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Abstract. The aim of the article is to find the conditions for the integrability of the distri-
butions which are defined on a generalized Cauchy-Riemann (GCR) lightlike submanifold of a
para-Sasakian manifold. Also, we find a condition for the induced connection to be a metric
connection on the GCR-lightlike submanifold.

1 Introduction

Submanifold theory, especially theory of lightlike (or null) submanifolds, is one of the important
research area in semi-Riemannian geometry. A submanifold M of a semi-Riemannian manifold
M̄ is called a lightlike (null) submanifold if the induced metric tensor field on the submanifold
is degenerate. If the induced metric tensor is degenerate then the classical theory of Riemannian
submanifolds fails since the tangent bundle and the normal bundle of the submanifold have a
non-zero intersection. To overcome this problem D. N. Küpeli [25] (intrinsic approach) and
K. L. Duggal-A. Bejancu [15] (extrinsic approach) were introduced some new methods and
studied lightlike submanifolds (see also [16]). On this topic, some applications of the theory to
mathematical physics is inspired, especially general relativity [21], black hole horizons [16] and
electromagnetism [15].

A CR-submanifold of Kaehler manifold was defined by A. Bejancu [10, 11], as a result
of generalization of invariant and anti-invariant submanifolds. Contact CR-submanifolds of
Sasakian manifolds were studied in [12].

In [17], K. L. Duggal-B. Şahin defined screen real, screen CR-lightlike, invariant and con-
tact CR-lightlike submanifolds of indefinite Sasakian manifolds. Later on study of generalized
CR-lightlike submanifolds of indefinite Sasakian manifolds were initiated in [18]. The authors
in [22] gave some necessary and sufficient conditions on integrability of various distributions
of GCR-lightlike submanifold of an indefinite Sasakian manifold. Moreover, CR-lightlike sub-
manifolds of a Kaehlerian manifolds were studied in [19]. Also, a general notion of paracon-
tact CR-lightlike submanifolds was introduced in [5, 6]. Recently, a huge number of research
papers has appeared on lightlike submanifolds and its applications (for further read we refer
[28, 26, 4, 23, 3] and references therein).

On a semi-Riemannian manifold M̄, S. Kaneyuki-M. Konzai [24] introduced a structure
which is known the almost paracontact structure and then they characterized the almost para-
complex structure on M̄2n+1 ×R. Recently, S. Zamkovoy [30] studied paracontact metric man-
ifolds. The study of paracontact geometry has been continued by several papers ([8, 9, 2, 13,
14, 7, 20, 29]) which contain role of paracontact geometry about semi-Riemannian geometry,
mathematical physics and relationships with the para-Kähler manifolds.

The purpose of this article is to investigate the conditions for the integrability of the distribu-
tions which are defined on GCR-lightlike submanifolds of para-Sasakian manifolds. Also, we
obtain a condition for the induced connection to be a metric connection on the GCR-lightlike
submanifolds of a para-Sasakian manifold.
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2 Preliminaries

2.1 Lightlike Submanifolds

Let (M̄n+m, ḡ) be a semi-Riemannian manifold with index q, such that m,n > 1, 1 ≤ q ≤
m + n − 1 and (Mm, g) be a submanifold of M̄ , where g is the induced metric from ḡ on M .
In this case, M is called a lightlike (null) submanifold of M̄ if g is degenerate on M. Now let us
consider a degenerate metric g on M. Thus TM⊥ is a degenerate n−dimensional subspace of
TxM̄ and orthogonal subspaces TxM and TxM⊥ are degenerate but no longer complementary.
So, there exists a subspace RadTxM = TxM ∩ TxM⊥ which is called radical space. If the
mapping RadTM : x ∈ M → RadTxM defines a distribution, namely radical distribution, on
M of rank r > 0 then the submanifold M is called an r−lightlike submanifold [15].

