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Abstract. In this paper , we introduce a new subclass of bi-univalent function by making use
of convolution(or Hadamard product) of analytic functions. We obtain the coefficient bounds
and initial coefficient inequalities of this class using Faber polynomial approach. Connections to
earlier known results are briefly indicated.

1 Introduction, Definitions and Preliminaries

Let A denote the class of functions of the form:

f(z) = z +
∞∑
n=2

anz
n, (1.1)

which are analytic in the open unit disc U = {z : z ∈ C and |z| < 1} and satisfy the
normalization condition f(0) = f ′(0) = 1.

For functions f(z) defined by (1.1) and g(z) = z +
∞∑
n=2

bnz
n we define the convolution of

f(z) and g(z) by (f ∗ g)(z) = z +
∞∑
n=2

anbnz
n, z ∈ U

Let f(z) and g(z) be analytic functions in U , we say that f(z) is subordinate to g(z), written
as

f(z) ≺ g(z)
if there exist a Schwarz functions w(z) in U, such that f(z) = g(w(z)) with w(0) = 0 and
|w(z)| < 1 (z ∈ U) [10]
In particular, if the function g(z) is univalent in U , then the above subordination is equivalent to

f(0) = g(0)

and
f(U) ⊆ g(U).

Let S be the class of A consisting of the functions of the form (1.1) which are also univalent in
U. According to Koebe one quarter theorem [10], it is well known fact that every function f ∈ S
has an inverse f−1, which is defined by

f−1(f(z)) = z(z ∈ U)

and
f(f−1(w)) = w for |w| < 1/4.

A function f(z) ∈ A is said to be bi-univalent in U if both f(z) and f−1(z) are univalent in U .
Let Σ denote the class of all bi-univalent functions in U given by the Taylor-Maclaurin series
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expansion (1.1). Recently Hamidi et.al [13] and S. Bulut [7] have used the Faber polynomial
approach to find coefficient estimates for subclasses of bi-univalent functions. Motivated by
their work, in the present paper we introduce a new subclass of bi-univalent functions using
convolution and obtain the upper bounds for the same.
We now introduce the subclass Bλ,β

Σ
(f, g, h;φ) of bi-univalent functions as follows:

Definition 1.1. A function f(z) ∈ Σ is said to be in the class Bλ,β
Σ

(f, g, h;φ), for λ ≥ 0 if the
following conditions are satisfied:

eiβ
(1− λ)(f ∗ g)(z) + λ(f ∗ h)(z)

z
≺ φ(z)cosβ + isinβ (z ∈ U)

and

eiβ
(1− λ)(F ∗ g)(w) + λ(F ∗ h)(w)

w
≺ φ(w)cosβ + isinβ, (w ∈ U)

where β ∈ (−π/2, π/2) and F = f−1.

Remark 1.2. By giving special values for g, h, φ, λ, β , we obtain several subclasses of bi-
univalent functions that were studied earlier in the literature ([6],[9],[11],[12],[14],[20],[15],[5],
[16], [17], [4], [21]) out of which few are listed below.

(i) Bλ,0
Σ

[
f, z +

∞∑
n=2

npzn, z +
∞∑
n=2

np+1zn;φ

]
= BΣ(p, λ, φ) , this class was introduced and

studied by Altinkaya and Yalcin [6].

(ii) B1,β
Σ

[
f, g, z +

∞∑
n=2

Γ(n+ 1)Γ(2− λ)
Γ(n+ 1)− λ

zn;h

]
= Bλ,β

Σ
(h) , this class was introduced and

studied by Goyal and Goswami [12].

(iii) B1,0
Σ

[
f, g, z +

∞∑
n=2

nzn;
1 + (1− 2β)z

1− z

]
= HΣ(β), this class was introduced and studied

by Srivastava et.al [20].

(iv) Bλ,0
Σ

[
f, z

1−z ,
z

(1−z)2 ; 1+(1−2α)z
1−z

]
= Qλ(α) , this class was introduced by Ding et.al [9] and

studied by Frasin and Aouf [11] and improved by Jhangiri and Hamidi [14]

2 Coefficient bounds for the classBλ,β
Σ (f, g, h;φ)

Using the Faber Polynomial expansion of functions f(z) ∈ A of the form (1.1), the coef-
ficients of its inverse map F = f−1 may be expressed as [2], F (w) = f−1(w) = w +
∞∑
n=2

1
n
K−nn−1(a2, a3, ...)w

n where

K−nn−1 =
(−n)!

