Some geometric properties on \boldsymbol{h}-exponential change of Finsler metric

M. K. Gupta and Anil K. Gupta
Communicated by Ayman Badawi

MSC 2010 Classifications: Primary 53B40.
Keywords and phrases:Finsler space, Metrical connection.

Abstract

In this paper, we study the v-curvature of Finsler space characterised by h exponential change of Finsler metric and derive some results on C-reducibility for the change.

1 Introduction

There are two important transformations in Finsler geometry: the conformal change and the β change. In 1984, C. Shibata [10] has dealt with β-change of Finsler metric. For a β-change of Finsler metric, the differential 1-form β play very important role. The β-change of Riemannian metric gives (α, β)-metric which has many application in physics, mechanics, seismology, biology, informatics and control theory [1, 2, 3, 4]. The β-change has many classes such as Randers change, Kropina change etc. These changes are finte in nature i.e. numbers of terms are finite. An important of class of β-change is exponential change which is infinite in nature i.e. number of terms are infinite.

In 2006, YU Yao-yong and YOU Ying [12] studied a Finsler space with metric function given by exponential change of Riemannian metric. In 2012, H. S. Shukla et.al.[11] considered a Finsler space $\bar{F}^{n}=\left(M^{n}, \bar{L}\right)$, whose Fundamental metric function is an exponential change of Finsler metric function given by

$$
\begin{equation*}
\bar{L}=L e^{\frac{B}{L}} \tag{1.1}
\end{equation*}
$$

where $\beta=b_{i}(x) y^{i}$ is 1-form on manifold M^{n}. Present authors have also discussed hypersurface of Finsler space characterised by h-exponential change of Finsler metric [6].

In the present paper, we consider a Finsler space ${ }^{*} F^{n}=\left(M^{n},{ }^{*} L\right)$, whose metric function ${ }^{*} L$, an h-exponential change of metric, is given by

$$
\begin{equation*}
{ }^{*} L=L e^{\frac{\beta}{L}} \tag{1.2}
\end{equation*}
$$

where $\beta=b_{i}(x, y) y^{i}$ and b_{i} is an h-vector. Authors obtain the v-curvature tensor for the Finsler space characterised by h-exponential change of metric and derive some results on C-reducibility.

2 Preliminaries

Let $F^{n}=\left(M^{n}, L\right)$ be an n-dimensional Finsler space equipped with the Fundamental function $L(x, y)$. The metric tensor, angular metric tensor and Cartan tensor are defined by $g_{i j}=$ $\frac{1}{2} \dot{\partial}_{i} \dot{\partial}_{j} L^{2}, h_{i j}=g_{i j}-l_{i} l_{j}$ and $C_{i j k}=\frac{1}{2} \dot{\partial}_{i} g_{j k}$ respectively, where $\dot{\partial}_{k}=\frac{\partial}{\partial y^{k}}$. The Cartan connection is given by $C \Gamma=\left(F_{j k}^{i}, N_{k}^{i}, C_{j k}^{i}\right)$. The h - and v-covariant derivatives $X_{i \mid j}$ and $\left.X_{i}\right|_{j}$ of a covarient vector field X_{i} are defined by [9]

$$
\begin{equation*}
X_{i \mid j}=\partial_{j} X_{i}-N_{j}^{r} \dot{\partial}_{r} X_{i}-X_{r} F_{i j}^{r}, \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\left.X_{i}\right|_{j}=\dot{\partial}_{j} X_{i}-X_{r} C_{i j}^{r} \tag{2.2}
\end{equation*}
$$

where $\partial_{k}=\frac{\partial}{\partial x^{k}}$.
H. Izumi [7] introduced the concept of an h-vector $b_{i}(x, y)$ which is v-covariant constant with respect to the Cartan connection and satisfies $L C_{i j}^{h} b_{h}=\rho h_{i j}$, where ρ is a non-zero scalar function and $C_{j k}^{i}$ are components of Cartan tensor. Thus if b_{i} is an h-vector then

$$
\begin{equation*}
\text { (i) }\left.b_{i}\right|_{k}=0, \quad \text { (ii) } L C_{i j}^{h} b_{h}=\rho h_{i j} \tag{2.3}
\end{equation*}
$$

From the above definition, we have

$$
\begin{equation*}
L \dot{\partial}_{j} b_{i}=\rho h_{i j} \tag{2.4}
\end{equation*}
$$

which shows that b_{i} is a function of directional argument also. H. Izumi [7] proved that the scalar ρ is independent of directional argument.

