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Abstract. A typical case study of orthogonal polynomials related to a divergent and conver-
gent S-fractions connected to the Stern-Stolz series, namely,
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are presented.
1 Introduction
The convergent S-fraction
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connected to Stern-Stolz series
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was taken up as a case study in [8]. Four orthogonal polynomials were constructed and only one
pair showed classical nature. A similar case study was taken up for the convergent S-fraction
which has asymptotic expansion,namely, the Euler’s divergent series in the confluent hypergeo-
metric family [9].

Four powerful results available in the literature, namely, the main theorem on convergence

and divergence of S-fractions connected to Stern-Stolz series [6],
Ramanujan’s entry 17 in his second note book [3]on expanding a regular C-fraction into a power
series expansion, Favard’s theorem on orthogonality of polynomials [4] described by the three
term recurrence relations and the theorem which gives useful criteria to describe orthogonal poly-
nomials as classical or not [1], are applied to the typical case study of orthogonal polynomials
related to a divergent and convergent S-fractions connected to the Stern-Stolz series, namely,

1 1 1 1 ?
((2)—14— 32+ +- +—n2+--~——6
and r 1 1 1

All the four orthogonal polynomials are nonclassical. The present investigation is aimed at
getting an intuitive picture of effects of convergence and divergence of S-fraction on classical
nature of orthogonal polynomials. Still one has to find answer to the question “ Is there an S-
fraction corresponding to a divergent power series from which one can construct four orthogonal
polynomials such that all four polynomials are classical orthogonal polynomials?"
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Motivated strongly by the above works, four orthogonal polynomials are extracted from
numerator as well as denominator polynomials of both even and odd order convergents of a
divergent S-fraction connected to Pade approximants for power series expansion. In Section
two, we construct the power series using divergent S-fraction and compute four sequences of
polynomials. In the third Section, we describe the orthogonality of the two polynomials extracted
from denominators and two polynomials extracted from numerators. In the last Section, we
shown that they are non classical orthogonal polynomials.

2 S-fraction and its power series expansion

In the literature [3, 10], each continued fraction can be converted into a power series and vice
versa. Making use of this we construct the power series from the known divergent and convergent
S-fractions. Following the literature, the divergent and convergent regular S - fractions are given
by the following theorem [6, 7] :

Theorem 2.1. The S-fraction K(a,z/1) where all a,, > 0, has the following properties:

(i) Its even and odd parts converge locally uniformly in D = {z € C;|arg(z)| < 7} to
holomorphic functions.

(ii) It converges to a holomorphic function in D if and only if the Stern-Stolz series
e _yn—Fk+1
> o
n=1k=1
of K(ay /1) diverges to co.
(iii) It diverges for all z € D if the Stern-Stolz series converges.

Let us consider the divergent S-fraction
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and also consider the convergent S-fraction
lz 1z 2z 3z nlz

D, == — — ,
Z(Z) I + 1 + 1 + 1 +..40 1 +..

connected to Stern-Stolz series

1 11 1 11 T (ke
+ a—+ —ar— +a—az—+---+ | | (ax) + -
aq ar aq as an a4 el
D R U DS S S
T 1727371 n -

Following result of Ranamujan in his Notebook II, Entry 17 [3] guide us to compute co-efficients
of the power series starting from the regular C-fraction.

Entry 17 : Write

1 a1x arx azx > k
- 2= 2200 =N Ap(—a)k,
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where Ag = 1. Let
P,=ajay - an_1(ay+azx+az+ - +an).

Then
Po= Ay
P, = A,
Py = Az —a1Ay
Py = Ay— (a1 +az)A;,
Ps = As— (a1 +ax+a3)As +araz A,
P = A¢— (a1 +ax+a3+as)As + (a1a3 + azas + ajas) Ag.

In general, foralln > 1,

P, = Z (_l)kﬁbk(n)Anfka

0<k<n/2
where ¢o(n) = 1 and ¢,.(n),r > 1, is defined recursively by
br(n+ 1) = 6,(n) = an_16r_1(n — 1).
Applying the above result, we obtain the following power series of the desired S-fractions

2 12,92 2 22 242 122
D(z) = 1 12222 2232 3°.-4% (n—1)* - n’x .0
I+ 1 + 1 4+ 1 4.4 1 + o

= 1-Ciz+Cu® — Csa’ +---
= 1 — 4+ 1602> — 271362> + 131952642* — +--- .

and

De(e) = 1 T . T .1 .. 2.2)

= l—clx—l—czx2—03x3+-~-
= 1—a2+32%—212% +4592* — 480692 + — - -+ .