(−2n+ 1)!(n− 1)!
an−1

2 +
(−n)!

(2(−n+ 1))!(n− 3)!
an−3

2 a3

+
(−n)!

(−2n+ 3)!(n− 4)!
an−4

2 a4 +
(−n)!

(2(−n+ 2))!(n− 5)!
an−5

2 [a5 + (−n+ 2)a2
3]

+
(−n)!

(−2n+ 5)!(n− 6)!
an−6

2 [a6 + (−2n+ 5)a3a4] +
∑
i≥7

an−i2 Vi,

such that Vi with 7 ≤ i ≤ n is a homogeneous polynomial in the variables a2, a3, ..., an [3].

In particular, the first three terms of K−nn−1 are

1
2
K−2

1 = −a2

1
3
K−3

2 = 2a2
2 − a3
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1
4
K−4

3 = −(5a3
2 − 5a2a3 + a4)

In general, for any p ∈ N , an expansion of Kp
n is as, [[2],p.183]

Kp
n = pan +

p(p− 1)
2

D2
n +

(p!)
(p− 3)!3!

D3
n + ...+

p!
(p− n)!n!

Dn
n

where Dp
n = Dp

n(a2, a3, ...) and by [18]

Dm
n (a1, a2, ..., an) =

∞∑
m=1

m!(a1)µ1 ...(an)µn

µ1!...µn!

while a1 = 1, and the sum is taken over all non negative integers µ1, ..., µn satisfying

µ1 + µ2 + ...+ µn = m,

µ1 + 2µ2 + ...+ nµn = n,

It is clear that Dn
n(a1, a2, ..., an) = an1 [1].

Theorem 2.1. For λ ≥ 1 ,if f(z) ∈ Σ satisfies (1.1),is in the classBλ,β
Σ

(f, g, h;φ) If ak = 0; (2 ≤
k ≤ n− 1), then

|an| ≤
2cosβ

(1− λ)gn + λhn
, n ≥ 4

where β ∈ (−π/2, π/2).

Proof. Let f(z) ∈ Σ be as given in (1.1). Therefore,

eiβ
(1− λ)(f ∗ g)(z) + λ(f ∗ h)(z)

z
= eiβ

[
1 +

∞∑
n=2

[(1− λ)gn + λhn]anz
n−1

]
(2.1)

and for its inverse map, F = f−1,

eiβ
(1− λ)(F ∗ g)(w) + λ(F ∗ h)(w)

w
= eiβ

[
1 +

∞∑
n=2

[(1− λ)gn + λhn]bnw
n−1

]

= eiβ

[
1 +

∞∑
n=2

[(1− λ)gn + λhn]×
1
n
K−nn−1(a2, a3, ...)w

n−1

] (2.2)

On the other hand, since f ∈ Bλ,β
Σ

(f, g, h;φ) and F = f−1 ∈ Bλ,β
Σ

(f, g, h;φ), by definition,
there exist two Schwarz functions

p(z) = c1z + c2z
2 + c3z

3 + ...

and
q(w) = d1w + d2w

2 + d3w
3 + ...

such that

eiβ

[
1 +

∞∑
n=2

[(1− λ)gn + λhn]anz
n−1

]
= φ(p(z))

eiβ

[
1 +

∞∑
n=2

[(1− λ)gn + λhn]bnw
n−1

]
= φ(q(w))

where

φ(p(z)) = 1 +
∞∑
n=1

n∑
k=1

φkD
k
n(c1, c2, ..., cn)z

n (2.3)
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and

φ(q(w)) = 1 +
∞∑
n=1

n∑
k=1

φkD
k
n(d1, d2, ..., dn)w

n (2.4)

Comparing the corresponding coefficients of (2.1) and (2.3) we have

eiβ

[ ∞∑
n=2

[(1− λ)gn + λhn]anz
n−1

]
=

n−1∑
k=1

φkD
k
n−1(c1, c2, ..., cn−1), n ≥ 2 (2.5)

Similarly from (2.2) and (2.4) we have

eiβ

[ ∞∑
n=2

[(1− λ)gn + λhn]bnw
n−1

]
=

n−1∑
k=1

φkD
k
n−1(d1, d2, ..., dn−1), n ≥ 2 (2.6)

Now, (2.5) and (2.6) for ak = 0(2 ≤ k ≤ n− 1),respectively, yield

[(1− λ)gn + λhn]ane
iβ = φ1cn−1cosβ (2.7)

and
−[(1− λ)gn + λhn]ane

iβ = φ1dn−1cosβ (2.8)