A Finsler space $F^{n}=\left(M^{n}, L\right)$ with $n \geq 3$ is said to be Quasi-C-reducible if Cartan tensor $C_{i j k}$ satisfies [8]

$$
\begin{equation*}
C_{i j k}=Q_{i j} C_{k}+Q_{j k} C_{i}+Q_{k i} C_{j} \tag{2.5}
\end{equation*}
$$

where $Q_{i j}$ is symmetric indicatory tensor. A Finsler space $F^{n}=\left(M^{n}, L\right)$ with $n \geq 3$ is said to be C-reducible if Cartan tensor $C_{i j k}$ satisfies [8]

$$
\begin{equation*}
C_{i j k}=\frac{1}{(n+1)}\left(h_{i j} C_{k}+h_{j k} C_{i}+h_{k i} C_{j}\right), \tag{2.6}
\end{equation*}
$$

where $C_{i}=g^{j k} C_{i j k}$.
The v-curvature tensor $S_{h i j k}$ of a Finsler space with respect to Cartan space $C \Gamma$ is defined by [8]

$$
\begin{equation*}
S_{h i j k}=C_{i j r} C_{h k}^{r}-C_{i k r} C_{h j}^{r} \tag{2.7}
\end{equation*}
$$

A Finsler space $F^{n}=\left(M^{n}, L\right)$ is said to be S-3 like Finsler space if the v-curvature tensor has the form [8]

$$
\begin{equation*}
L^{2} S_{h i j k}=S\left(h_{h j} h_{i k}-h_{h k} h_{i j}\right), \tag{2.8}
\end{equation*}
$$

where scalar S is function of x alone. A Finsler space $F^{n}=\left(M^{n}, L\right)$ is said to be S-4 like Finsler space if there exists a symmetric and indicatory tensor $K_{i j}$ such that the v-curvature tensor has the form [8]

$$
\begin{equation*}
L^{2} S_{h i j k}=S\left(h_{h j} K_{i k}+h_{i k} K_{h j}-j / k\right) \tag{2.9}
\end{equation*}
$$

where $-j / k$ means interchange of j and k and subtract the quantities within the bracket.
We use following notations $L_{i}=\dot{\partial}_{i} L=l_{i}, \quad L_{i j}=\dot{\partial}_{i} \dot{\partial}_{j} L, \quad L_{i j k}=\dot{\partial}_{i} \dot{\partial}_{j} \dot{\partial}_{k} L$. The quantities corrosponding to ${ }^{*} F^{n}$ is denoted by asterisk over that quantity. From (1.2), we have

$$
\begin{gather*}
{ }^{*} L_{i}=e^{\tau}\left(m_{i}+l_{i}\right), \tag{2.10}\\
{ }^{*} L_{i j}=e^{\tau}(1+\rho-\tau) L_{i j}+\frac{e^{\tau}}{L} m_{i} m_{j}, \tag{2.11}\\
{ }^{*} L_{i j k}=e^{\tau}(1+\rho-\tau) L_{i j k}+(\rho-\tau) \frac{e^{\tau}}{L}\left[m_{i} L_{j k}+m_{j} L_{i k}+m_{k} L_{i j}\right] \tag{2.12}\\
-\frac{e^{\tau}}{L^{2}}\left[m_{j} m_{k} l_{i}+m_{i} m_{k} l_{j}+m_{i} m_{j} l_{k}-m_{i} m_{j} m_{k}\right],
\end{gather*}
$$

where $\tau=\frac{\beta}{L}, m_{i}=b_{i}-\tau l_{i}$. The normalised suporting element, the metric tensor and angular metric tensor of ${ }^{*} F^{n}$ are obtained as [5]

