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Abstract. In this paper, an idea of fuzzy sesquilinear form is introduced. Riesz representation
theorem for sesquilinear form is established in fuzzy setting.

1 Introduction

Metric, norm and inner product structures are the main tools of functional analysis. So to develop
fuzzy functional analysis, fuzzy metric, fuzzy norm and fuzzy inner product play the important
role. Several authors studied fuzzy metric space as well as fuzzy normed linear space and a large
number of papers have been published. We refer some of them which are related to our work [
see 1-14]. Study on fuzzy inner product spaces are relatively recent. Idea of real probabilistic
inner product space is introduced by Sklar [1]. Following his concept, Biswas [3], EI-Abyed
and Hamouly [4], Kohli and Kumar [9], Majumder and Samanta [10], Hasankhani, Nazari and
Saheli [7], Goudarzi and Vaezpour [6], Mukherjee and Bag [13] introduced the concept of fuzzy
inner product space in different approaches and developed many results in such spaces.
In this paper, following the definition of fuzzy inner product given by Hasankhani et.al [7], an
idea of fuzzy sesquilinear form is introduced as a fuzzy real number. Definition of bounded
fuzzy sesquilinear form is given and concept of fuzzy norm of sesquilinear form is introduced.
Riesz representation theorem for sesquilinear form has been established in fuzzy setting.
It is to be noted that Hasankhani et.al [9] considered the fuzzy real number in the sense of Kaleva
et. al [10] to define fuzzy inner product whose induced fuzzy norm is Felbin’s type [6] fuzzy
norm. In this paper we consider Xiao and Zhu [14] type fuzzy real number and the induced fuzzy
norm is Bag and Samanta [3] type fuzzy norm. In [3], it is shown that all the result which are
valid in Felbin’s fuzzy norm [6] are also valid in Bag and Samanta [3] type fuzzy norm.
The organization of the paper is as follows:
Section 2 comprises some preliminary results which are used in this paper.Riesz theorem for
fuzzy bounded linear operator is modified in section 3. Definition of fuzzy sesquilinear form is
given in Section 4. Riesz representation theorem is established in fuzzy setting in Section 5.

2 Preliminaries

In this section, some definitions and preliminary results are given which will be used in this pa-
per.
According to Mizumoto & Tanaka [11], a fuzzy real number is a mapping
x : R→ [0 , 1] over the set R of all reals.
x is called convex if x(t) ≥ min (x(s) , x(r)) where s ≤ t ≤ r.
If there exists t0 ∈ R such that x(t0) = 1, then x is called normal. For 0 < α ≤ 1, α-level set
of an upper semicontinuous convex normal fuzzy set of R ( denoted by [η]α) is a closed interval
[aα , bα], where aα = −∞ and bα = +∞ are admissible. When aα = −∞, for instance, then
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[aα , bα] means the interval (−∞ , bα]. Similar is the case when bα = +∞.
x is called non-negative if x(t) = 0, ∀t < 0.
For any real number r, r̄ is defined by r̄(t) = 1 if t = r and r̄(t) = 0 if t 6= r.
Kaleva & Seikkala [8] ( Felbin [5]) denoted the set of all convex, normal, upper semicontin-
uous fuzzy real numbers by E ( R(I)) and the set of all non-negative, convex, normal, upper
semicontinuous fuzzy real numbers by G(R∗(I)). A partial ordering ” � ” in E is defined by
η � δ if and only if a1

α ≤ a2
α and b1

α ≤ b2
α for all α ∈ (0 , 1] where [η]α = [a1

α , b
1
α] and

[δ]α = [a2
α , b

2
α]. The strict inequality in E is defined by η ≺ δ if and only if a1

α < a2
α and

b1
α < b2

α for each α ∈ (0 , 1].
According to Mizumoto and Tanaka [11], the arithmetic operations ⊕, 	, �, � on E ×E

are defined by
(x⊕ y)(t) = Sups∈R min {x(s) , y(t− s)}, t ∈ R,
(x	 y)(t) = Sups∈R min {x(s) , y(s− t)}, t ∈ R,
(x� y)(t) = Sups∈R,s6=0 min {x(s) , y( ts)}, t ∈ R.
(η � δ)(t) = Sups∈R min {η(st) , δ(s)}, t ∈ R.

Definition 2.1. [5] The absolute value |η| of η ∈ F (R) is defined by

|η|(t) =

{
max(η(t), η(-t)) if t ≥ 0
0 if t < 0

Lemma 2.2. [8] Let η, γ ∈ F (R) and [η]α = [η−α , η
+
α ], [γ]α = [γ−α , γ

+
α ] ∀ α ∈ ( 0, 1].