2.1 A divergent S-fraction and its power series expansion

In the context of Pade table [2], the divergent S-fraction provides a staircase sequence of Pade
approximants

[0/0] p(a)» [0/1] s [1/ 1 D@y [1/2] D) 2/2]D(a)s - -+ > [0 = /0] pays [0/7]p@ys - - -

which are given by
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Ay () _ [ P()(O»])(w) Ay(z _ 1+ 180z _ Pl(l,z)(x)
By(x) [+dr QOV(p) Bule)  1+184x+5762%  QU2(y)

)
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(
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The even order convergents of divergent S-fraction:
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Let us make use of definitions of even parts of S-fraction as given in [10]. [n— 1/n]p(,) Pade
approximants can be computed using the even part of S-fraction (2.1):

1 (1-22)(22-3%)a2 (2n — 12(20)*(2n + 1) 22
14+ (1-2%)z _ 1+ (22442322 _ . _ 1+ (2n)2+ (2n+2))2n+1)2z _ .~
The n'" convergent m is given by
(1+ (2n+1)%((2n)* + (2n+2)*)2) Az (z) — (20— 1)?(20)*(2n + 1) Aoy, o ()
(14 2n+1)2((2n)? + (2n +2)?)x) Ban(z) — (2n — 1)2(2n)*(2n + 1)222 By, 2 ()
with
By(z)  1+4z’ By(z) 1+ 184z +576z2° "~ 7

The odd order convergents of divergent S-fraction:
Let us make use of definitions of odd parts of S-fraction as given in [10]. [n/n]p(,) Pade
approximants can be computed using the odd part of S-fraction (2.1):

- (1-2%)z (22-3%)(32 - 42)2? (2n)2(2n + 1)*(2n + 2)%22
1+ (12432222 14+ 324524 1+ (2n+1)2+(2n+3)?)2n+2)2x =
The n*" convergent Ale(x) is given by
2n+1(x)

(1 +(2n+2)2(2n+ 1)+ (2n + 3)2)1;) Asp_1(x) — (2n)2(2n + 1)*(2n + 2)%2% Ay, _3(2)
(14+ (2n+2)2(2n+1)2 + (2n + 3)?)x) Ban—1(x) — (2n)?(2n + 1)*(2n 4 2)222 By, —3(x)

with

Ai(z) 1 Az(x)  1+36x
Bl(x) - 1’ B';(J,‘) - 1-’-4-0337

n=273,... .

2.2 A convergent S-fraction and its power series expansion

In the context of Pade table [2], the convergent S-fraction provides a staircase sequence of Pade
approximants

[0/0]p,(2)s [0/, (@) [1/Ub.(@)s [1/2]D.(@)s [2/2]Dota)s - - - [0 = 1/1] D @)y [0/7] Do)y - -5

which are given by

Ar) 1 _P@) As(@) 1420 PMV(@) A (z) _ P ()
B1 (.Z') 1 Q(()(),()) ({1})’ B3(£E) 1+ 3z Q(ll,l)(x) S ey an_H(.’E) Q%”vn)(x)
and
A 1 POV Ayw) 148 P ()
By(z) — 1+az Qéo’l)(at), By(z)  1+9z+ 622 Q" ()’

A2n+2($) o P?SH_Ln)(-T)

" Bona (@) Q’(nn—l,n)(x).

