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Abstract. In this paper the author invesitigate the coefficient bounds using symmetric Toepliz
determinants T2(2), T2(3), T3(2) and T3(1) for the fiunctions in the class of Bazilevic family
denoted by Bn(α, β, g).

1 Introduction

Let A be the class of normalied anlytic functions in the open unit disk U = {z : |z| < 1} of the
form

f(z) = z +
∞∑
k=2

akz
k. (1.1)

Let S denotes the subclass of A consisting of all univalent function in U , normalized with
f(0) = 0, f ′(0)− 1 = 0.
Recently, in the theory of univalent function much efforts and attention has been concerted on
the estimates of bounds of Hankel matrices, this is so because Hankel determinant play a vital
role in different branches of academic endeavous with so many useful applications [11].
There are other matrices that are close relation with Hankel determinants such are the Toepliz
determinants. A Toepliz determinant can be thought of as upsidedown or inversion of Hankel de-
terminant, in that Hankel determinant have constant entries along the reverse diagonal, whereas
Toepliz matrices have constant entries along the diagonal. There are various applications of
Toepliz determinant to a wide range of areas of both pure and applied Mathematics; (see [20]).
The Hankel determinant of f for q ≥ 1, and k ≥ 1 was studied by Pommoroke [11,12] as

Hq(k) =

∣∣∣∣∣∣∣
ak ak+1 ... ak+q−1

ak+1 ... ...

ak+q−1... ... ak+2q−2

∣∣∣∣∣∣∣ ,
and defined the symmetric Toepliz determinant Tq(k) as follows

Tq(k) =

∣∣∣∣∣∣∣∣∣
ak ak+1 ... ak+q−1

ak+1 ak ... an+q

. . . .

ak+q−1 ak+q... ak

∣∣∣∣∣∣∣∣∣ .
In particular,

T2(2) =

∣∣∣∣∣ a2 a3

a3 a2

∣∣∣∣∣ ,

T2(3) =

∣∣∣∣∣ a3 a4

a4 a3

∣∣∣∣∣ ,
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T3(2) =

∣∣∣∣∣∣∣
a2 a3 a4

a3 a2 a4

a4 a3 a2

∣∣∣∣∣∣∣ .
In the present investigation, we consider the symmetric Toepliz determinant and obtain the esti-
mates of that determinants, whose elements are the coefficients of ak of Bazilevic function.
There is a long standing history as regards the problem of finding best possible bounds ||ak+1| − |ak||
for the function f ∈ S [5].
It is well-known that ||ak+1| − |ak|| ≤ n, but finding the exact values of the constant A for S
and its various subclasses proved difficult. Therefore, finding the estimates for Tq(k) is related
to finding bounds for A(k) = |ak+1 − ak|. However, the the function h(z) = z

(1+z)2 proved that
the best possible upperbound obtainable for A(k) is 2k + 1 , and so obtainning bounds for A(k)
is different from finding bounds for ||ak+1| − |ak||.
In the present investigation, we obtain the coefficient bounds for symmetric Toepliz determinant
T2(2), T2(3) ; T3(2) and T3(1), for f ∈ Bn(α, β, g) the class of Bazelevic functions which shall
be discussed in the next section.

2 ClassB(α, β, g), Definition and Preliminary

The class of Bazilevic functions denoted by B(α, β, g) was discovered in 1955 by a Russian
Mathematician called Bazilevic [3] and he Bazilevic defined the class as

f(z) =

{
α

(1 + β2)

∫ z

0
(p(t)− iβ)t−

(
1+ iαβ

1+β2

)
g(z)

− α

1+β2 dt

} 1+iβ
α

(2.1)

where p(z) = 1 + c1z + c2z
2 + ..... is a Caratheodory function [4] and g(z) is any starlike

function, that is Re zg
′(z)
g(z) > 0. The parameters α and β are real numbers α > 0, all powers are

meant to be principal determination only. The class of function in (2.1) is denoted by B(α, β, g).
The class had been investigated severally by many authors, the likes of Yamaguchi [19], Noonan
[7], Oladipo [8], Oladipo and Breaz [9], Thomas [17], Abduhalim [1], Opoola [10], Macgregor
[6], Singh [15], Tuan and Anh [18], and many others, but to the best of our knowledge not in
the direction of the present investigation. The class of Bazilevic function is almost the biggest
family of univalent function and a very useful tool in geometric function theory. Except that,
he, Bazilevic showed that each function f ∈ B(α, β, g) is univalent in D, very little is known
regarding the family as a whole. However, with some simplifications, it may be possible to
understand and investigate the family. Indeed, it is easy to verify that, with special choices of the
parameters α and β and the function g(z), the family B(α, β, g) crack down to some well-known
subclasses of univalent functions.
For instance, if we choose β = 0 in (2.1), we have

f(z) =

{
α

∫ z

0

p(v)

v
g(v)αdv

} 1
α

. (2.2)

On differentiating (2.2) we have

zf ′(z)f(z)α−1

g(z)α
= p(z).

