 22, 24], a Wright’s generalized hypergeometric

(Wgh) function for non-negative integers p and ¢, o; € C (% #0,—-1,-2,..;i=1, ....,p) and
B;eC (% £0,—1,-2, .0 = 1,....,q) is defined by

F(Oti —|— nA) n

—hEEA (L)

::]Q [ I

L (Ch‘,A) 3

s
Il
—_

By involving Wgh functions as defined by (1.7), consider an analytic function ®;(z) defined
by
Wi(z) — ¥ W, (2)

P (z) = [~ g, ,ZEA (1.8)
where
q
I1T(5:) |
W](Z) — Zl;] pwq l((az7Al)1p>,Z‘| , (19)
11T () (Bi» Bi)y 4
i=1
[17() |
Wz(Z) — zT:l rws [((71701)1,T>’Z‘| -1 (110)
[re) LoD,
i=1
and
[1 (’Yi)c
dy = = (1.11)
[1(%:)p,

.
Il
_

p
for positive integers A;, B;, C;, and D; and for o; > —A4; (i = 1,...,p), satisfying [] (ai)Ai <
i=1
O0,and 8;. >0 (i=1,..,9),v >0 (i=1,...,7),0;, >0 (i =1,...,s) with
p

H (i + A ) (n—2)A; ﬁ (’Yz)

=1

B:) 5 [T,

—
=
>
SN—
3
S
ﬂ:@
~~
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p
In view of the parametric constraints cosidered above and [] (o) 4. <0, we have
i=1 ¢

p ﬁr(ari‘Ai) J [ (i + 4)
HF(OM;) == P =-= p
=1 l;[1 (i) 4, 1 (i) 4,

and hence, the function ®,,(z) defined by (1.8) may also be written in the form

D, (2) = Ha(z) — €¥¥Ga(z)

where
p q
)| MG =,
Hoc(z) = <= D Z 1 — e2iag, "
[T (e + 4;) n=2
i=1
1:[1F(5i) s 8
Gal2) = = Z 1 _ezmdlz
[[] F(%) n=2
and
P T
[T (i + (n—1)4) T (i +nC)
9. — i=1 1 ¢ _ i=1 i
n - 1’ n — 3 1

(n—1)! (5 +nD;) ™

—.

-
Il
-

ﬁ C(Bi + (n— 1)B;)

i=1

(1.12)

(1.13)

(1.14)

(1.15)

and d; is given by (1.11). Using ®,,(z) defined by (1.12), we get a harmonic shear 7, = Ho+Go

and obtain following results.

Based on the above defined classes, Sharma and gupta [17] proved following results observ-
ing various equivalent class conditions considered in [17], we mention these results in form of

following Lemmas.

Lemma 1.3. Under the parametric conditions stated as above, let H,, and G, respectively, be

functions of the form (1.13) and (1.14) with 0,,, ¢,, given by (1.15). Let

D, (2) = Haolz) — €¥*Go(2) € T [A, B]

be convex in the direction o € {0,7/2} and let Fo = Ho + Go € TSY, be its harmonic shear,
convex in the same direction o.. Then F,, = Ho + Go € T [A, B if and only if the inequality

w |11 (i), | TIT (8)
i:lp =1 (n—l)liB-f—l an
=1
oo ﬁr(éi)
fetie Y~ m-1+—L 1l
nlnr(%){ A-B }

.
I

IN
—_

is satisfied.

(1.16)
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Lemma 1.4. Under the hypothesis of Theorem 1.3, the function ., = Ha + Go € C [A, B] if
and only if the inequality

i=1p =1 n (n_l)liB_Fl 0, (1.17)
nX:; HF(ai+Ai) { A-B }

i=1

~ 11T
TR D= (n—l)l_B—i-l Pn

S { A-B }

IA
—_

is satisfied.