Then (i)[η ⊕ γ]α = [η−α + γ−α , η
+
α + γ+α ]

(ii)[η 	 γ]α = [η−α − γ+α , η+α − γ−α ]
(iii)[η � γ]α = [η−α γ

−
α , η

+
αγ

+
α ] for η, γ ∈ F+(R)

(iv)[1̄� η]α = [ 1
η+α
, 1
η−α

] if η−α > 0
(v)[|η|]α = [max( 0, η1

α, − η2
α),max( |η1

α|, |η2
α|)]

Definition 2.3. [5] Let X be a vector space over R.
Let || || : X → R∗(I) and the mappings
L,U : [0 , 1]× [0 , 1]→ [0 , 1] be symmetric, nondecreasing in both arguments and satisfying
L(0 , 0) = 0 and U(1 , 1) = 1.
Write [||x||]α = [||x||1α , ||x||2α] for x ∈ X, 0 < α ≤ 1 and suppose for all x ∈ X ,
x 6= 0, there exists α0 ∈ (0 , 1] independent of x such that for all α ≤ α0,
(A) ||x||2α < ∞,
(B) inf||x||1α > 0.
The quadruple (X , || ||, L , U) is called a fuzzy normed linear space and || || is a fuzzy norm if
(i) ||x|| = 0̄ if and only if x = 0 ( the null vector ),
(ii)||rx|| = |r|||x||, x ∈ X, r ∈ R,
(iii) for all x, y ∈ X,
(a) whenever s ≤ ||x||11, t ≤ ||y||11 and s+ t ≤ ||x+ y||11,
||x+ y||(s+ t) ≥ L(||x||(s) , ||y||(t)).
(b) whenever s ≥ ||x||11, t ≥ ||y||11 and s+ t ≥ ||x+ y||11,
||x+ y||(s+ t) ≤ U(||x||(s) , ||y||(t)).

Remark 2.4. [5] For the case when U =
∨
(max) and L =

∧
(min), then the condition (iii)

is equivalent to
||x+ y|| � ||x|| ⊕ ||y|| and || ||iα : i = 1, 2 are crisp norms on X and (X , || ||, L , U) is simply
denoted as (X , || ||).

Definition 2.5. [14] A mapping η : R→ [0, 1] is called a fuzzy real number,
whose α level set is denoted by
[η]α = {t : η(t) ≥ α}, 0 < α ≤ 1, if it satisfies two axioms:
(N1) There exists t0 ∈ R such that η(t0) = 1.
(N2) each α ∈ (0, 1]; [η]α = [η−α , η

+
α ],

where −∞, ηα ≤ +∞.
The set of all fuzzy real numbers is denoted by F .
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Since to each r ∈ R, one can consider r ∈ F defined by r(t) = 1 if t = r and r(t) = 0 if
t 6= r, R can be embedded in F .

Lemma 2.6. [14] η ∈ F if and only if η : R→ [0, 1] satisfies :
1. η normal, convex and upper semicontinuous.
2. limt→∞η(t) = 0.

Definition 2.7. [14] Let η ∈ F . Then η is called a positive fuzzy real number if
η(t) = 0 ∀t < 0. The set of all positive fuzzy real numbers is denoted by F+.

Definition 2.8. [7]Let X be a vector space over R. A fuzzy inner product on X is a mapping
< ., . >: X ×X → F (R) (set of fuzzy real numbers) such that for all vectors x, y, z ∈ X and
all r ∈ R,
(IP1)

〈
x+ y, z

〉
=
〈
x, z

〉
⊕
〈
y, z

〉
;

(IP2)
〈
rx, y

〉
= r̄ �

〈
x, y

〉
;

(IP3)
〈
x, y

〉
=
〈
y, x

〉
;

(IP4)
〈
x, x

〉
� 0̄;

(IP5) inf
α∈(0 , 1]

〈
x, x

〉−
α
> 0 if x 6= 0;

(IP6)
〈
x, x

〉
= 0̄ if and only if x = 0.

The vector space X equipped with a fuzzy inner product is called a fuzzy inner product space.
A fuzzy inner product on X defines a fuzzy number
||x|| =

√〈
x, x

〉
, ∀x ∈ X .

This is a well defined fuzzy norm.
A fuzzy Hilbert space is a complete fuzzy inner product space.

Definition 2.9. [2] Let (X, || ||) and (Y, || ||∗) be two fuzzy normed linear spaces and T : X → Y
be a linear operator. T is said to be strongly fuzzy bounded if there exists a real number k > 0
such that ||Tx||∗ � ||x|| � k̄ ∀x(6= 0) ∈ X.

Proposition 2.10. [2] Let T : (X, || ||1) → (Y, || ||2) be a strongly fuzzy bounded linear operator
and {[||T ||∗1α , ||T ||∗2α ];α ∈ (0, 1]} be a family of nested bounded closed intervals of real numbers.
Define a function ||T ||∗ : R→ [0, 1] by
||T ||∗(t) = ∨{α ∈ (0, 1] : t ∈ [||T ||∗1α , ||T ||∗2α ]}.
Then ||T ||∗ is a fuzzy real number (fuzzy interval) and it is the fuzzy norm of T .

Theorem 2.11. [7] Let Y be any subspace of a fuzzy inner product spaceX such that the normed
spaces (Y, || ||−α ) are complete, for all α ∈ (0, 1]. Then X = Y ⊕ Z where Z = Y ⊥.

Lemma 2.12. [13] Let (X, || ||) be a fuzzy normed linear space. If f is a strongly fuzzy contin-
uous mapping on X , then N(f) is a fuzzy closed subspace of X .