Let S(TM) be the screen distribution which is a semi-Riemannian complementary distribu-
tion of RadTM in TM. So one can write

TM = S(TM)⊥RadTM, (2.1)

and S(TM⊥) is a complementary vector subbundle to RadTM in TM
⊥

. Let tr(TM) and
ltr(TM) be complementary (but not orthogonal) vector bundles to TM in TM̄ and RadTM in
S(TM⊥)⊥, respectively. In this case we arrive at

tr(TM) = S(TM⊥)⊥ltr(TM) , (2.2)

TM̄ = TM ⊕ tr(TM) = {RadTM ⊕ ltr(TM)}⊥S(TM)⊥S(TM⊥). (2.3)

Theorem 2.1. [15] Let (M, g, S(TM)) be a lightlike submanifold of a semi-Riemannian man-
ifold (M̄, ḡ). Then there exist a complementary vector subbundle ltr(TM) of RadTM in
S(TM⊥)⊥ and a basis of Γ(ltr(TM) |U consisting of smooth section {Ni} of S(TM⊥)⊥ |U ,
where U is a coordinate neighborhood of M, such that

ḡ(Ni, Ei) = 1, ḡ(Ni, Nj) = 0, (2.4)

where {E1, E2, ..., En} is a lightlike basis of Γ(RadTM).

For a lightlike submanifold (M, g, S(TM)) we have following four cases:
* If r < min{m,n} then M is a r−lightlike submanifold,
* If r = n < m, S(TM⊥) = {0} then M is a coisotropic lightlike submanifold,
* If r = m < n, S(TM) = {0} then M is a isotropic lightlike submanifold,
* If r = m = n, S(TM) = {0} = S(TM⊥) then M is a totally null submanifold.
By use of (2.3), the Gauss and Weingarten formulas are defined by

∇̄XY = ∇XY + h(X,Y ), ∀X,Y ∈ Γ(TM), (2.5)

∇̄XU = −AUX +∇tXU, ∀X ∈ Γ(TM), U ∈ Γ(tr(TM)), (2.6)

respectively, where {∇XY,AUX} belongs to Γ(TM) and {h(X,Y ),∇tXU} belongs to Γ(tr(TM)).
∇̄ and ∇t are linear connections on M and on the vector bundle tr(TM), respectively.

In view of (2.2), we consider the projection morphisms L and S of tr(TM) on ltr(TM) and
S(TM⊥). Therefore (2.5) and (2.6) become

∇̄XY = ∇XY + hl(X,Y ) + hs(X,Y ), X, Y ∈ Γ(TM), (2.7)

∇̄XN = −ANX +∇lXN +Ds(X,N), X ∈ Γ(TM), N ∈ Γ(ltr(TM)), (2.8)

∇̄XW = −AWX +∇sXW +Dl(X,W ), X ∈ Γ(TM),W ∈ Γ(S(TM⊥)), (2.9)

where hl(X,Y ) = L(h(X,Y )), hs(X,Y ) = S(h(X,Y )), ∇lXN, Dl(X,W ) ∈ Γ(ltr(TM)),
∇sXW, Ds(X,N) ∈ Γ(S(TM⊥)) and ∇XY, ANX, AWX ∈ Γ(TM).
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Assume that P is a projection of TM on S(TM). Then by use of (2.1), we have

∇XPY = ∇∗XPY + h∗(X,PY ), X, Y ∈ Γ(TM), (2.10)

∇XE = −A∗EX +∇∗tXE, X ∈ Γ(TM), E ∈ Γ(RadTM), (2.11)

where {∇∗XPY,A∗EX} belongs to Γ(S(TM)) and {h∗(X,PY ),∇∗tXE} belongs to Γ(RadTM).
Using (2.10) and (2.11), we get

ḡ(h∗(X,PY ), N) = ḡ(ANX,PY ), (2.12)

ḡ(hl(X,PY ), E) = ḡ(A∗EX,PY ), (2.13)

ḡ(hl(X,E), E) = 0, A∗EE = 0. (2.14)

In genereal, the induced connection ∇ on M is not a metric connection. Since ∇̄ is a metric
connection then from (2.7), we have

(∇Xg)(Y, Z) = ḡ(hl(X,Y ), Z) + ḡ(hl(X,Z), Y ). (2.15)

However, ∇∗ is a metric connection on S(TM).

2.2 Almost paracontact metric manifolds

A paracontact manifold M̄ is a differentiable manifold equipped with a 1−form η, a character-
istic vector field ξ and a tensor field φ̄ of type (1, 1) such that [24]:

η(ξ) = 1, (2.16)

φ̄2 = I − η ⊗ ξ, (2.17)

φ̄ξ = 0, (2.18)

η ◦ φ̄ = 0. (2.19)

Moreover, if the manifold M̄ is equipped with a semi-Riemannian metric ḡ of signature
(n+ 1, n), which is called compatible metric, satisfying [30]

ḡ(φ̄X, φ̄Y ) = −ḡ(X,Y ) + η(X)η(Y ), (2.20)

then we say that M̄ is an almost paracontact metric manifold with an almost paracontact metric
structure (φ̄, ξ, η, ḡ).