In the following two Lemmas 1.5 and 1.6, we consider an analytic function ¥,,(z) defined
by
z (2 — —W‘;Z)) — X, (2)

Y,(z) = =g, (=€ U), (1.18)
where Wi(z) and W,(z) are of the form (1.9) and (1.10), d; is given by (1.11) for positive
integers A;, B;, C;, D;andfora; >0 (i=1,...,p), 8;.>0(i=1,...,9),% >0 (i=1,...,7),
9; >0 (i=1,..,s) with

r D r
_H (%’)nci n H (ai)(n—l)Ai [I (%’)nc,v,
1:91 < zq:l (n > 1)7 z:sl <1
E(&%Di Hl(ﬂi)(n—l)Bi 1:11(51')7@1
The function ¥, (z) may also be written in the form
W, (2) = Lalz) — €¥Ga(z), (1.19)
where .
Ire) <,
Lo(z)=2-5 Do g 2 (1.20)
[T (i) n=2

Gu(2), dy and 0, are given by (1.14), (1.11) and (1.15).

Lemma 1.5. Let L, and G, be given by (1.20) and (1.14), respectively, with 0,,, ¢,, given by
(1.15) with positive values of «;, 5;,7; and §;. Let

W, (2) = Lo(2) — %G, (2) € T [A, B] be convex in the direction o € {0,7/2} and
Ea=Lo0+Go €T S% be its harmonic shear, convex in the same direction «. Then, the function
Ea = Lo+ Ga € Tu |A, B] if and only if

~ 1T (5) - ~ 11T 1-B
DD (D ) DR DR (GRS s SR} EAE
n=2 Hl"(ai){ A-B } n—lﬂf(%){ A= }

is satisfied.

Lemma 1.6. Under the hypothesis of Lemma 1.5, £, = Lo, + G € Cy [A, B] if and only if

o _lgIF(Bi) 1_B ~ TLT0) 1-B
Yoo —— A+ 10, ey —ni(n—1)—— + 16, <1,
= {1 (@) (0 ) S (s

i=1

<.
Il
_

is satisfied.
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Since, wright’s generalized hypergeometric (Wgh) function defined by (1.7) is entire function

q \B;
if 147, B — Y7, A; > 0, also it is analytic for |z| < 510" jf

[1(Ay)%

=1

1+>7 ,Bi—Y" A =0 Howeverif 1 +> 7 | B;—>" A =0and |z| =

-

_ (BT
H(A )i
wgh function is analytic for R {37, 8 — >0 a;} + 252 > 1 (for more details one may refer
to [117).
Throughout this paper, we consider (1.7) Wgh functions 1, [( (s, A1,y }and s {( 7,0, ) z}

Bi,Bi)l,q Di)l,
with additional condition that A;, B;, C;, and D; are positive integers sat1sfy1ng the condmon

Z (B ) >H( ) , in the case

i=1

, then

q p
14> B, =) A;=0,
i=1 i=1

(Ci)c'i , in the case

T_l‘d\
S
e
Y
jam

1

-
Il

1+§S:Di—zr:ci:0,
i=1 i=1

which ensure that the wgh functions are defined at z = 1.

In this paper, using the shear construction method, Wright’s generalized hypergeometric
inequalities that are both necessary and sufficient for the harmonic univalent functions F,, =
H,+G, € TS% which are the harmonic shear of analytic functions for the classes 7 [4, B] and
Cy [A, B] are derived which are convex in the direction « € {0, 7/2} (that is convex in the hor-
izontal direction or vertical direction). Further these necessary and sufficient Wright’s general-
ized hypergeometric inequalities for another harmonic univalent functions &, = L,+G,, € T'SY
for the classes T [A, B] and Cy [A, B] are obtained. As in special case, some inequalities for
harmonic shears of analytic functions involving generalized hypergeometric functions are also
obtained.