Or equivalently

Re
zf ′(z)f(z)α−1

g(z)α
> 0. (2.3)

The subclasses of Bazilevic functions satisfying (2.3) are called Bazilevic functions of type α
and are denoted by B(α) see Singh [15]. In 1973, Noonman [7] gave a plausible description
of functions of the class B(α) as those functions in S for which r < 1 and the tangent to the
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curve Dα(r) =
{
βf
(
reiθ

)α
, 0 ≤ θ < 2π

}
never turns back on itself as much as π radian. If α

is taking as 1, the class B(α) reduces to the family of close-to-convex function. That is,

Re
zf ′(z)

g(z)
> 0 z ∈ D. (2.4)

Suppose we replace g(z) by f(z) in (2.5) then we have

Re
zf ′(z)

f(z)
> 0 z ∈ D,

which implies that f(z) is starlike.
Furthermore, in 1992, Abdulhalim [1] introduced a generalization of functions satisfying (4) by
putting g(z)α ≡ zα as

Re
Dnf(z)α

zα
> 0 z ∈ D, (2.5)

which are largely non-univalent in the unit disk, but by proving the inclusion

Bn+1(α) ⊂ Bn(α),

Abdulhalim in [1] was able to show that for all n ∈ N , each function of the B1(α) is univalent
in D.
In 1994, Opoola [10], and also Babalola [2] gave a more generalized form of Abdulhalim’s
geometric condition (6), with some little modification in [2], by defining a class Tαn (β) whose
functions satisfying

Re
Dnf(z)α

αnzα
> β z ∈ D

where α > 0 is real 0 ≤ β < 1 and Dn is the Salagean derivative operator defined in [14] as
follows

D0f(z) = f(z),

D1f(z) = Df(z) = zf ′(z),

Dnf(z) = D(Dn−1f(z)) = z(Dn−1f(z))′ = z +
∞∑
k=2

knakz
k.

Furthermore, we wish to quickly say here that from (1.1) we can write that

f(z)α =

(
z +

∞∑
k=2

akz
k

)α
.

Using binomial expansion on the above we obtain

f(z)α = zα +
∞∑
k=2

ak(α)z
α+k−1.

Definition 2.1 Let f be analytic in U , and be given by (1.1). Then the function f ∈ Bn+1(α, β, g)
if and only if

Re
z (Dnf(z)α)

′

αn+1g(z)α
> β (2.6)
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where α > 0 is real, 0 ≤ β < 1, g(z) is any starlike function, that is Re zg
′(z)
g(z) > 0 and Dn is the

well known Salgean derivative operator defined earlier [14].
Let P denote the class of functions consisting of p, such that

p(z) = 1 + c1z + c2z
2 + c3z

3..... = 1 +
∞∑
k=2

ckz
k (2.7)

which are regular in the open unit disk and satisfy p(0) = 1, Rep(z) > 0 for any z ∈ U . p(z) is
called the Cartheodory function [4].
Lemma 2.1 [13], Let the function p ∈ P be given by the series in (2.7) then sharp estimate
|ck| ≤ 2, k = 1, 2, 3, ... holds, the inequality is sharp for each k.
Lemma 2.2 [13], The power series for p(z) = 1 +

∑∞
k=2 ckz

k, for p ∈ P ; and let the function
f ∈ A be given by (1.1), then

2c2 = c2
1 + x(4− c2

1)

for some x, |x| ≤ 1 and

4c3 = c3
1 + 2c1(4− c2

1)x− c1(4− c2
1)x

2 + 2(4− c2
1)(1− |x|

2)ρ

for some complex value ρ, |ρ| ≤ 1.

3 Main Results

Theorem 3.1 Let α > 0 be real, 0 ≤ β < 1, n ∈ N ∪ {0}, and g(z) be any starlike function,
for any starlike function |bk| ≤ 2. If the function f(z) of the form (1.1) belongs to the class
Bn+1(α, β, g) then

T2(2) =
∣∣a2

3(α)− a2
2(α)

∣∣ ≤ 4α2(n+1)(4− 3β)2

(α+ 2)2(n+1) − 4α2(n+1)(2− β)2

(α+ 1)2(n+1) . (3.1)

Proof: Let the function f ∈ Bn+1(α, β, g), there exists p ∈ P such that

z(Dnf(z)α)′ − αn+1βg(z)α = αn+1(1− β)p(z)g(z)α. (3.2)

Then equating the coefficient in (3.2) to obtain

a2 =
αn+1(1− β)
(α+ 1)n+1 c1 +

αn+1

(α+ 1)n+1 b2(α),

a3 =
αn+1(1− β)
(α+ 1)n+1 c2 +

αn+1(1− β)
(α+ 1)n+1 c1b2(α) +

αn+1

(α+ 2)n+1 b3(α),

a4 =
αn+1(1− β)
(α+ 3)n+1 c3 +

αn+1(1− β)
(α+ 3)n+1 c2b2 +

αn+1(1− β)
(α+ 3)n+1 c1b3 +

αn+1

(α+ 3)n+1 b4.

