Some geometric properties on h-exponential change of Finsler metric

M. K. Gupta and Anil K. Gupta

Keywords and phrases: Finsler space, Metrical connection.

Abstract. In this paper, we study the ν-curvature of Finsler space characterised by h-exponential change of Finsler metric and derive some results on C-reducibility for the change.

1 Introduction

There are two important transformations in Finsler geometry: the conformal change and the β-change. In 1984, C. Shibata [10] has dealt with β-change of Finsler metric. For a β-change of Finsler metric, the differential 1-form β play very important role. The β-change of Riemannian metric gives (α, β)-metric which has many application in physics, mechanics, seismology, biology, informatics and control theory [1, 2, 3, 4]. The β-change has many classes such as Randers change, Kropina change etc. These changes are finite in nature i.e. numbers of terms are finite. An important of class of β-change is exponential change which is infinite in nature i.e. number of terms are infinite.

In 2006, YU Yao-yong and YOU Ying [12] studied a Finsler space with metric function given by exponential change of Riemannian metric. In 2012, H. S. Shukla et.al. [11] considered a Finsler space $F^n = (M^n, L)$, whose Fundamental metric function is an exponential change of Finsler metric function given by

$$L = e^{\beta}$$

(1.1)

where $\beta = b_i(x,y)y^i$ is 1-form on manifold M^n. Present authors have also discussed hypersurface of Finsler space characterised by h-exponential change of Finsler metric [6].

In the present paper, we consider a Finsler space $^*F^n = (M^n, ^*L)$, whose metric function *L, an h-exponential change of metric, is given by

$$^*L = e^{\beta}$$

(1.2)

where $\beta = b_i(x,y)y^i$ and b_i is an h-vector. Authors obtain the ν-curvature tensor for the Finsler space characterised by h-exponential change of metric and derive some results on C-reducibility.

2 Preliminaries

Let $F^n = (M^n, L)$ be an n-dimensional Finsler space equipped with the Fundamental function $L(x,y)$. The metric tensor, angular metric tensor and Cartan tensor are defined by $g_{ij} = \frac{1}{2}\partial_i \partial_j L^2$, $h_{ij} = g_{ij} - l_i l_j$ and $C_{ijk} = \frac{1}{2}\partial_i g_{jk}$ respectively, where $\partial_k = \frac{\partial}{\partial x_k}$. The Cartan connection is given by $CT = (F^i_j, N^i_k, C^i_{jk})$. The h- and v-covariant derivatives $X_{i|j}$ and $X_{i|j}$ of a covariant vector field X_i are defined by [9]

$$X_{i|j} = \partial_j X_i - N^r_j \partial_r X_i - X_r F^r_{ij},$$

(2.1)

and

$$X_{i|j} = \partial_j X_i - X_r C^r_{ij},$$

(2.2)

where $\partial_k = \frac{\partial}{\partial x_k}$.
H. Izumi [7] introduced the concept of an h-vector $b_i(x, y)$ which is v-covariant constant with respect to the Cartan connection and satisfies $L C^h_i j b_h = \rho h_{ij}$, where ρ is a non-zero scalar function and C^h_{jk} are components of Cartan tensor. Thus if b_i is an h-vector then

\[(i) \ b_{i|k} = 0, \quad (ii) \ L C^h_i j b_h = \rho h_{ij}. \quad (2.3)\]

From the above definition, we have

\[L \partial_j b_i = \rho h_{ij}, \quad (2.4)\]

which shows that b_i is a function of directional argument also. H. Izumi [7] proved that the scalar ρ is independent of directional argument.

A Finsler space $F^n = (M^n, L)$ with $n \geq 3$ is said to be Quasi-C-reducible if Cartan tensor C_{ijk} satisfies [8]

\[C_{ijk} = Q_{ij} C_k + Q_{jk} C_i + Q_{ki} C_j, \quad (2.5)\]

where Q_{ij} is symmetric indicatory tensor. A Finsler space $F^n = (M^n, L)$ with $n \geq 3$ is said to be C-reducible if Cartan tensor C_{ijk} satisfies [8]

\[C_{ijk} = \frac{1}{(n + 1)} (h_{ij} C_k + h_{jk} C_i + h_{ki} C_j), \quad (2.6)\]

where $C_i = g^{hk} C_{ijk}$.

The v-curvature tensor S_{hijk} of a Finsler space with respect to Cartan space $C \Gamma$ is defined by [8]

\[S_{hijk} = C_{ijr} C^r_{hk} - C_{ikr} C^r_{hj}. \quad (2.7)\]

A Finsler space $F^n = (M^n, L)$ is said to be S-3 like Finsler space if the v-curvature tensor has the form [8]

\[L^2 S_{hijk} = S(h_{hj} h_{ik} - h_{hk} h_{ij}), \quad (2.8)\]

where scalar S is function of x alone. A Finsler space $F^n = (M^n, L)$ is said to be S-4 like Finsler space if there exists a symmetric and indicatory tensor K_{ij} such that the v-curvature tensor has the form [8]

\[L^2 S_{hijk} = S(h_{hj} K_{ik} + h_{ik} K_{hj} - j/k), \quad (2.9)\]

where $-j/k$ means interchange of j and k and subtract the quantities within the bracket.