Theorem 2.13. [13][Riesz]
Let H be a fuzzy Hilbert space and H∗ be its first strong fuzzy dual space. Then for any f ∈ H∗
satisfying N(f) = {x ∈ H : f(x) = 0} is complete w.r.t. || ||−α , f can be represented as
||f(x)|| =< x, y > ∀x ∈ H , where y is unique and depends on f such that ||f ||+α = ||y||2α ∀ α ∈
( 0, 1], where [||f ||]α = [ ||f ||−α , ||f ||+α ], and [||y||]α = [ ||y||1α, ||y||2α],∀ α ∈ ( 0, 1].
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3 α-Inner products and Modified Riesz theorem

In this section, we show that α-level sets of fuzzy inner products are crisp inner products and
Riesz Theorem is introduced by Mukherjee and Bag[13] has been modified.

Theorem 3.1. Let X be a vector space over R and < ., . >: X ×X → F (R) be a fuzzy inner
product (Hasankhani type). Let [< x, y >]α = [< x, y >1

α, < x, y >2
α]∀ α ∈ ( 0, 1]. Then

{< ., . >1
α: α ∈ ( 0, 1]} and {< ., . >2

α: α ∈ ( 0, 1]} are families of crisp inner products from
X ×X → R.

Proof. We have ||x|| = √< x, x > and [< x, y >]α = [< x, y >1
α, < x, y >2

α]∀ α ∈ ( 0, 1].
Now < x, y >=< y, x >
⇒< x, y >1

α=< y, x >1
α, < x, y >2

α=< y, x >2
α

Again < x+ y, z >=< x, z > ⊕ < y, z >
⇒< x+ y, z >1

α=< x, z >1
α + < y, z >1

α and < x+ y, z >2
α=< x, z >2

α + < y, z >2
α

Now < rx, y >= r̄� < x, y >
⇒< rx, y >1

α= r < x, y >1
α and < rx, y >2

α= r < x, y >2
α

Also < x, x >� 0̄
⇒< x, x >1

α≥ 0 and < x, x >2
α≥ 0

Let x = 0 then < x, x >= 0̄
⇒< x, x >1

α= 0 and < x, x >2
α= 0 ∀ α ∈ ( 0, 1]

Choose α ∈ ( 0, 1] arbitrary.
Now < x, x >1

α= 0
⇒ inf

α∈(0 , 1]
< x, x >1

α= 0

⇒ x = 0 by (IP5)
Also < x, x >2

α= 0
⇒< x, x >1

α= 0
⇒ x = 0
Thus < x, y >1

α and < x, y >2
α are both crisp inner products on X ×X and ∀ α ∈ ( 0, 1]

.

Remark 3.2. {< ., . >1
α: α ∈ ( 0, 1]} and {< ., . >2

α: α ∈ ( 0, 1]} are increasing and
decreasing families of crisp inner products respectively.

Proof. Proof is obvious.

Theorem 3.3. [Riesz] Let H be a fuzzy Hilbert space and H∗ be its first strong fuzzy dual space.
Then for any f ∈ H∗ satisfying N(f) = {x ∈ H : f(x) = 0} is complete w.r.t. || ||−α , f can
be represented as ||f(x)|| =< x, y > ∀x ∈ H , where y is unique and depends on f such that
||f || = ||y||.

Proof. Without loss of generality we may suppose that f 6= 0.
Note that N(f) = {x ∈ H : f(x) = 0}.
Since f is strongly fuzzy continuous, so by Lemma 2.12, N(f) is a fuzzy closed subspace of H .
Again since f 6= 0 thus N(f) 6= H .
So by Theorem 2.11, ∃z0 ∈ H such that z0⊥N(f).

Let w = f(x)
f(z0)

z0.

Then f(x− w) = f(x− f(x)
f(z0)

z0) = 0.
i. e. x− w ∈ N(f).
So z0⊥(x− w) i. e

〈
x− w, z0

〉
= 0̄

i. e
〈
x, z0

〉
	
〈
w, z0

〉
= 0̄

⇒
〈
x, z0

〉−
α
−
〈
w, z0

〉+
α
= 0 and
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〈
x, z0

〉+
α
−
〈
w, z0

〉−
α
= 0 ∀α ∈ (0, 1].

Now
〈
x, z0

〉−
α
−
〈
w, z0

〉+
α
= 0 ∀α ∈ (0, 1]

⇒
〈
x, z0

〉−
α
−
〈 f(x)
f(z0)

z0, z0
〉+
α
= 0

⇒
〈
x, z0

〉−
α
− f(x)

f(z0)

〈
z0, z0

〉+
α
= 0

⇒ f(x) = f(z0)〈
z0, z0

〉+
α

〈
x, z0

〉−
α

(3.3.1).

Again from the relation
〈
x, z0

〉+
α
−
〈
w, z0

〉−
α
= 0 ∀α ∈ (0, 1],

we get f(x) = f(z0)〈
z0, z0

〉−
α

〈
x, z0

〉+
α

(3.3.2).