Thus we have ∣∣a2
3(α)− a2

2(α)
∣∣ =

∣∣∣∣∣4α2(n+1)(1− β)2

(α+ 2)2(n+1) c2
1 +

α2(n+1)(1− β)2

(α+ 2)2(n+1) c2
2 +

4α2(n+1)(1− β)2

(α+ 2)2(n+1) c2
1 +

4α2(n+1)(1− β)
(α+ 2)2(n+1) c2

∣∣∣∣∣
+

∣∣∣∣∣8α2(n+1)(1− β)
(α+ 2)2(n+1) c1 +

4α2(n+1)

(α+ 2)2(n+1) −
α2(n+1)(1− β)2

(α+ 1)2(n+1) c2
1 −

4α2(n+1)(1− β)
(α+ 1)2(n+1) c1 −

4α2(n+1)

(α+ 1)2(n+1)

∣∣∣∣∣
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Substituting for c2 using Lemma 2.2 in the above equation we have∣∣a2
3(α)− a2

2(α)
∣∣ =

∣∣∣∣∣α2(n+1)(1− β)2

4 (α+ 2)2(n+1) c
4
1 +

2α2(n+1)(1− β)2

(α+ 2)2(n+1) c3
1 +

4α2(n+1)(1− β)2

(α+ 2)2(n+1) c2
1 −

α2(n+1)(1− β)2

(α+ 1)2(n+1) c2
1

∣∣∣∣∣+
∣∣∣∣∣2α2(n+1)(1− β)
(α+ 2)2(n+1) c2

1 +
8α2(n+1)(1− β)
(α+ 2)2(n+1) c1 −

4α2(n+1)(1− β)
(α+ 1)2(n+1) c1 +

4α2(n+1)

(α+ 2)2(n+1) −
4α2(n+1)

(α+ 1)2(n+1)

∣∣∣∣∣
+

∣∣∣∣∣α2(n+1)(1− β)2

2 (α+ 2)2(n+1) c
2
1xH +

α2(n+1)(1− β)2

4 (α+ 2)2(n+1) x
2H2 +

2α2(n+1)(1− β)2

4 (α+ 2)2(n+1) C1xH +
2α2(n+1)(1− β)
(α+ 2)2(n+1) xH

∣∣∣∣∣
By Lemma 2.1, we have |c1| ≤ 2. Fo convinience of notation, we take c1 = c and assume
without loss of generality that c ∈ [0, 2]. applying triangle inequality with H = 4− c2 we obtain
the following by substiting c2 as defined in Lemma 2.2

∣∣a2
3(α)− a2

2(α)
∣∣ ≤ ∣∣∣∣∣α2(n+1)(1− β)2

4 (α+ 2)2(n+1) c
4 +

2α2(n+1)(1− β)2

(α+ 2)2(n+1) c3 +
4α2(n+1)(1− β)2

(α+ 2)2(n+1) c2 − α2(n+1)(1− β)2

(α+ 1)2(n+1) c2

∣∣∣∣∣+
∣∣∣∣∣2α2(n+1)(1− β)
(α+ 2)2(n+1) c2 +

8α2(n+1)(1− β)
(α+ 2)2(n+1) c− 4α2(n+1)(1− β)

(α+ 1)2(n+1) c+
4α2(n+1)

(α+ 2)2(n+1) −
4α2(n+1)

(α+ 1)2(n+1)

∣∣∣∣∣
+
α2(n+1)(1− β)2

2 (α+ 2)2(n+1) c
2 |x|H +

α2(n+1)(1− β)2

4 (α+ 2)2(n+1) |x| 2H
2 +

2α2(n+1)(1− β)2

4 (α+ 2)2(n+1) c |x|H +
2α2(n+1)(1− β)
(α+ 2)2(n+1) |x|H

= φ(|x|).