2 Main Results

Theorem 2.1. Let under the hypothesis of Lemma 1.3, ‘H,, and G, respectively be of the form
(1.13) and (1.14) and let D, (z) = Ha(z) — €¥*Go(2) € T [A, B] be convex in the direction
a €{0,7/2}. Let Fo = Ho + Go € TSY, be the harmonic shear of ®,, in the same direction c.
Then in case

B;
?1(3) =

1+Z7, ]D

A g = Ci _
(Ai) ml( ) l:[( ) 1+Z 1Bi_2f:1Ai—07
Zz 1 Ci = 0, under the validity condition

Z Zal+7>725 i7i+%>%, @2.1)
i=1

i=1

\ =

Fo € Tu [A, B] if and only if

A o+ A0 4011+ (o 4] 1) -
+62i°"u |:f11 B s ([(i +Ci, C)] 5 1) + 21_% s ([(v, Ci)) s 1):|

<
- A-B
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holds, where

M), | T 1116
Al _ i=1 - i=1 .= zjl (23)
[T (a: + Aj) [1T (%)

<.
Il
-

i=1

Proof. To show that F, = H, + G, € TS?{ € Tu [A, B], by Lemma 1.3 we need to show

1-B & 1-B
Slz—ZAl{n—l _B+1}9n+62m2“{(n_1>A—B+1}¢"<1’

n=1

where 60,, and ¢,, are given by (1.15). Under the validity condition (2.1) which ensures the
convergence of

p¥q ([(ci + As, A))] 3 1) p g ([(0y Ai)] 5 1) s s ([(vi + Ciy Co)] 5 1) s s ([(3, )] 51)

we obtain from (1.15),

. 11T ()
Z(n—])@nz p¥q ([(ai + A, Aj)] 29 = p¥q ([(ai, 1)];1)_1:(117 24
n=2 _:le(ﬁi)
and
Z(n_ 1)¢)n = rws([(%'i‘ciaci)];l) — s ([(%7 z)]’1)+ 12817, (2.5)
=l 1;[1 I'(6:)
ﬁ I (i)

Il
-

Son = (3 Co)]i 1) — S

—
el
S

S
Il

Hence, on using (2.4) and (2.5), we get

A
IN
-

if and only if (2.2) holds. O

Theorem 2.2. Under the same hypothesis of Theorem 2.1, let
Fo = Ha+Ga € TSY be the harmonic shear of ®,, in the direction o.. Then in case ) (Bi)B”’ =

AN s
IT(A)™ i (D )= H (€)™,
1—|—ZZ \Bi =Y A —0 1+>7 D, — > 1, C; =0, under the validity condition

Z Zaz+i>* 25—2% 75% (2.6)

i=1

Fao € Cy [A, B] if and only if

A B 7 #¥a ([ +24;, 4] 1) + % g ([(o + Ai, A9)] 1 1)

+p¥q ([(ei; A))] 5 1) 2.7)
#5026, L)+ 1 ([0 G Gl 1)
<0 2.8)

holds, where \| and p are given by (2.3).
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Proof. To show that F,, € Cy [A, B], by Lemma 1.4 we need to show that

o© 1-B = 1-B
S ;:me{(n—l)A_B+1}97,,+62”Zun{(n—1)H+1}¢nS1v

n=2 n=1

where \| and p are given by (2.3). After some simple calculations S, can be written as

1-B A—-3B+2
S = Z/\l{ n—l)ﬁ-i—( 1)14_B++1}9n+

X 1-B
MeZzaZ{ (n—l)AB-i-n}qﬁ"

n=1

Under the validity condition (2.6), using (2.4), (2.5) and

Z (n=2)(n—10, = phg([(i +24;, 4] 1),
n=2
Zn n—l n = r"/’s ([(72"’261,02)]’1)
n=1
Zn¢n - r'(/)S ([(72 + Cia Cl)] N 1) )
n=1
we get
Sy <1
if and only if (2.8) holds. O

Now, we give following Theorems 2.3 and 2.4 giving Wgh inequalities for function &, €
TSY, considered in Lemma 1.5 to be in Ty [A, B] and Cy [A, B], respectively. Proof of these
Theorems is similar to the proof of Theorems 2.1 and 2.2 hence, we may omit the proof.