The even order convergents of convergent S-fraction:
Let us make use of definitions of even parts of S-fraction as given in [10]. [n — 1/n]p ()
Pade approximants can be computed using the even part of S-fraction (2.2):

1 12122 (2n!)(2n — 1)!2?
I+ -1+ 2'4+3)2z _ . _1+(2n)+Cn+ 1)z _ -
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Arp ()

The n*" convergent
2n+2(x)

is given by

(1+((2n)! + 2n+ ))z) Ayp(x) — (2n — 1)1(2n)! 22 Ay, 2 ()
(14 (2n)! + (2n+ 1)1)z) Bap(x) — (2n — 1)!(2n)! 22Bay—2(2)

with
Ar(z) 1 Ay(z) 148z 123
By(x) 1+2’ By(x) 1492+ 622’ M Sde

The odd order convergents of convergent S-fraction:
Let us make use of definitions of odd parts of S-fraction as given in [10]. [n/n]p_(,) Pade
approximants can be computed using the odd part of S-fraction (2.2):

1 1z (213022 (2n)!- (2n + 1)!2?
I+ (422 1+ @' +4)z_ 1+ (2n+ 1)1+ 2n+2))z_ .~
The n*" convergent AZLM is given by
2n+3(x)

(1+(2n+ 1)+ (2n +2))z) Azpi1(x) — (2n)!(2n + 1)122 Ay, ()
(I+(2n+ 1)+ 2n+2))z) Baps1(x) — 2n)!1(2n + 1)122 By -1 (2)

with
1 Az(z) 142z
B](l‘) 1’ B3($) 1432’

n=12.3,....

3 Orthogonal polynomials extracted from S- fraction

In this Section, we describe the orthogonal polynomials thus extracted from S-fraction.
The desired orthogonal polynomials:

1 1
" Ay <) , qn(x) = x" By, (> ,
X X

1 1
n = TIA n — y n - nB n - 5
rn () 2" Appit (g;) sn(z) = 2" Bapt1 <;r)

pn(T)

n = 0,1,2,..., where Bo(l> = 1.
x

3.1 Orthogonal polynomials extracted from divergent S- fraction

Orthogonality of ¢, () of divergent S- fraction :
Consider the series

D(z) =1—Ciz+ Cra?® — C32® + Cya* — Csa® + -+ (=1)"Cpa™ + -+,

where D indicates that the power series is divergent. The linear moment generating function
with respect to D(z) denoted by Lp has n*" moment,

LD{.’I,‘n} = (—1)"C’n
The three term recurrence relation of ¢, () is
Gn1(z) = (z+2n+1)*((2n)* + 2n+2)?)) gu(z)

—(2n - 1)*(2n)*(2n + 1)2g,_1(2),
@) = 1, q(z)=z+4, n=23,.... (3.1
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As a result of applying Favard’s theorem, we obtain the orthogonality of g, (z) is

0, m # n;
)\1)‘2 )\n+17 m=mn,

LD{Qm(x)q”( )} = {

where A\; = 1, and A\, = (2k —2)*(2k —3)*(2k — 1)> k=2,3,...,n+ 1.

Orthogonality of s, () of divergent S- fraction:
Following the literature [2], we obtain the series

1 — D(z)

Di(z) = —

=0 — G+ C3a> = Cyz’ + -+ + (=1)"Crpya™ + - -

The linear moment generating function with respect to D1 (z) denoted by Lp, has n** moment

Lp, {xn} = (_l)nCTH—l-

The three term recurrence relation of s, () is

sni1(z) = (24 2n+2)2((2n+1)* + (20 +3)%))sn(x)
—(2n)*(2n+ 1)*(2n +2)%s,_1(2),
so(z) = 1, si(z) =z 440, n=1,2,3,... .

As a result of applying Favard’s theorem, we obtain the orthogonality of s, () is

0, m # n;
Lp,{sm =
by {sm(@)sn(2)} = {Mz et mem
where \; = 1 and \, = (2n —2)*(2n — 1)?(2n)?, k=2,3,...,n+ 1.

Orthogonality of r,, () of divergent S- fraction :
Following the literature [2], we obtain the series

1
D) = | - Eiz+ Eya? — Bsa® + -+ (= 1)"Epa™ + - -
and
D%f) -1 2 3
Dy(z) = s E| — Eyx + Esz” — Eax” + -+ (= 1)"Eppa”™ 4+ -+ .

(3.2)

The linear moment generating function with respect to Dy (z) denoted by Lp, has n** moment

LDz{xn} = (_l)nEvH—l-

The three term recurrence relation of r,,(x) is

rap1(z) = (24 2n+2)*((2n 4 1)* + 20+ 3)%))ra(x)
— (2n)?(2n + 1)*(2n + 2)%r, 1 (),
ro(z) = 1, ri(z) =24+36, n=1,2.73,.