Differentiating φ(|x|) and obviously φ′(|x|) > 0 on [0,1] and so φ(|x|) ≤ φ(1). Hence

∣∣a2
3(α)− a2

2(α)
∣∣ ≤ ∣∣∣∣∣α2(n+1)(1− β)2

4 (α+ 2)2(n+1) c
4 +

2α2(n+1)(1− β)2

(α+ 2)2(n+1) c3 +
4α2(n+1)(1− β)2

(α+ 2)2(n+1) c2
1 −

α2(n+1)(1− β)2

(α+ 1)2(n+1) c2

∣∣∣∣∣+
∣∣∣∣∣2α2(n+1)(1− β)
(α+ 2)2(n+1) c2

1 +
8α2(n+1)(1− β)
(α+ 2)2(n+1) c1 −

4α2(n+1)(1− β)
(α+ 1)2(n+1) c1 +

4α2(n+1)

(α+ 2)2(n+1) −
4α2(n+1)

(α+ 1)2(n+1)

∣∣∣∣∣
+
α2(n+1)(1− β)2

2 (α+ 2)2(n+1) c
2H +

α2(n+1)(1− β)2

2 (α+ 2)2(n+1) H
2 +

α2(n+1)(1− β)2

2 (α+ 2)2(n+1) cH +
2α2(n+1)(1− β)
(α+ 2)2(n+1) H

Trivially, we can show that the expression φ(|x|) has a maximum value

4α2(n+1)(4− 3β)2

(α+ 2)2(n+1) − 4α2(n+1)(2− β)2

(α+ 1)2(n+1) on [0, 2], when c = 2

If we set n = 0 and β = 0 in Theorem 3.1 we have
Corollary 3.1 Let α > 0 be real and if the function f(z) be of the form (1.1) belongs to
B0(α, 0, g) ≡ B0(α, g) then

T2(2) =
∣∣a2

3(α)− a2
2(α)

∣∣ ≤ 16α2
[

4
(α+ 2)2 −

1
(α+ 1)2

]
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Suppose β = 0, n = 0, and α = 1 then we have
Corollary 3.2 Let α = 1 be real and if the function f(z) be of the form (1.1) belongs to
B0(1, g) ≡ B0(g) then

T2(2) =
∣∣a2

3 − a2
2

∣∣ ≤ 3.11

Theorem 3.2 Let 0 ≤ β < 1, α > 0 be real n ∈ N ∪ {0}, if the function f(z) be of the form
(1.1) belongs to the class Bn+1(α, β, g) then

T2(3) =
∣∣a2

4(α)− a2
3(α)

∣∣ ≤ 4α2(n+1)(6− 5β)2

(α+ 3)2(n+1) − 4α2(n+1)(4− 3β)2

(α+ 2)2(n+1)

Proof: Following the method of proof of Theorem 3.1 and using Lemma 2.2 to express c2 and c3

interms of c1 and letting H = 4− c2
1 and M = (1− |x|2)ρ the desired results shall be obtained.

If we set n = 0 and β = 0 in Theorem 3.2 we have
Corollary 3.3 Let α > 0 be real and if the function f(z) be of the form (1.1) belongs to
B1(α, 0, g) ≡ B(α, g) then

T2(2) =
∣∣a2

4(α)− a2
3(α)

∣∣ ≤ 16α2
[

9
(α+ 3)2 −

4
(α+ 2)2

]
Suppose β = 0, n = 0, and α = 1 then we have
Corollary 3.4 Let α = 1 be real and if the function f(z) be of the form (1.1) belongs to
B1(α, 0, g) ≡ B(α, g) then

T2(2) =
∣∣a2

4(α)− a2
3(α)

∣∣ ≤ 1.89

Theorem 3.3 Let 0 ≤ β < 1, α > 0 be real, n ∈ N ∪ {0} and if the function f(z) be of the form
(1.1) belongs to the class Bn+1(α, β, g) then

T3(2) =
∣∣(a2 − a4)(a

2
2 − 2a2

3 + a2a4)
∣∣ ≤

[
2α(n+1)(2− β)
(α+ 1)(n+1) −

2α(n+1)(6− 5β)

(α+ 3)(n+1)

][
4α2(n+1)(2− β)2

(α+ 1)2(n+1) − 8α2(n+1)(4− 3β)2

(α+ 2)2(n+1) +
4α2(n+1)(2− β)(6− 5β)

(α+ 2)(n+1)
(α+ 3)n+1

]

Proof: The proof also follows the same method of Theorem 3.1 with some simple substitutions.
Theorem 3.4 Let 0 ≤ β < 1, α > 0 be real n ∈ N ∪ {0} and g(z) is any starlike function, and
if f(z) is of form (1.1) belong to Bn+1(α, β, g) then

T3(1) =
∣∣1 + 2a2

2(a3 − 1)− a2
3

∣∣ ≤ 1 +
32α3(n+1)(4− 3β)(2− β)2

(α+ 1)2(n+1)
(α+ 2)2(n+1)

− 4α2(n+1)(4− 3β)2

(α+ 2)2(n+1) − 8α2(n+1)(2− β)2

(α+ 2)2(n+1)

Proof: The proof follows from the earlier Theorems 3.1 and the Lemmas 2.2.
With various choices of parameters involved α, β, n and g results for many existing classes for
functions studied in earlier mentioned literatures could be derived and many new could be arrived
at.
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