Theorem 2.3. Let under the hypothesis of Lemma 1.5, L, and G, be given, respectively, by (1.20)
and (1.14). Let Wo(2) = Lo(2) — €**Go(2) € T [A, B] be convex in the direction a € {0,7/2}
and €, = Lo+ Gy € TS?{ be the harmonic shear of ¥, (z) in the same direction o.. Then in
case

P T
*, (B) 1j<>,“<> - ).
1+>7 B, =" A =0,1+>",D;— >, C; =0, under the validity condition

i=1 i=1

r— 3
{z@ I I DI R
Ea € Tu [A, B] if and only if

A2 {A jzpwq([(amAi,Ai)] D+ g ([(cu, 1)];1)}

#5060+ G GO 1)+ 4= v (0 OO 1)
A-1
< 24 e
holds, where
11T (5)
= (2.9)
[T ()

and y is given by (2.3).
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Theorem 2.4. Let under the hypothesis of Theorem 2.3, £, = Lo + G4 € TS?{ be the harmonic
shear of ¥, in the same direction a. Then in case

L (B)” —H( ) (D) —H( )
1+>7 B — ZZ (A =0,1+>7 1D El 1 Ci = 0, under the validity condition

1 P p—qg 5 < r—s 5
Zﬁi_;ai+7>§7 ;5 Z% 2

i=1

Ea € Cy [A, B] if and only if

A2 B_ i p¥q ([(Qi +24;, 4:)]51) + % pva (((0s i A1)
+ptq ([(ei; A))] 5 1)
+e¥ “1_ 5 s ([0 + 2G5 G 1) 44 s (i + G Gi)]3 1)

<2
holds, where \y and p are given respectively, by (2.9) and (2.3).
Now in particular, if & = 0, the function ®,,(z) defined by (1.8) will be denoted by

Dy(z) = Ho(z) — Go(2), (2.10)
where
1T ()0, | TIT(8) TT6) «
Ho(z) = 2 — = =l > 1_ Go(z) = = z" .11
HF(OQ-FA) n=2 HF(’% n=2

—

i=1 i=

and d; is given by (1.11). Using ®y(z) defined by (2.10), we get a harmonic shear Fy = Ho+ Go.
Also, taking o = 7/2, the function ®,,(z) defined by (1.8) is denoted by

D 2(2) = Hrpo(2) + Grpa(2), (2.12)
where
q s
E (i) 4, le(ﬁi) ~ 4 1‘[l I(5) i’
Hepa(2) = 2— == = " 2" Gapa(2) = 2 (2.13)
[T (a;+4,) w2 T [T () mme L T
i=1 i=1

and d; is given by (1.11). Using <1>,T/2(z) defined by (2.12), we get a harmonic shear F , =

HTr/Z + g7r/2-
For the harmonic shear 7y and F /», we get following results from Theorems 2.1 and 2.2 on
taking « = 0 and o = /2, for CHD map and for the map convex in vertical direction.

Corollary 2.5. Under the hypothesis of Lemma 1.3, with o = 0, Ho and Gobe of the form (2.11).
Let ®y(z) = Ho(2)—Go(z) € T [A, B] be convex in the horizontal direction. Let Foy = Ho+Go €
T'SY, be the harmonic shear of ®(z) in the same direction. Then Fy € Ty [A, B] if and only if

A1 “1_ sz/’q([(az‘+f4i7z4i)]; )+ p¥q ([(as, z)];1)]

+u l:j{:i 7'1/)8 ([(’71 +Cia0i)} ’ 1) + ;44 B 7% ([(’7% z)] 5 1):|
A—1

< 277

- A-B

holds, where \| and p are given by (2.3).