$$
\begin{gather*}
{ }^{*} l_{i}=e^{\tau}\left(m_{i}+l_{i}\right), \tag{2.13}\\
{ }^{*} g_{i j}=\nu e^{2 \tau} g_{i j}+e^{2 \tau}\left(2 \tau^{2}-\tau-\rho\right) l_{i} l_{j}+e^{2 \tau}(1-2 \tau)\left(b_{i} l_{j}+b_{j} l_{i}\right)+2 e^{2 \tau} b_{i} b_{j}, \tag{2.14}\\
{ }^{*} h_{i j}=\nu e^{2 \tau} h_{i j}+e^{2 \tau} m_{i} m_{j}, \tag{2.15}
\end{gather*}
$$

where $\nu=1+\rho-\tau$.
Diffrentiating the angular metric tensor $h_{i j}$ with respect to y^{k}, we get

$$
\dot{\partial}_{k} h_{i j}=2 C_{i j k}-\frac{1}{L}\left(l_{i} h_{j k}-l_{j} h_{i k}\right),
$$

which gives

$$
L_{i j k}=\frac{2}{L} C_{i j k}-\frac{1}{L^{2}}\left(h_{i j} l_{k}+h_{j k} l_{i}+h_{k i} l_{j}\right) .
$$

Using this, the equation (2.12) may be re-written as

$$
\begin{equation*}
{ }^{*} C_{i j k}=\nu e^{2 \tau} C_{i j k}+\frac{2}{L} e^{2 \tau} m_{i} m_{j} m_{k}+\frac{1}{2 L} e^{2 \tau}(2 \nu-1)\left(m_{i} h_{k j}+m_{j} h_{k i}+m_{k} h_{i j}\right) . \tag{2.16}
\end{equation*}
$$

The inverse metric tensor of ${ }^{*} F^{n}$ is derived as follows[5]

$$
\begin{equation*}
{ }^{*} g^{i j}=\frac{e^{-2 \tau}}{\nu}\left[g^{i j}-\frac{1}{m^{2}+\nu} b^{i} b^{j}+\frac{\tau-\nu}{m^{2}+\nu}\left(b^{i} l^{j}+b^{j} l^{i}\right)-l^{i} l^{j}\left\{\frac{\tau-\nu}{m^{2}+\nu}\left(m^{2}+\tau\right)-\rho\right\}\right], \tag{2.17}
\end{equation*}
$$

where b is magnitude of the vector $b^{i}=g^{i j} b_{j}$.

3 Finsler Space ${ }^{*} \boldsymbol{F}^{\boldsymbol{n}}=\left(\boldsymbol{M}^{\boldsymbol{n}},{ }^{*} \boldsymbol{L}\right)$

From the definition of m_{i}, we have
(a) $m_{i} l^{i}=0$,
(b) $m_{i} b^{i}=b^{2}-\frac{\beta^{2}}{L^{2}}$,
(c) $g_{i j} m^{j}=h_{i j} m^{j}=m_{i}$,
(d) $C_{i h j} m^{h}=L^{-1} \rho h_{i j}$.

From (2.3), (2.16), (2.17) and (3.1), we have

$$
\begin{align*}
{ }^{*} C_{i j}^{h}= & C_{i j}^{h}+\frac{1}{m^{2}+\nu} C_{i j k} b^{k}\left(-b^{h}+2 \tau l^{h}-\rho l^{h}-l^{h}\right) \\
& +\frac{2}{\nu L}\left[m_{i} m_{j} m^{h}+\frac{1}{m^{2}+\nu} m_{i} m_{j} m^{2}\left(-b^{h}+2 \tau l^{h}-\rho l^{h}-l^{h}\right)\right] \tag{3.2}\\
& +\frac{1}{2 \nu L}(2 \nu-1)\left[m_{i} h_{j}^{h}+m_{j} h_{i}^{h}+m^{h} h_{i j}\right. \\
& \left.+\frac{1}{m^{2}+\nu}\left(-b^{h}+2 \tau l^{h}-\rho l^{h}-l^{h}\right)\left(2 m_{i} m_{j}+m^{2} h_{i j}\right)\right] .
\end{align*}
$$