From (3.3.1) and (3.3.2) we have
f(x) = f(z0)

||z0||2∗

〈
x, z0

〉∗ ∀x ∈ H (since L. H. S of 3.3.1 and 3.3.2 are independent on α),

where
〈
,
〉∗

, || ||∗ are crisp inner product and crisp norm respectively and〈
x, z0

〉+
α
=
〈
x, z0

〉−
α
=
〈
x, z0

〉∗
,〈

z0, z0
〉+
α
=
〈
z0, z0

〉−
α
= ||z0||2∗

Therefore ||f(x)|| = |f(x)| =
〈
x, y

〉
, where y = |f(z0)|z0

||z0||2∗
. For uniqueness, if possible suppose

that y1(6= y) such that〈
x, y

〉
=
〈
x, y1

〉
∀x ∈ H

i. e
〈
x, y

〉−
α
=
〈
x, y1

〉−
α

and
〈
x, y

〉+
α
=
〈
x, y1

〉+
α
∀α ∈ (0, 1], ∀x ∈ H

i. e
〈
x, y − y1

〉−
α
=
〈
x, y − y1

〉+
α
= 0 ∀α ∈ (0, 1], ∀x ∈ H

⇒ y − y1 = 0
⇒ y = y1. Finally we have to show that ||f ||+α = ||y||+α ∀α ∈ (0, 1].

Note that ||f ||(t) =
∨
{α ∈ (0, 1] : t ∈ [||f ||∗1α , ||f ||∗2α ]}

where ||f ||∗1α = sup
x∈Hx 6=0

||f(x)||1α
||x||2α

and ||f ||∗2α = sup
x∈Hx6=0

||f(x)||2α
||x||1α

.

Recall that [||f ||∗1α , ||f ||∗2α ] ⊂ [||f ||−α , ||f ||+α ] and
for β < α, [||f ||−α , ||f ||+α ] ⊂ [||f ||∗1β , ||f ||∗2β ].

Now ||f ||+α ≤ ||f ||∗2β = sup
x∈Hx 6=0

||f(x)||2β
||x||1β

= sup
x∈Hx6=0

|f(x)|
||x||1β

= sup
x∈Hx6=0

< x, y >1
β

||x||1β
.

i. e. ||f ||+α ≤ sup
x∈Hx 6=0

||x||1β ||y||1β
||x||1β

= ||y||1β ≤ ||y||2β ∀β < α.

i. e. ||f ||+α ≤ inf
β<α
||y||2β .

i. e. ||f ||+α ≤ ||y||2α (3.3.3).

Again we have ||f(x)|| =
〈
x, y

〉
∀x ∈ H.

Taking x = y we get ||f(y)|| =
〈
y, y

〉
= ||y||2.

i. e. ||f(y)||2α = (||y||2α)2 and ||f(y)||1α = (||y||1α)2 ∀α ∈ (0, 1].
Now (||y||2α)2 = ||f(y)||2α ≤ ||f ||∗2α ||y||1α ≤ ||f ||+α ||y||2α
⇒ ||f ||+α ≥ ||y||2α ∀α ∈ (0, 1] (3.3.4).

From (3.3.3) and (3.3.4), we have ||f ||+α = ||y||2α ∀α ∈ (0, 1].

Now ||f ||−α ≤ ||f ||∗1α = sup
x∈Hx 6=0

||f(x)||1α
||x||2α

= sup
x∈Hx 6=0

|f(x)|
||x||2α

≤ sup
x∈Hx6=0

|f(x)|
||x||1α

= sup
x∈Hx6=0

< x, y >1
α

||x||1α
.

i. e. ||f ||−α ≤ sup
x∈Hx 6=0

||x||1α||y||1α
||x||1α

= ||y||1α

i. e. ||f ||−α ≤ ||y||1α (3.3.5).
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Now ||f ||∗1β ≤ ||f ||−α ∀β ≤ α,∀α, β ∈ (0, 1].

⇒ sup
x∈Hx6=0

||f(x)||1β
||x||2β

≤ ||f ||−α

⇒ ||f(x)||1β
||x||2β

≤ ||f ||−α∀x ∈ H,x 6= 0

So |f(x)|||x||2β
≤ ||f ||−α

⇒
〈
x, y
〉2

β

||x||2β
≤ ||f ||−α∀x ∈ H,x 6= 0

Take x = y, then

〈
y, y
〉2

β

||y||2β
≤ ||f ||−α

⇒ ||y||2β ||y||
2
β

||y||2β
≤ ||f ||−α

⇒ ||y||2β ≤ ||f ||−α ∀β ≤ α,∀α, β ∈ (0, 1].
⇒ inf

β≤α
||y||2β ≤ ||f ||−α

⇒ ||y||1α ≤ ||y||2α ≤ ||f ||−α (3.3.6).

Therefore from (3.3.5) and (3.3.6), we have ||f || = ||y||.

4 Fuzzy sesquilinear form

In this section, concept of fuzzy sesquilinear form is introduced and some properties are studied.

Definition 4.1. Let X and Y be vector spaces over the field R. Then a fuzzy sesquilinear form h
on X × Y is a mapping h : X × Y → F (R) such that for all
x, x1, x2 ∈ X and y, y1, y2 ∈ Y and all scalars α, β the following conditions hold:
(a) h(x1 + x2, y) = h(x1, y)⊕ h(x2, y)
(b) h(x, y1 + y2) = h(x, y1)⊕ h(x, y2)
(c) h(αx, y) = ᾱ� h(x, y)
(d) h(x, βy) = β̄ � h(x, y)
ᾱ denotes the fuzzy real number corresponding to α.

Example 4.2. Let (X,
〈
,
〉
) be a fuzzy inner product. Then

〈
,
〉

is a fuzzy sesquilinear form on
X × X.