178 V. K. Gupta and P. Sharma

Corollary 2.6. Under the hypothesis of Lemma 1.3, with o = 70 /2, Hr > and G ; be of the form
(2.13). Let @,)5(2) = Hr2(2) + Grya(2) € T [A, B] be convex in the vertical direction. Let
Frpp = Hrpp+Grpo € TS% be the harmonic shear of @w/z(z) in the vertical direction.Then
Fry2 € Tu [A, B if and only if

M | o e+ A5 4D 1)+ iy ([0 A0):1)

A
i [ﬁws([(%juci,ci)];le Brws([(% z)],l)}
1—4
< -
=~ A-B

holds, where \| and p are given by (2.3).

Corollary 2.7. Under the hypothesis of Lemma 1.3, with o = 0, Ho and G be of the form (2.11)
Let ®y(z) = Ho(z)—Go(2) € T [A, B] be convex in the horizontal direction. Let Foy = Ho+Gp €
TSY be the harmonic shear of ®y(z) in the horizontal direction. Then Fy € Cy [A, B) if and

only if

1-B A-3B+2
n | vt e 24040750 + 222852 g (a4 s a)i)

+ b (s, 49 )]
| e (6 + 260 GO 1) (4 G B )
<0

holds, where \, and 1 are given by (2.3).

Corollary 2.8. Under the hypothesis of Lemma 1.3, with & = 7/2, Hr/, and G, be of the
form (2.13). Let @ )5(2) = Hro(2) + Gry2(2) € T [A, B] be convex in the vertical direction.
Let Frjy = Hyjo + Gryo € TSY be the harmonic shear of @ »(z) in the same direction.Then
Fr2 € Cu [A, Bl if and only if

g r¥a (@i + 245, 4] 1) + ———— g ([(e + Ai, A))]51)
+p¥q ([(ei; Ai)] 5 1)]
—H |:1_ rws ([(’YZ + 201, Cz)] N 1) +r '¢s ([(71 + Cz'7 Cz)] 5 1)

[I—B A—-3B+2
A1

A-B
<0

holds, where \| and p are given by (2.3).
Further, taking & = 0, W,(z) (1.19) is denoted by

Wo(z) = Lo(z) — Go(2), (2.14)
where .
HF<BZ) 0 0
Lo(e) =2—5——> 772" (2.15)
Hr(ai)TL:Z 1

.
I
=

Go(z), di and 6, are given by (1.14), (1.11) and (1.15). Using Wo(z) defined by (2.14), we get a
harmonic shear & = Ly + Go.
Also, taking o = 7/2, the function W', /> (z) may also be written as

Wi (2) = Lrja(2) + Grpa(2), (2.16)
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where

e

L'(8:)

<.
Il
-

|
©
\

Lp(2) = Z 1—|—d1 2.17)

I
"J

.
Il

Gr/2(2), di and 6, are given by (1.14), (1.11) and (1.15). Using ¥ /»(z) defined by (2.16), we
get a harmonic shear £, » = L /2 + G, o.

For the harmonic shear & and & />, we get following inequalities from Theorems 2.3 and
2.4, by taking « = 0 and o = 7 /2, for CHD map and for the map convex in vertical direction.

Corollary 2.9. Under the hypothesis of Lemma 1.5, with o = 0, Lo be of the form (2.15) and
Wo(z) = Lo(z) — Go(z) € T [A, B] be convex in the horizontal direction. Let & = Ly + Gy €
TSY, be the harmonic shear of W(z) in the same direction. Then & € Ty [A, B) if and only if

A2 Ul_ B pUq ([(c + Ai, A5 1) 4+ by ([(eu, Ad)] s 1)]

+u {fll_—_i 71/15 ([(% + Oi, Cz)} ; 1) + jll—;; s ([(%, Cz)] 5 1):|
3A—-2B -1
=  A-B

holds, where X\ and p are given respectively, by (2.9) and (2.3).