We use following notations $L_i = \partial_i L = l_i$, $L_{ij} = \partial_i \partial_j L$, $L_{ijk} = \partial_i \partial_j \partial_k L$. The quantities corresponding to ${^*}F^n$ is denoted by asterisk over that quantity. From (1.2), we have

\[\text{*}L_i = e^\tau (m_i + l_i), \quad (2.10)\]

\[\text{*}L_{ij} = e^\tau (1 + \rho - \tau) L_{ij} + \frac{e^\tau}{L} m_i m_j, \quad (2.11)\]

\[\text{*}L_{ijk} = e^\tau (1 + \rho - \tau) L_{ijk} + (\rho - \tau) \frac{e^\tau}{L^2} [m_i L_{jk} + m_j L_{ik} + m_k L_{ij}] - \frac{e^\tau}{L^2} [m_j m_k l_i + m_i m_k l_j + m_i m_j l_k - m_i m_j m_k], \quad (2.12)\]
where $\tau = \frac{\beta}{L}$, $m_i = b_i - \tau l_i$. The normalised suporting element, the metric tensor and angular metric tensor of $^*F^n$ are obtained as [5]

\[^*l_i = e^\tau (m_i + l_i), \quad (2.13) \]

\[^*g_{ij} = \nu e^{2\tau} g_{ij} + e^{2\tau} \left(2\tau^2 - \tau - \rho \right) l_il_j + e^{2\tau} \left(1 - 2\tau \right) (b_il_j + b_jl_i) + 2e^{2\tau} b_ib_j, \quad (2.14) \]

\[^*h_{ij} = \nu e^{2\tau} h_{ij} + e^{2\tau} m_im_j, \quad (2.15) \]

where $\nu = 1 + \rho - \tau$. Differentiating the angular metric tensor h_{ij} with respect to y^k, we get

\[\partial_k h_{ij} = 2C_{ijk} - \frac{1}{L} (l_i h_{jk} - l_j h_{ik}), \]

which gives

\[L_{ijk} = \frac{2}{L} C_{ijk} - \frac{1}{L^2} (h_{ij} l_k + h_{jk} l_i + h_{ik} l_j). \]

Using this, the equation (2.12) may be re-written as

\[^*C_{ijk} = \nu e^{2\tau} C_{ijk} + \frac{2}{L} e^{2\tau} m_i m_j m_k + \frac{1}{2L} e^{2\tau} (2\nu - 1) (m_i h_{kj} + m_j h_{ki} + m_k h_{ij}). \quad (2.16) \]

The inverse metric tensor of $^*F^n$ is derived as follows [5]

\[^*g^{ij} = \frac{e^{-2\tau}}{\nu} \left[g^{ij} - \frac{1}{m^2 + \nu} b^i b^j + \frac{\tau - \nu}{m^2 + \nu} \left(b^i l^j + b^j l^i \right) - l^i l^j \left\{ \frac{\tau - \nu}{m^2 + \nu} (m^2 + \tau) - \rho \right\} \right], \quad (2.17) \]

where b is magnitude of the vector $b^i = g^{ij} b_j$.

3 Finsler Space $^*F^n = (M^n, ^*L)$

From the definition of m_i, we have

\[(a) \ m_i l^i = 0, \quad (b) \ m_i b^i = b^2 - \frac{\beta^2}{L^2}, \quad (3.1) \]

\[(c) \ g_{ij} m^j = h_{ij} m^j = m_i, \quad (d) \ C_{ijk} h^i = L^{-1} \rho h_{ij}. \]

From (2.3), (2.16), (2.17) and (3.1), we have

\[^*C_{ij} = C_{ij} + \frac{1}{m^2 + \nu} C_{ijk} b^k \left(-b^h + 2\tau t^h - \rho t^h - l^h \right) \]

\[+ \frac{2}{\nu L} \left[m_i m_j m^h + \frac{1}{m^2 + \nu} m_i m_j m^2 \left(-b^h + 2\tau t^h - \rho t^h - l^h \right) \right] \]

\[+ \frac{1}{2\nu L} (2\nu - 1) \left[m_i h^h_j + m_j h^h_i + m^h h_{ij} \! + \! \frac{1}{m^2 + \nu} \left(-b^h + 2\tau t^h - \rho t^h - l^h \right) (2m_i m_j + m^2 h_{ij}) \right]. \quad (3.2) \]