From the definition, one can see that [30]

ḡ(φ̄X, Y ) = −ḡ(X, φ̄Y ), (2.21)

ḡ(X, ξ) = η(X). (2.22)

If ḡ(X, φ̄Y ) = dη(X,Y ), then the almost paracontact metric manifold is said to be a paracontact
metric manifold.

For an almost paracontact metric manifold (M̄, φ̄, ξ, η, ḡ), one can always find a local or-
thonormal basis (Xi, φ̄Xi, ξ), i = 1, 2, ..., n, which is called φ̄−basis [30].

An almost paracontact metric manifold (M̄, φ̄, ξ, η, ḡ) is a para-Sasakian manifold if and
only if [30]

(∇̄X φ̄)Y = −ḡ(X,Y )ξ + η(Y )X, (2.23)

where ∇̄ is a Levi-Civita connection on M̄ .
From (2.23), one arrive at

∇̄Xξ = −φ̄X. (2.24)
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Example 2.2. [1] Let M̄ = R2n+1 be the (2n+1)−dimensional real number space with standard
coordinate system (x1, y1, x2, y2, ..., xn, yn, z) . Defining

φ
∂

∂xα
=

∂

∂yα
, φ

∂

∂yα
=

∂

∂xα
, φ

∂

∂z
= 0,

ξ =
∂

∂z
, η = dz, (2.25)

g = η ⊗ η +
n∑
α=1

(dxα ⊗ dxα − dyα ⊗ dyα),

where α = 1, 2, ..., n, then the set (M̄, φ̄, ξ, η, ḡ) is an almost paracontact metric manifold.

3 Main Theorems

Definition 3.1. Let (M, g, S(TM)) be a lightlike submanifold of a para-Sasakian manifold M̄ .
Then M is called a GCR-lightlike submanifold if the following conditions are provided,

i) There exist two subbundles µ1 and µ2 of RadTM such that

RadTM = µ1 ⊕ µ2, φ̄(µ1) = µ1, φ̄(µ2) ⊂ S(TM), (3.1)

ii) There exist two subbundles D̃1 and D̃2 of S(TM) such that

S(TM) = {φ̄(µ2)⊕ D̃2}⊥D̃1⊥{ξ}, φ̄(D̃2) = D0⊥D̃0, (3.2)

where D̃1 is an invariant non-degenerate distribution on M, {ξ} is a 1-dimensional distribution
spanned by ξ and D0, D̃0 are vector subbundles of ltr(TM) and S(TM⊥), respectively.

So one has the following:

TM = D ⊕ D̃2 ⊕ {ξ}, D = RadTM ⊕ D̃1 ⊕ φ̄(µ2). (3.3)

Let Q, S1, S2 be the projection morphisms on D, φ̄D̃0, φ̄D0, respectively. So we have

X = QX + ξ + S1X + S2X,

for X ∈ Γ(TM). Applying φ̄ to the both sides of above equation, we get

φ̄X = αX + βS1X + βS2X, (3.4)

where αX ∈ Γ(D), βS1X ∈ Γ(D̃0) and βS1X ∈ Γ(D0). Thus, one can write

φ̄X = αX + βX, (3.5)

where αX is the tangential component and βX is the transversal component of X .
Also, for any U ∈ Γ(tr(TM)) we have

φ̄U = BU + CU, (3.6)

where BU ∈ Γ(TM) and CU ∈ Γ(tr(TM)).
Differantiating (3.4) and in view of (2.8), (2.9) and (3.6), we get

Dl(X,βS1Y ) = −∇lXβS2Y + βS2∇XY (3.7)

−hl(X,αY ) + Chl(X,Y ),

Ds(X,βS2Y ) = −∇sXβS1Y + βS1∇XY (3.8)

−hs(X,αY ) + Chs(X,Y ).

By using (2.23) with (2.7) and (2.8), we give the following.
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Lemma 3.2. LetM be a GCR-lightlike submanifold of a para-Sasakian manifold. Then, we have

(∇Xα)Y = −g(X,Y )ξ + η(X)Y +AβYX +Bh(X,Y ), (3.9)

and
(∇tXβ)Y = −h(X,αY ) + Ch(X,Y ), (3.10)

for all X,Y ∈ Γ(TM), where (∇Xα)Y = ∇XαY − α∇XY and (∇tXβ)Y = ∇tXβY − β∇XY.