Contracting h and k in above equation, we have

$$
\begin{equation*}
{ }^{*} C_{i}=C_{i}+\Omega m_{i}, \tag{3.3}
\end{equation*}
$$

where

$$
\Omega=-\rho+2 m^{2}+\left(1-\frac{1}{2 \nu}\right)\left((n-2) m^{2}+(n+1) \nu\right) .
$$

Now, using (3.3), equation (2.16) becomes

$$
\begin{equation*}
{ }^{*} C_{i j k}=V_{i j k}+\Sigma{ }^{*} C_{i} H_{j k}, \tag{3.4}
\end{equation*}
$$

where

$$
V_{i j k}=\nu e^{\tau} C_{i j k}+\frac{2}{L} e^{2 \tau} m_{i} m_{j} m_{k}-\frac{1}{2 L} e^{2 \tau}(2 \nu-1) \Sigma \frac{C_{i} h_{j k}}{\Omega}
$$

and

$$
H_{j k}=\frac{1}{2 L} e^{2 \tau}(2 \nu-1) h_{j k} .
$$

and Σ means cyclic interchange of indices i, j, k and summation. Thus, taking account the definition of Quasi C-reducible, we have

Theorem 3.1. The Finsler space * F^{n} given by h-exponential change of Finsler metric is Quasi C-reducible if the tensor $V_{i j k}$ vanishes.

Now, v-curvature for the Finsler space ${ }^{*} F^{n}$ is given by

$$
\begin{equation*}
{ }^{*} S_{h i j k}={ }^{*} C_{i j r}{ }^{*} C_{h k}^{r}-{ }^{*} C_{i k r}{ }^{*} C_{h j}^{r} . \tag{3.5}
\end{equation*}
$$

Using (2.16) and (3.2), above equation becomes
${ }^{*} S_{h i j k}=\nu e^{2 \tau} S_{h i j k}+I\left(h_{h k} m_{i} m_{j}-h_{h j} m_{i} m_{k}+h_{i j} m_{h} m_{k}-h_{i k} m_{h} m_{j}\right)+J\left(h_{i j} h_{h k}-h_{i k} h_{h j}\right)$,
where

$$
\begin{equation*}
I=\left[m^{2}\left(\nu^{2}-\frac{1}{4}\right)+\nu\left(\nu^{2}-\nu+\frac{1}{4}+\rho\right) m^{2}\right] \frac{e^{2 \nu}}{\left(m^{2}+\nu\right) L^{2}}, \tag{3.6}
\end{equation*}
$$

and

$$
\begin{equation*}
J=\left[2 \nu\left(\nu-\frac{1}{2}\right) \rho-\nu \rho^{2}+\nu\left(\nu-\frac{1}{2}-\frac{1}{4 \nu}\right) m^{2}\right] \frac{e^{2 \nu}}{\left(m^{2}+\nu\right) L^{2}}, \tag{3.8}
\end{equation*}
$$

Equation (3.6) may be re-written as

$$
\begin{equation*}
{ }^{*} S_{h i j k}=\nu e^{2 \tau} S_{h i j k}+\left[h_{k h}\left(\operatorname{Im}_{i} m_{j}+\frac{J}{2} h_{i j}\right)+h_{i j}\left(\operatorname{Im}_{k} m_{h}+\frac{J}{2} h_{k h}\right)-j / k\right] . \tag{3.9}
\end{equation*}
$$

Thus, we have
Theorem 3.2. The v-curvature tensor ${ }^{*} S_{\text {hijk }}$ of Finsler space ${ }^{*} F^{n}$ characterised by h-exponential change of Finsler metric is given by (3.9).