Contracting h and k in above equation, we have

\[^*C_i = C_i + \Omega m_i, \quad (3.3) \]

where

\[\Omega = -\rho + 2m^2 + (1 - \frac{1}{2\nu}) \left((n - 2)m^2 + (n + 1)\nu \right). \]
Theorem 3.3. Thus, we have
\[\mathcal{C}_{ijk} = V_{ijk} + \Sigma \mathcal{C}_i H_{jk}, \] (3.4)
where
\[V_{ijk} = \nu e^\tau C_{ijk} + \frac{2}{L} e^{2\tau} m_i m_j m_k - \frac{1}{2L} e^{2\tau} (2\nu - 1) \Sigma C_i h_{jk} / \Omega, \]
and
\[H_{jk} = \frac{1}{2L} e^{2\tau} (2\nu - 1) h_{jk}. \]
and Σ means cyclic interchange of indices i, j, k and summation. Thus, taking account the definition of Quasi-C-reducible, we have

Theorem 3.1. The Finsler space $^*F^n$ given by h-exponential change of Finsler metric is Quasi-C-reducible if the tensor V_{ijk} vanishes.

Now, v-curvature for the Finsler space $^*F^n$ is given by
\[\mathcal{S}_{hijk} = ^*C_{ijr} * C_{rkh} - ^*C_{ikr} * C_{rjh}. \] (3.5)
Using (2.16) and (3.2), above equation becomes
\[\mathcal{S}_{hijk} = \nu e^{2\tau} \mathcal{S}_{hijk} + I(h_{jk} m_i m_j - h_{ij} m_i m_i + h_{ij} m_i m_k - h_{ik} m_i m_j) + J(h_{ij} h_{jk} - h_{ik} h_{hj}), \] (3.6)
where
\[I = \left[m^2 (\nu^2 - \frac{1}{4}) + \nu (\nu^2 - \nu + \frac{1}{4} + \rho) m^2 \right] \frac{e^{2\nu}}{(m^2 + \nu)L^2}, \] (3.7)
and
\[J = \left[2\nu (\nu - \frac{1}{2}) \rho - \nu \rho^2 + \nu (\nu - \frac{1}{2} - \frac{1}{4\nu}) m^2 \right] \frac{e^{2\nu}}{(m^2 + \nu)L^2}. \] (3.8)
Equation (3.6) may be re-written as
\[\mathcal{S}_{hijk} = \nu e^{2\tau} \mathcal{S}_{hijk} + \left[h_{kh} (I m_i m_j + \frac{J}{2} h_{ij}) + h_{ij} (I m_k m_i + \frac{J}{2} h_{kh}) - j/k \right]. \] (3.9)
Thus, we have

Theorem 3.2. The v-curvature tensor \mathcal{S}_{hijk} of Finsler space $^*F^n$ characterised by h-exponential change of Finsler metric is given by (3.9).

Using (2.15), equation (3.9) gives us
\[\nu L^2 \mathcal{S}_{hijk} = L^2 \nu e^{4\tau} \mathcal{S}_{hijk} + \nu h_{kh} M_{ij} + \nu h_{ij} M_{kh} - \nu h_{ik} M_{jkh}, \] (3.10)
where
\[M_{ij} = \frac{L^2}{2\nu} m_i m_j + \frac{L^2}{4\nu} h_{ij}. \]
Thus, we have

Theorem 3.3. If the v-curvature tensor \mathcal{S}_{hijk} of Finsler space F^n vanishes, then the Finsler space $^*F^n$ is S-4 like Finsler space.

Further, if $F^n = (M^n, L)$ is S-4 like space, i.e.
\[L^2 \mathcal{S}_{hijk} = (h_{hj} K_{ik} + h_{ik} K_{hj} - j/k), \]
Then equation (3.10) gives us
\[\nu L^2 \mathcal{S}_{hijk} = [\nu h_{hj} H_{ik} + \nu h_{ik} H_{hj} - j/k] - A_{ijkh}, \] (3.11)
where
\[H_{ij} = L^2 e^{2\tau} K_{ij} - M_{ij} \quad \text{and} \quad A_{ijkh} = L^2 e^{4\tau} [m_i m_j K_{ik} + m_i m_k K_{hj} - j/k]. \]
Thus, we have

Theorem 3.4. If F^n is S-4 like Finsler space. Then h-exponential changed Finsler space $^*F^n$ is S-4 like Finsler space provided A_{ijkh} vanishes.
References

Author information

M. K. Gupta and Anil K. Gupta, Department of Pure & Applied Mathematics, Guru Ghasidas Vishwavidyalaya, Bilaspur (C.G.), INDIA.

E-mail: mkgiaps@gmail.com; gupta.anil409@gmail.com

Received: September 26, 2016.
Accepted: April 20, 2017.