Taking the absolute values of an in (2.7) or (2.8) and using the facts |φ1| ≤ 2, |cn−1| ≤ 1 and
|dn−1| ≤ 1 we obtain

|an| ≤
2cosβ

(1− λ)gn + λhn
(2.9)

Theorem 2.2. For λ ≥ 1 ,if f(z) ∈ Bλ,β
Σ

(f, g, h;φ). Then

(i)|a2| ≤ min

{
2cosβ

[(1− λ)g2 + λh2]
,

√
4cosβ

[(1− λ)g3 + λh3]

}

(ii)|a3| ≤ min
{

4cosβ
[(1− λ)g3 + λh3]

,
2cosβ

(1− λ)g3 + λh3]
+

4cos2(β)

[(1− λ)g2 + λh2]2

}
(iii)|2a2

2 − a3| ≤
4cosβ

[(1− λ)g3 + λh3]
where β ∈ (−π/2, π/2).

Proof. Letting n=2 and n=3 in (2.5) and (2.6) respectively, imply

a2[(1− λ)g2 + λh2]e
iβ = φ1c1cosβ (2.10)

a3[(1− λ)g3 + λh3]e
iβ = (φ1c2 + φ2c

2
1)cosβ (2.11)

−a2[(1− λ)g2 + λh2]e
iβ = φ1d1cosβ (2.12)

(2a2
2 − a3)[(1− λ)g3 + λh3]e

iβ = (φ1d2 + φ2d
2
1)cosβ (2.13)

From (2.10) or (2.12) we have

|a2| =
∣∣∣∣ φ1c1cosβ

eiβ[(1− λ)g2 + λh2]

∣∣∣∣ ≤ 2cosβ
[(1− λ)g2 + λh2]

(2.14)

From (2.10) and (2.12) we have

(2a2
2)[(1− λ)g2 + λh2]e

2iβ = φ2
1(c

2
1 + d2

1)cos
2β

a2
2 =

φ2
1(c

2
1 + d2

1)

2e2iβ[(1− λ)g2 + λh2]2
cos2β (2.15)
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From (2.11) and (2.13) we have

(2a2
2)[(1− λ)g3 + λh3]e

iβ = [φ1(c2 + d2) + φ2(c
2
1 + d2

1)]cosβ

a2
2 =

[φ1(c2 + d2) + φ2(c2
1 + d2

1)]

2[(1− λ)g3 + λh3]eiβ
cosβ

a2 =

√
[φ1(c2 + d2) + φ2(c2

1 + d2
1)]

2[(1− λ)g3 + λh3]eiβ
cosβ

|a2| ≤

√
4cosβ

[(1− λ)g3 + λh3]

and combining this with the inequality (2.14) we obtain the desired estimate on the coefficient
|a2| as asserted in the theorem.
Again from (2.11) we have

|a3| =
∣∣∣∣ (φ1c2 + φ2c

2
1)cosβ

eiβ[(1− λ)g3 + λh3]

∣∣∣∣ ≤ 4cosβ
[(1− λ)g3 + λh3]

(2.16)

On the other hand, from (2.11) and (2.13) we have

2(a3 − a2
2)[(1− λ)g3 + λh3]e

iβ = [φ1(c2 − d2) + φ2(c
2
1 − d2

1)]cosβ

Since c1 = −d1, therefore we find that

(a3 − a2
2) =

φ1(c2 − d2)

2eiβ[(1− λ)g3 + λh3]
cosβ

and using (2.15)

a3 =
φ1(c2 − d2)

2eiβ[(1− λ)g3 + λh3]
cosβ +

φ2
1(c

2
1 + d2

1)

2e2iβ[(1− λ)g2 + λh2]2
cos2β

which implies

|a3| ≤
2cosβ

[(1− λ)g3 + λh3]
+

4cos2β

[(1− λ)g2 + λh2]2

and combining this with the inequality (2.15) we obtain the desired estimate on the coefficient|a3|
as asserted in the theorem 2.2.
Also from (2.13) we have

|2a2
2 − a3| ≤

4cosβ
[(1− λ)g3 + λh3]

Remark 2.3. By specializing on the parameters g, h, φ, λ, β as in Remark 1.2, we obtain the
bounds on |a2| and |a3| which are improvement of the estimates given in ([12], [19], [5], [20],
[9], [11], [17], [4]) and corresponding results due to ([6], [15], [16], [14]).
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