Using (2.15), equation (3.9) gives us

$$
\begin{equation*}
{ }^{*} L^{2}{ }^{*} S_{h i j k}=L^{2} \nu e^{4 \tau} S_{h i j k}+{ }^{*} h_{k h} M_{i j}+{ }^{*} h_{i j} M_{k h}-{ }^{*} h_{j h} M_{i k}-{ }^{*} h_{i k} M_{j h}, \tag{3.10}
\end{equation*}
$$

where

$$
M_{i j}=\frac{L^{2} I}{\nu} m_{i} m_{j}+\frac{L^{2} J}{2 \nu} h_{i j} .
$$

Thus, we have
Theorem 3.3. If the v-curvature tensor $S_{h i j k}$ of Finsler space F^{n} vanishes, then the Finsler space ${ }^{*} F^{n}$ is $S-4$ like Finsler space.

Further, if $F^{n}=\left(M^{n}, L\right)$ is S-4 like space, i.e.

$$
L^{2} S_{h i j k}=\left(h_{h j} K_{i k}+h_{i k} K_{h j}-j / k\right),
$$

Then equation (3.10) gives us

$$
\begin{equation*}
{ }^{*} L^{2 *} S_{h i j k}=\left[{ }^{*} h_{h j} H_{i k}+{ }^{*} h_{i k} H_{h j}-j / k\right]-A_{i j k h}, \tag{3.11}
\end{equation*}
$$

where

$$
H_{i j}=L^{2} e^{2 \tau} K_{i j}-M_{i j} \quad \text { and } \quad A_{i j k h}=L^{2} e^{4 \tau}\left[m_{h} m_{j} K_{i k}+m_{i} m_{k} K_{h j}-j / k\right]
$$

Thus, we have
Theorem 3.4. If F^{n} is $S-4$ like Finsler space. Then h-exponential changed Finsler space ${ }^{*} F^{n}$ is S-4 like Finsler sace provided $A_{i j k h}$ vanishes.

References

[1] P. L. Antonelli, R. S. Ingarden, M. Matsumoto, The Theory of Sprays and Finsler Spaces with Applications in Physics and Biology, Vol. 58 of Fandamental theories of physics, Kluwer Academic Publishers Group, Dordrecht, 1993.
[2] S. Bácsó and M. Matsumoto, Reduction theorems of certain Landsberg spaces to Berwald spaces, Publ. Math. Debrecen, 48, 357-366(1996).
[3] S. Bácsó and M. Matsumoto, On Finsler spaces of Douglas type, A generalization of notion of Berwald spaces , Publ. Math. Debrecen, 51, 385-406 (1997).
[4] L. Berwald, On Cartan and Finsler geometries, III, Two Dimensional Finsler spaces with Rectilinear Extremal, Ann. of Math., 42(2), 84-122 (1941).
[5] M. K. Gupta and Anil K. Gupta, h-exonential change of Finsler metric, Facta Universitatis, Series: Mathematics and Informatics, 31(5), 1029-1039 (2016).
[6] M. K. Gupta and Anil K. Gupta, Hypersurface of a Finsler space subjected to an h-exponential change of metric, Int.J. Geometric methods in Modern Physics, 13(10), $1650129[12$ pages] (2016).
[7] H. Izumi, Conformal transformation of Finsler spaces II. An h-conformally flat Finsler space, Tensor N.S., 34, 337-359 (1980).
[8] M. Matsumoto, Foundation of Finsler geometry and special Finsler spaces, Kaiseigha press, Saikawa, Otsu, Japan, 1986.
[9] H. Rund, The differential geometry of Finsler spaces, Springer-Verlog, 1959.
[10] C. Shibata, On invariant tensors of β-change of Finsler metrics, J.Math. Kyoto Univ., 24, 163-188 (1984).
[11] H. S. Shukla, B. N. Prasad and O. P. Pandey, Exponential Change of Finsler metric, Int. J. Contemp. Math. Sciences, 7, 2253-2263 (2012),
[12] YU Yao-yong, YOU Ying, Projectively flat exponential Finsler metric, Journal of Zhejiang University Sciencea , 7(6), 1068-1076(2006).

Author information

M. K. Gupta and Anil K. Gupta, Department of Pure \& Applied Mathematics, Guru Ghasidas Vishwavidyalaya, Bilaspur (C.G.), INDIA.
E-mail: mkgiaps@gmail.com; gupta.anil409@gmail.com
Received: September 26, 2016.
Accepted: April 20, 2017.