Corollary 2.10. Under the hypothesis of Lemma 1.5, with o = 7/2, L/, be of the form
(2.17), and ;. o(2) = L_,(2) +G_,,(2) € T [A, B] be convex in the vertical direction. Let

Expp = Lap + Grpo(2) € TSY be the harmonic shear of W »(z) in the same direction. Then
Ex)p € Tu [A, B] if and only if

o [572  l+ 40 A0+ s 01 )

i [ (i + GO 1)+ 4 o (s Gl )|

< A-2B+1
- A-B
holds, where \y and p are given respectively, by (2.9) and (2.3).
Corollary 2.11. Under the hypothesis of Lemma 1.5, with « = 0, Ly be of the form (2.15), and

Yo(z) = Lo(z) — Go(z) € T [A, B] be convex in the horizontal direction. Let & = Ly + Gy €
TSY, be the harmonic shear of Wo(z) in the same direction. Then & € Cy [A, B] if and only if

o | o (20 A0+ S22 (e 40 D))
+ b (05, A3 1)

| e (6 +2C0 GO 1) (4 G B )

<2

holds, where X\ and p are given respectively, by (2.9) and (2.3).

Corollary 2.12. Under the hypothesis of Lemma 1.5, with o = 7 /2, L. ), be of the form (2.17), and
Wo(2) =L, ,,(2) + G, ,(2) € T[A, B] be convex in the vertical direction. Let £,y = L5 +

Gr/2(2) € T'SY, be the harmonic shear of W »(z) in the same direction. Then £, ), € Cy [A, B]
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if and only if

e [ ol 240 4011+ 222 e+ 40 A0 )

+ p¥q ([(, A)] 5 1)]
| 0 (6 26, €Ol 1)+ ([ + G GO 1)
<2

holds, where \y and p are given respectively, by (2.9) and (2.3).

3 Special Cases

TakingAizl( L.,p),Bi=13G=1,...¢9),C; =1 (i=1,...,7),
D, =1 (i=1,..,s), we define generalized hypergeometrlc (gh) functlons as special case of
Wgh functions glven in (1.7), as follows:

pFy(an,cyap, Bry .y By 2) =

[1T(5) (i), ] 5 11 (0), ="

pFy ([ai]s2) = 1:] p¥q [ vohe ;21 = = (p<q+1)
1;[11“(%) (Bi: 1)y, "m0 g(ﬁi)nnu
[1T() w 11 (0), 2"
i=1 (Vi 1)1 r i=1 "

rFs([’YZ]’Z) = T rwsl ,Z] :Z B (7‘<5+1)
[T () ((@-,1)15) 20 T10) !

Denote
Fi(2) =z pFy (ou] s 2) and F5(2) := ,Fs ([y]52) — 1 3.1

which are analyticat z = lif incasep = g+ 1,r = s+ 1) R, 8-> ;) > 0,
and R (37, 6; — >0, i) > 0, the symbol ()),, is the Pochhammer symbol defined in terms of
gamma function by

\ _T(A+n) I, n=0,A#0
N =Ty T A0+ O tn—D.neN [

Define an analytic function Q, as follows,

Fi(2) — ¥ F5(2)

Qu(2) = =g (z € U), (3.2)
where .
H ' (vi)
o == (3.3)
[1T(5:)

The function Q(z) defined by (3.2) may also be written in the form
Q. (2) = Hy(2) — €¥9Gy(2),

where
oo

Z 62“"0 Z 1 — 6210‘0 2" (34)
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and
P T
577,: — q (n—l)" Cn_ _s H (35)
il_[](ﬁi)nfl l;[l L(6:)n

Taking A; =1 (i=1,..,p),Bi=1(i=1,...,¢9),Ci=1 (i=1,...,r),D;=1 (i=1,...s)
in Theorems 2.1, 2.2, 2.3 also in 2.4, we get inequalities involving generalized hypergeometric
functions and various special form of hypergeometric functions in particular.