Lemma 3.3. LetM be a GCR-lightlike submanifold of a para-Sasakian manifold. Then, we have

(∇XB)U = ACUX − αAUX, (3.11)

(∇tXC)U = −βAUX − h(X,BU), (3.12)

for X ∈ Γ(TM) and U ∈ Γ(tr(TM)), where (∇XB)U = ∇XBU − B∇tXU and (∇tXC)U =
∇tXCU − C∇tXU .

Theorem 3.4. Let (M̄, φ̄, ξ, η, ḡ) be a para-Sasakian manifold and (M, g, S(TM)) be a GCR-
lightlike submanifold of M̄ . Then, we have

g(∇XY,Z) = −g(αAβYX,Z), (3.13)

for any Y ∈ Γ(D̃2) and Z ∈ Γ(D).

Proof. By use of (3.9), we get

−α∇XY = −g(X,Y )ξ +AβYX +Bh(X,Y ), (3.14)

for any Y ∈ Γ(D̃2).
If we take Z ∈ Γ(D) then we get φ̄Z ∈ Γ(D). Using this result in (3.14), we obtain

g(α∇XY, φ̄Z) = −g(AβYX, φ̄Z).

In view of (2.17) in above equation, we get (3.13).
Also taking Z ∈ Γ(D0), we obtain ∇XY = −αABYX .

Theorem 3.5. Let (M̄, φ̄, ξ, η, ḡ) be a para-Sasakian manifold and (M, g, S(TM)) be a GCR-
lightlike submanifold of M̄ . Then, D ⊕ {ξ} is integrable if and only if

h(X,αY ) = h(αX, Y ). (3.15)

Proof. From (3.7) and (3.8), for any X,Y ∈ Γ(D ⊕ {ξ}), we get

βS∇XY = hl(X,αY )− Chl(X,Y ). (3.16)

Replacing X by Y in (3.16), we get

βS∇YX = hl(Y, αX)− Chl(Y,X).

Finally, we arrive at
β[X,Y ] = h(X,αY )− h(Y, αX),

which completes the proof.

Theorem 3.6. Let (M̄, φ̄, ξ, η, ḡ) be a para-Sasakian manifold and (M, g, S(TM)) be a GCR-
lightlike submanifold of M̄ . Then, D̃2 is integrable if and only if

Aφ̄UV = Aφ̄V U. (3.17)
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Proof. From (3.9), we get

−f(∇UV ) = −g(U, V )ξ +AβV U +Bh(U, V ), (3.18)

for all U, V ∈ Γ(D̃2). Replacing U and V in (3.18), we have

−f(∇V U) = −g(V,U)ξ +AβUV +Bh(V,U). (3.19)

Substracting (3.19) from (3.18), we obtain

f [U, V ] = AβV U −AβUV,

which gives the equation (3.17) and completes the proof.

Theorem 3.7. Let (M̄, φ̄, ξ, η, ḡ) be a para-Sasakian manifold and (M, g, S(TM)) be a GCR-
lightlike submanifold of M̄ . Then, D ⊕ {ξ} defines a totally geodesic foliation if and only if

Bh(X, φ̄Y ) = 0.

Proof. In view of definition of GCR-lightlike submanifolds and the decomposition (3.3),D⊕{ξ}
defines a totally geodesic foliation if and only if

g(∇XY, φ̄E) = 0, ∀X,Y ∈ Γ(D ⊕ {ξ}), E ∈ Γ(µ2),

and
g(∇XY, φ̄W ) = 0, ∀X,Y ∈ Γ(D ⊕ {ξ}), W ∈ Γ(D̃0).

Using (2.7) and (2.23), we have

g(∇XY, φ̄E) = −g(φ̄∇XY,E) = −g(∇X φ̄Y, E) = −g(hl(X,αY ), E).

Similarly, we get

g(∇XY, φ̄W ) = −g(φ̄∇XY,W ) = −g(∇X φ̄Y,W ) = −g(hs(X,αY ),W ).

So, this completes the proof.

Theorem 3.8. Let (M̄, φ̄, ξ, η, ḡ) be a para-Sasakian manifold and (M, g, S(TM)) be a GCR-
lightlike submanifold of M̄ . The distribution D̃2 defines a totally geodesic foliation on M if and
only if, for all X,Y ∈ Γ(D̃2) and N ∈ Γ(ltr(TM)),

i) ANX has no component on φ̄(µ2)⊥φ̄D̃0,
and

ii) AβYX has no component on µ2⊥D̃2.