Proof. Let x, y, z ∈ X and α, β are scalars.
Then (i)

〈
x+ y, z

〉
=
〈
x, z

〉
⊕
〈
y, z

〉
(ii)
〈
x, y + z

〉
=
〈
y + z, x

〉
=
〈
y, x

〉
⊕
〈
z, x

〉
=
〈
x, y

〉
⊕
〈
x, z

〉
(iii)

〈
αx, y

〉
= ᾱ�

〈
x, y

〉
(iv)

〈
x, βy

〉
=
〈
βy, x

〉
= β̄ �

〈
y, x

〉
= β̄ �

〈
x, y

〉
Hence from (i) to (iv), (X,

〈
,
〉
) is a fuzzy sesquilinear form.

Example 4.3. Let X and Y be two vector spaces over the field R of real numbers and f be a real
sesquilinear form on X × Y . Define h : X × Y → F (R) by

h( x, y)(t) =

{
f(x, y)
t if 0 < f(x, y) ≤ t

0 otherwise
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Then h is a fuzzy sesquilinear form on X × Y

Proof. Let α ∈ (0, 1] then h(x, y)(t) ≥ α
⇒ f(x, y) ≥ tα ⇒ t ≤ h(x, y)

α

Therefore [h(x, y)]α = [f(x, y), h(x, y)
α ] ∀α ∈ (0, 1].

Now for f(x, y) < 0 or t < 0 the proof is obvious.
So let f(x, y) ≥ 0 and t ≥ 0.
Let x1, x2 ∈ X; y1, y2 ∈ Y and a, b are real numbers.
Then (i) h1

α(x1 + x2, y1) = f(x1 + x2, y1)
= f(x1, y1) + f(x2, y1)
= h1

α(x1, y1) + h1
α(x2, y1).....(a)

h2
α(x1 + x2, y1) =

f(x1+x2, y1)
α

= f(x1, y1)
α + f(x2, y1)

α

= h2
α(x1, y1) + h2

α(x2, y1).....(b)
Then from (a) and (b) h(x1 + x2, y1) = h(x1, y1)⊕ h(x2, y1).
(ii) h1

α( x1, y1 + y2) = f(x1, y1 + y2)
= f(x1, y1) + f(x1, y2)
= h1

α(x1, y1) + h1
α( x1, y2)

Now h2
α( x1, y1 + y2) =

f(x1, y1+y2)
α

= f(x1, y1)
α + f(x1, y2)

α

= h2
α(x1, y1) + h2

α( x1, y2)
Therefore h(x1, y1 + y2) = h(x1, y1)⊕ h(x1, y2).
(iii)h1

α(ax1, y1) = f(ax1, y1)
= af(x1, y1)
= ah1

α(x1, y1)

h2
α(ax1, y1) =

f(ax1, y1)
α

= af(x1, y1)
α

= ah2
α(x1, y1)

So h(ax1, y1) = ā� h(x1, y1).
(iv) h1

α( x1, by1) = f(x1, by1)
= bf(x1, y1)
= bh1

α(x1, y1)

h2
α( x1, by1) =

f(x1, by1)
α

= bf(x1, y1)
α

= bh2
α(x1, y1)

Therefore h(x1, by1) = b̄� h(x1, y1).
Hence from (i) to (iv), h is a fuzzy sesquilinear form.

5 Norm of fuzzy sesquilinear form

In this Section notion of norm of fuzzy sesquilinear form is introduced and Riesz representation
theorem for sesquilinear form is established.

Definition 5.1. Let h be a fuzzy sesquilinear form on X × Y , where X and Y are real fuzzy
normed linear spaces. h is said to be bounded if ∃ a real number k such that
|h(x, y)| � (||x|| � ||y||) � k̄, ∀ (x, y) ∈ X × Y − {(0, 0)}
Here [|h(x, y)|]α = [max {0, h1

α(x, y),−h2
α(x, y)}, max {|h1

α(x, y)|, |h2
α(x, y)|}]

∀ α ∈ (0, 1]
Let h be a bounded sesquilinear form on X × Y. Then ∃ k ∈ R such that
|h(x, y)| � (||x|| � ||y||) � k̄, ∀ (x, y) ∈ X × Y − {(0, 0)}
Let A = max {0, h1

α(x, y),−h2
α(x, y)} and B = max {|h1

α(x, y)|, |h2
α(x, y)|}.

Then A
||x||2α||y||2α

≤ k
and B

||x||1α||y||1α
≤ k ∀ α ∈ (0, 1]
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Define ||h||∗1α =
∨

(x, y)∈X×Y−{(0,0)}
A

||x||2α||y||2α
and ||h||∗2α =

∨
(x, y)∈X×Y−{(0,0)}

B
||x||1α||y||1α

Lemma 5.2. Let η ∈ F (R), then |η|(t) = | − η|(t) ∀t ∈ R.

Proof. Let η be a fuzzy real number, so η ∈ F (R).
Then |η|(t) = max { η(t), η(−t)} if t ≥ 0

= 0 otherwise
Let [|η|]α = [ |η|1α, |η|2α] ∀ α ∈ ( 0, 1].
Choose a fixed α0 ∈ ( 0, 1] and let |η|1α0

= a, |η|2α0
= b.