Theorem 3.1. Let under the parametric conditions considered above, H,, and G, be of the form
(3.4) and Q,(z) = H,(z) — e**G,(z) € T [A, B] be convex in the direction o € {0,7/2} .
Let F,, = H,(z) + Go(2) be the harmonic shear of Q. (z) in the same direction o. Suppose

>—1(G=1,. )suchthatnal<061>0(i:1 q),v>036@=1,.,r),0; >0

(i=1,...,s). Then under the valzdtty condition (in the case p=q+ landr = s+ 1)

q P s T
S Bi=> ai>land Y 6= yi>1,
=i i=1 i=i i=i

F. € Tu [A, B] if and only if

Bl_gqu([(Oéri-l)] )+ ,F, ([(a“)];l)}
i [/11 2F([( +1)];1)+HTFS([(%)};1)}
2ia A—1

o

B A-B

holds.

Theorem 3.2. Let under the hypothesis of Theorem 3.1, Fo, = Hy (2) 4+ Go(2) be the harmonic
shear of Q. (z) in the direction « 6 {0, 7/2}. Suppose

>—1(i=1,. ,p)SuchthatHaZ<Oﬂz>O(i:1 ), >0 (i=1,..,7),0 >0
(i=1,...,s). Then under the valzdzty condition (in the casep =q+ landr =s+ 1)

iﬁi - iai > 2 and i& — i% > 2,
=1 i=1 i=i i=i

F, € Cu [A, B] if and only if

o e 200+ 222 R (e D)+ (@] )
wete | TR R (e + DL+ o (4 D))
< 0

holds.

We next consider an analytic function Y, (2) defined by

z (2 - @) — ¥y (2)

1 — e2iag,

Yo (z) = (e U),
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where Fj(z) and F,(z) are given by (3.1) with o; > 0 (i=1,...,p),6;. > 0 (i=1,...,q),
v >0 (i=1,..,r),8 >0 (i=1,..,s) satisfy the condition

and ¢, is given by (3.3). The function Y, (z) may also be written in the form
To(2) =Ja(z) - e*Ga (2),

where
oo

=z Z 1 — eszcl (36)
Ga(z), 1 and &, are given, respectively, by (3.4), (3.3) and (3.5).

Theorem 3.3. Let under the parametric conditions considered above, [, and G, be given, re-
spectively, by (3.4) and (3.6).

Let Yo (2) = Ju(2) — €¥*Gy(2) € T [A, B] be convex in the direction o € {0,7/2}. Let
Eo = Ju(z) + Gu(2) be the harmonic shear of Yo (2) in the same direction o. Suppose
a; >0 (G=1,.,p),8:>0 (i=1,...,q), v >0(i=1,...,7),8 >0 (i=1,...,s). Then
under the validity condition (in the case p=q+ 1l andr = s+ 1)

q 2 s r
Zﬁi—Zai>1 and Zéi—Z’W>1,
=1 =1 =1 =1

E. € Tu [A, B if and only if

g o (e DI+ F (0] )
+62i04 [i_i F ([( +1>]’1)+HTFS([(VZ)},I):|
34-28-1

- A—-B
holds.
Theorem 3.4. Under the hypothesis of Theorem 3.3, B, = Jo(2) +Gq(2) be the harmonic shear
of Yo(2) in the direction o € {0,7/2} . Suppose a; >0 (i=1,..,p), ;>0 (i=1,...,q9) , %

>0(i=1,..,7),0; >0 (i =1,...,s). Then under the validity condition (in the case p = q+ 1
andr =s-+1)

q p S T
Zﬁi—Zai>2 and Zéi—Z%>2,
i=i i=1 i=i i=i
E, € Cu [A, B] if and only if

le__f; oFy ([(e +2)]51) + % pFa (i + D5 1) + pFy ([(e)] 5 1)] +

e [i‘_% P ([ + 21 D)+ o B ([( + D] D) = o F ([(0)] 1>}
< 2

holds.
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