Proof. In view of the definition of GCR-lightlike submanifolds and the decomposition (3.3), D̃2
defines a totally geodesic foliation if and only if

g(∇XY,N) = 0, N ∈ Γ(ltr(TM)),

g(∇XY, φ̄P1) = 0, P1 ∈ Γ(D0),

g(∇XY, φ̄Z) = 0, Z ∈ Γ(D̃1).

g(∇XY, ξ) = 0,

for all X,Y ∈ Γ(D̃2). Using (2.7) and (2.8), we find

g(∇XY,N) = g(∇̄XY,N) = −g(Y, ∇̄XN) = g(Y,ANX). (3.20)

Similarly using (2.7) and (2.23), we get

g(∇XY, φ̄P1) = −g(φ̄∇XY, P1)

= −g(∇X φ̄Y, P1)

= −g(∇̄XβY, P1)

= g(AβYX,P1),

(3.21)
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g(∇XY, φ̄Z) = −g(φ̄∇XY, Z)
= −g(∇X φ̄Y, Z)
= −g(∇̄XβY, Z)
= g(AβYX,Z),

(3.22)

and
g(∇XY, ξ) = g(∇̄XY, ξ)

= −g(Y, ∇̄Xξ)
= g(Y, φ̄X)

= 0.

(3.23)

So, in view of (3.20)-(3.23), the proof is completed.

Theorem 3.9. Let (M̄, φ̄, ξ, η, ḡ) be a para-Sasakian manifold and (M, g, S(TM)) be a GCR-
lightlike submanifold of M̄ . Then, the induced connection ∇ is a metric connection if and only
if

−A∗φ̄EX +∇∗tX φ̄E ∈ Γ(φ̄(µ2)⊥µ1), X ∈ Γ(TM), E ∈ Γ(µ1),

∇∗X φ̄E + h∗(X, φ̄E) ∈ Γ(φ̄(µ2)⊥µ1), X ∈ Γ(TM), E ∈ Γ(µ2),

h(X, φ̄E) ∈ Γ(D0⊥D̃0)
⊥ and A∗EX ∈ Γ(D̃2⊥D̃1⊥φ̄(µ2)).

Proof. By use of (2.23), for any X ∈ Γ(TM), E ∈ Γ(RadTM), we get

∇̄X φ̄E = φ̄∇̄XE. (3.24)

Now, by considering (2.11) and (2.17), we get

∇XE + h(X,E) = φ̄(∇X φ̄E + h(X, φ̄E)) + g(A∗EX, ξ)ξ. (3.25)

Suppose that E ∈ Γ(µ1), so φ̄E ∈ Γ(µ1). Again in view of (2.11) and (3.25), we find

∇XE + h(X,E) = φ̄(−A∗φ̄EX +∇∗tX φ̄E + h(X, φ̄E)) (3.26)

+g(A∗EX, ξ)ξ,

which yields

∇XE = −αA∗φ̄EX + α∇∗tX φ̄E +Bh(X, φ̄E) + g(A∗EX, ξ)ξ. (3.27)

Thus ∇XE ∈ Γ(RadTM) if and only if

Bh(X, φ̄E) = 0,

−αA∗φ̄EX + α∇∗tX φ̄E ∈ Γ(RadTM),

and g(A∗EX, ξ) = 0 if and only if

h(X, φ̄E) ∈ Γ(D0⊥D̃0)
⊥, (3.28)

A∗EX ∈ Γ(D̃2⊥D̃1⊥φ̄(µ2)). (3.29)

Now, suppose that E ∈ Γ(µ2). By use of (2.10) with (3.25), we arrive at

∇XE = α∇∗X φ̄E + αh∗(X, φ̄E) +Bh(X, φ̄E) (3.30)

+g(A∗EX, ξ)ξ.

Therefore ∇XE ∈ Γ(RadTM) if and only if

Bh(X, φ̄E) = 0,

−αA∗φ̄EX + α∇∗tX φ̄E ∈ Γ(RadTM),
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and g(A∗EX, ξ) = 0 if and only if

h(X, φ̄E) ∈ Γ(L⊥S)⊥,

∇∗X φ̄E + h∗(X, φ̄E) ∈ Γ(φ̄(µ2)⊥µ1), (3.31)

A∗EX ∈ Γ(D̃2⊥D̃1⊥φ̄(µ2)). (3.32)

Thus, in view of (3.28), (3.29), (3.31) and (3.32), the proof is completed.
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