Then either a > 0, b > 0 or a = 0, b > 0
In the trivial case when a = 0, b = 0, η = 0̄ proof is obvious.
Now let Aη = max { 0, |η|1α0

, − |η|2α0
}

= max { 0, a, − b} = |η|1α0

and Bη = max { |η|1α0
, |η|2α0

}
= max { |a|, |b|} = |η|2α0

.
Case I. When a > 0, b > 0.
Aη = max { 0, a, − b} = a, A−η = max { 0, − b, a} = a
and Bη = max { |a|, |b|} = b, B−η = max { | − b|, | − a|} = b
Case II. When a = 0, b > 0.
Aη = max { 0, 0, − b} = 0, A−η = max { 0, − b, 0} = 0
and Bη = max { 0, |b|} = b, B−η = max { | − b|, 0} = b
Thus Aη = A−η and Bη = B−η
Hence [|η|]α0 = [| − η|]α0 for α0 ∈ ( 0, 1]. Since α0 ∈ ( 0, 1] is arbitrary,
thus |η|(t) = | − η|(t) ∀t ∈ R.

Theorem 5.3. Let h be a bounded fuzzy sesquilinear form onX×Y such that h1
α(x, y).h

2
α(x, y) ≥

0 ∀ α ∈ (0, 1] and ∀ (x, y) ∈ X × Y , where X and Y are real fuzzy normed linear spaces.
Then { ||h||∗1α ; α ∈ (0, 1] } forms a family of norms.

Proof. Let α ∈ (0, 1].
Now we show that ||h||∗1α is a norm .
From definition it is clear that ||h||∗1α ≥ 0
Let h = 0, then ||h||∗1α = 0
Conversely, let ||h||∗1α = 0
Then max {0, h1

α(x, y),−h2
α(x, y)} = 0

⇒ h1
α(x, y) ≤ 0 ≤ h2

α(x, y) ⇒ h1
α(x, y).h

2
α(x, y) ≤ 0

But since h1
α(x, y).h

2
α(x, y) > 0 or h = 0̄.

Therefore h = 0̄.
Now let λ = λ(x, y) = λ̄, λ being a positive scalar.
Then ||λ h||∗1α =

∨
(x, y)∈X×Y−{(0,0)}

max{0,λh1
α(x, y),−λh

2
α(x, y)}

||x||2α||y||2α

= |λ|
∨

(x, y)∈X×Y−{(0,0)}
max{0,h1

α(x, y),−h
2
α(x, y)}

||x||2α||y||2α
= |λ| ||h||∗1α
Thus ||λ h||∗1α = |λ| ||h||∗1α when λ ≥ 0.
Now when λ < 0, let p = − λ, then p > 0.
Therefore || p h||∗1α = | p | ||h||∗1α
⇒ || (−λ) h||∗1α = | − λ| ||h||∗1α
⇒ || − (λ h )||∗1α = | λ| ||h||∗1α
⇒ || λ h||∗1α = | λ| ||h||∗1α [ From lemma 4.1 ]
Hence || λ h||∗1α = | λ| ||h||∗1α ∀ λ ∈ R and h ∈ F (R).
Thus || λ h||∗1α = | λ| ||h||∗1α ‘for all scalar λ.
Let h1, h2 be two bounded fuzzy sesquilinear form on X × Y
and let [h1]α = [aα, bα], [h2]α = [cα, dα] where aα, bα, cα, dα are reals with aα.bα < 0 oraα =
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bα = 0 and cα.dα < 0 or cα = dα = 0.
Let A = max {0, (h1 + h2)1

α,−(h1 + h2)2
α} = max {0, aα + cα,−(bα + dα)}

and B = max {0, aα,−bα}+max {0, cα,−dα}
Case I : Let aα < 0 < −bα
Then −dα < 0 < cα ⇒ B = −bα + cα, then B > 0, B > aα + cα, B > −bα − dα ⇒ A < B.
cα < 0 < −dα ⇒ B = −bα − dα, then B > 0, B > aα + cα, B = −bα − dα ⇒ A ≤ B.
Case II : Let −bα < 0 < aα
Then −dα < 0 < cα ⇒ B = aα + cα, then B > 0, B = aα + cα, B > −bα − dα ⇒ A ≤ B.
cα < 0 < −dα ⇒ B = aα − dα, then B > 0, B > aα + cα, B > −bα − dα ⇒ A < B.
Also when aα = bα = 0 or cα = dα = 0 we can get A ≤ B.
Thus in all the cases we have A ≤ B.
Thus we get ||h1 + h2||∗1α ≤ ||h1||∗1α + ||h2||∗1α
Hence we have ||h||∗1α is a norm .
Since α ∈ (0, 1] is arbitrary, { ||h||∗1α ; α ∈ (0, 1] } forms a family of norms.

Theorem 5.4. Let h be a bounded fuzzy sesquilinear form on X × Y , where X and Y are real
fuzzy normed linear spaces.Then { ||h||∗2α ; α ∈ (0, 1] } forms a family of norms.

Proof. Let α ∈ (0, 1].
Now we show that ||h||∗2α is a norm .
From definition it is clear that ||h||∗2α ≥ 0 ∀(x, y) ∈ X ×X − {(0, 0)}
Let h = 0, then ||h||∗2α = 0
Conversely, let ||h||∗2α = 0
Then max { |h1

α(x, y)|, |h2
α(x, y)| } = 0

⇒ h1
α(x, y) = h2

α(x, y) = 0 ⇒ h = 0
Now let λ = λ(x, y) = λ̄ λ being a scalar.
Then ||λ� h||∗2α =

∨
(x, y)∈X×Y−{(0,0)}

max{|λh1
α(x, y)|,|λh

2
α(x, y)|}

||x||1α||y||1α

= |λ|
∨

(x, y)∈X×Y−{(0,0)}
max{|h1

α(x, y)|,|h
2
α(x, y)|}

||x||1α||y||1α
= |λ| ||h||∗2α
Let h1, h2 be two bounded fuzzy sesquilinear form on X × Y .
and let [h1]α = [aα, bα], [h2]α = [cα, dα]
Case I : Let |aα|+ |cα| > |bα|+ |dα|
⇒ (|aα| − |bα|) + (|cα| − |dα|) > 0
Then (a) |aα| > |bα| and |cα| > |dα|
(b) |aα| > |bα| and |cα| < |dα|
(c) |aα| < |bα| and |cα| > |dα|
Now for I(a) we have max { |aα + cα|, |bα + dα|} ≤ max { |aα|+ |cα|, |bα|+ |dα|}
= |aα|+ |cα| = max { |aα|, |bα}+max { |cα|, |dα|}
For I(b) we have max { |aα + cα|, |bα + dα|} ≤ max { |aα|+ |cα|, |bα|+ |dα|}
= |aα|+ |cα| < |aα|+ |dα| = max { |aα|, |bα|}+max { |cα|, |dα|}
For I(c) we have max { |aα + cα|, |bα + dα|} ≤ max { |aα|+ |cα|, |bα|+ |dα|}
= |aα|+ |cα| < |bα|+ |cα| = max{|aα|, |bα|}+max{|cα|, |dα|}
Similarly by interchanging aα and bα; cα and dα we can get case II.
Thus in all cases we have max{|aα + cα|, |bα + dα|} ≤ max{|aα|, |bα|}+max{|cα|, |dα|}.
Thus we get ||h1 + h2||∗2α ≤ ||h1||∗2α + ||h2||∗2α
Hence we have ||h||∗2α is a norm.
Since α ∈ (0, 1] is arbitrary, {||h||∗2α ;α ∈ (0, 1]} forms a family of norms.

Definition 5.5. For α ≤ β; α, β ∈ (0, 1] we have,
|h(x, y)|1α ≤ |h(x, y)|1β and ||x||2α||y||2α ≥ ||x||2β ||y||2β ∀(x, y) ∈ X × Y − {(0, 0)} and h being
a bounded sesquilinear form such that h1

α(x, y).h
2
α(x, y) > 0 or h = ō ∀α ∈ (0, 1].

Then |h(x, y)|1α
||x||2α||y||2α

≤ |h(x, y)|1β
||x||2β ||y||

2
β

⇒
∨

(x, y)∈X×Y−{(0,0)}
|h(x, y)|1α
||x||2α||y||2α

≤
∨

(x, y)∈X×Y−{(0,0)}
|h(x, y)|1β
||x||2β ||y||

2
β

⇒ ||h||∗1α ≤ ||h||∗1β Thus {||h||∗1α ;α ∈ (0, 1]} forms an ascending family of norms.



32 S. Ghosal and T. Bag

Similarly we can show that {||h||∗2α ;α ∈ (0, 1]} forms an descending family of norms.
Therefore {[||h||∗1α , ||h||∗2α ];α ∈ (0, 1]} is a family of nested bounded closed intervals of real
numbers.
Define a function ||h||∗ : R → [0, 1] by
||h||∗(t) = ∨{α ∈ (0, 1] : t ∈ [||h||∗1α , ||h||∗2α ]}
Then from Proposition 2.1[2] ||h||∗ is a fuzzy interval and it is a fuzzy norm .

Theorem 5.6. [Riesz] Let H1, H2 be two fuzzy Hilbert spaces and
h : H1 × H2 → F (R) be a bounded fuzzy sesquilinear form such that h1

α(x, y).h
2
α(x, y) ≥

0 ∀α ∈ (0, 1]. Assume further that {y ∈ H2;h(x, y) = 0}, ∀x ∈ H1 is complete w.r.t. || ||1α.
Then h can be represented as h(x, y) =< Sx, y > where S : H1 → H2 is a bounded linear
operator. S is uniquely determined by h and has the norm ||h||∗ = ||S||

Proof. Consider h(x, y) and keep x fixed.
Now taking y as a variable we have from Theorem 2.1[13]
h(x, y) = < y, z > = < z, y > (5.6.1)

Here z ∈ H2 is unique but depends on fixed x ∈ H1. It follows that for each x we get an unique
z ∈ H2. So we can define an operator S : H1 → H2 given by Sx = z
Substituting z = Sx in (i) we have h(x, y) = < Sx, y >
Now for k1, k2 ∈ R and ∀α ∈ (0, 1] we have,
< S(k1x1 + k2x2), y >1

α

= h1
α(k1x1 + k2x2, y)

= k1h
1
α(x1, y) + k2h

1
α(x2, y)

= k1 < Sx1, y >
1
α + k2 < Sx2, y >

1
α

=< k1Sx1 + k2Sx2), y >1
α

⇒ S(k1x1 + k2x2) = k1Sx1 + k2Sx2
Therefore S is linear.

For β < α, α, β ∈ (0, 1] we have,
||h||∗2α ≤ ||h||∗2β
=
∨

(x, y)∈H1×H2−{(0,0)}
h2
β(x, y)

||x||1β ||y||
1
β

=
∨

(x, y)∈H1×H2−{(0,0)}
h1
β(x, y)

||x||1β ||y||
1
β

since h(x, y) = h̄(x, y).

=
∨

(x, y)∈H1×H2−{(0,0)}
<Sx, y>1

β

||x||1β ||y||
1
β

≤
∨

(x, y)∈H1×H2−{(0,0)}
||Sx||1β ||y||

1
β

||x||1β ||y||
1
β

=
∨
x∈H1−{0}

||Sx||1β
||x||1β

≤
∨
x∈H1−{0}

||Sx||2β
||x||1β

= ||S||2β
⇒ ||h||∗2α ≤ ||S||2β ∀β < α
Taking infimum we have
||h||∗2α ≤

∧
β< α; α,β ∈ (0, 1] ||S||2β

⇒ ||h||∗2α ≤ ||S||2α (5.6.2)

Now we have
h(x, Sx) = < Sx, Sx >= ||Sx||2
⇒ h2

α(x, Sx) = (||Sx||2α)2 ∀α ∈ (0, 1]
⇒ (||Sx||2α)2 = h2

α(x, Sx) ≤ ||h||∗2α ||x||1α||Sx||1α
≤ ||h||∗2α ||x||1α||Sx||2α
⇒ ||Sx||2α

||x||1α
≤ ||h||∗2α

Taking supremum we have∨
x∈H1−{0}

||Sx||2α
||x||1α

≤ ||h||∗2α
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⇒ ||S||2α ≤ ||h||∗2α
⇒ ||h||∗2α ≥ ||S||2α

(5.6.3)

Now from (5.6.2) and (5.6.3) we have ||h||∗2α = ||S||2α ∀α ∈ (0, 1]
(5.6.4)

Again h(x, Sx) = < Sx, Sx >= ||Sx||2
⇒ h1

α(x, Sx) = (||Sx||1α)2 and h1
α(x, Sx) = h2

α(x, Sx) ∀α ∈ (0, 1]
Therefore ||Sx||1α = ||Sx||2α ∀α ∈ (0, 1].
⇒ (||Sx||1α)2 = h1

α(x, Sx) ≤ ||h||∗1α ||x||2α||Sx||2α
= ||h||∗1α ||x||2α||Sx||1α
⇒ ||Sx||1α

||x||2α
≤ ||h||∗1α

Taking supremum we have∨
x∈H1−{0}

||Sx||1α
||x||2α

≤ ||h||∗1α
⇒ ||S||1α ≤ ||h||∗1α
⇒ ||h||∗1α ≥ ||S||1α

(5.6.5)

Now h(x, Sx) = < Sx, Sx >= ||Sx||2
⇒ h1

α(x, Sx) = (||Sx||1α)2 ∀α ∈ (0, 1]
⇒ h1

α(x, Sx)
||Sx||1α

= ||Sx||1α ≤ ||S||1α||x||2α
⇒ h1

α(x, Sx)
||Sx||2α

≤ h1
α(x, Sx)
||Sx||1α

≤ ||S||1α||x||2α
⇒ h1

α(x, Sx)
||Sx||2α ||x||2α

≤ ||S||1α
⇒ ||h||∗1α ≤ ||S||1α

(5.6.6)

Thus from (5.6.5) and (5.6.6) we get ||h||∗1α = ||S||1α ∀α ∈ (0, 1]
(5.6.7)

Hence from (5.6.4) and (5.6.7)||h||∗ = ||S||
Since h is bounded, so h(x, y) � (||x|| � ||y||) � k̄ and therefore ||h||∗2α ≤ k, k being a real
number and α ∈ (0, 1]
So ||S||2α ≤ k and ||S||1α ≤ k

⇒ ||Sx||1α
||x||2α

≤ k and ||Sx||
2
α

||x||1α
≤ k∀ x ∈ H1 − {0}

⇒ ||Sx|| � ||x|| � k̄.
Therefore S is fuzzy bounded.
For uniqueness if possible suppose that there is another bounded linear operator T such that
h(x, y) =< Sx, y >=< Tx, y >
Therefore < Sx, y >1

α= < Tx, y >1
α ∀α ∈ (0, 1].

⇒< Sx, y >1
α − < Tx, y >1

α= 0∀α ∈ (0, 1],∀x ∈ H1 and ∀y ∈ H2
⇒< (S − T )(x), y >1

α= 0∀α ∈ (0, 1],∀x ∈ H1 and ∀y ∈ H2
⇒ (S − T )(x) = θ∀x ∈ H1
⇒ S − T = 0
⇒ S = T
Thus S is unique and this comletes the proof.
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6 Conclusion

In this paper, idea of fuzzy sesquilinear form on linear spaces is introduced and establish Riesz
representation theorem for fuzzy sesquilinear form. This Riesz theorem for sesquilinear form
can be applied for proving existence of fuzzy adjoint operators. We think that there is a wide
scope of research in operator theory in fuzzy setting by using the results of this manuscript.
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