As a result of applying Favard’s theorem, we obtain the orthogonality of r,, () is

0, m # n;
)\l)\Z )\n+17 m=mn,

Lp,{rm(z)rn(z )}—{

where A\; = 1 and A\, = (2k — 2)%(2k — 1)2(2n)?, k=2,3,...,n+ 1.

(3.3)
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Suppose 7, (z) = 2™ + 112" + - 4+ 1@ + 1ro. Since Lp,{ro(z)r,(z)} = 0, we can
compute E,, using

En=—lra1Buy+-+nE+n, Bp=1, n=12... .

Orthogonality of p,, (z) of divergent S- fraction:
Following the literature [2], we obtain the series

D%I) - 2 3
D3()— 2 =1-FNx+ Fx — Fx —|——|—(—])"Fnl’"—|— .
The linear moment generating function with respect to D3(z) denoted by L p, has n*" moment
Loy{a™} = (~1)"F.
The three term recurrence relation of p, (z) is
Posi() = (24 Q2n+3)*((2n+2)* + (20 +4)*)) pa(2)
— (2n 4+ 1)2(2n +2)*(2n + 3)*pn_1(2),
po(z) = 1, pi(z) =2+180, n=1,2,3,... . (3.4)

As a result of applying Favard’s theorem, we obtain the orthogonality of p, () is

0, m # n;
A1A2"'A1’L+1a m=mn,

Lpy{pm(z)pn(2)} = {

where \; = 1 and A\, = (2k — 1)*(2k)*(2k +1)?, k=2,3,...,n+ 1.

Suppose p,(z) = 2™ + p,_12" "' + -+ + p1x + po. Since Lp,{po(z)pn(x)} = 0, we can
compute F;, using

Fo,=—pna1Fnoi +--+piFi+p), Fo=1, n=12... .

3.2 Orthogonal polynomials extracted from convergent S- fraction

Orthogonality of ¢, () of convergent S- fraction :
Consider the series

D.(z) =1 -1z + cpa* — 32 + eya* —es2® 4+ -+ (=1)"cpz™ + -+,

where D, indicates that the power series is divergent and the continued fraction is convergent.
The linear moment generating function with respect to D, (z) denoted by Lp_ has n* moment,

Lp Az"} = (—1)"cp.
The three term recurrence relation of ¢, () is

Gni1(z) = (z+(2n)!+ 2n+1)1) gn(z) = (2n = 1)!(2n)!gn—1(2),
@(z) = 1, qaz)=xz+1, n=12,3,.... (3.5)

As a result of applying Favard’s theorem, we obtain the orthogonality of g, (z) is

0, m # n;
)\l)\2"')‘n+17 m=mn,

Lp Agm(7)gn(2)} = {

where A\ = 1,and Ay, = (2k — 2)!(2k—3)! k=2,3,...,n+ 1.
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Orthogonality of s, (z) of convergent S- fraction:
Following the literature [2], we obtain the series

_ 1 —D.(x)

. = —ortart—aqr+ 4 (=) ez F -

Dy, ()
The linear moment generating function with respect to Dy, (z) denoted by Lp, has nt" moment
Lp, {z"} = (=1)"cpp1.
The three term recurrence relation of s, (z) is

Sne1(z) = (24+(Cn+ 1)1+ 2n+2)1))sn(z) — 2n)!'2n + 1)!sp—1(z),
so(z) = 1, si(z)=x+3, n=1273,... . (3.6)

As a result of applying Favard’s theorem, we obtain the orthogonality of s, (x) is

0, m # n;
L m n =
by (5 (@)30 ()} {Mmmh n
where \y = land A\, = (2n —2)!(2n—1)!, k=2,3,...,n+ 1.

Orthogonality of r,, () of convergent S- fraction :
Following the literature [2], we obtain the series

1
Do) =1-ex+ea®—e3x’ +---+(=1)"e 2™ +---
and
1
D@ | 2 3
D, (z) = = . =e—ertex —ex’+--+ (=) "eppiz” + - .
The linear moment generating function with respect to D,_(z) denoted by Lp, has nt" moment
Lp, {z"} = (=1)"ent1.
The three term recurrence relation of r,,(x) is
rar1(z) = (+(Cn+ D+ 2n+2))r(z) — 2n)!2n + 1), (2),
ro(z) = 1, rz)=z+4+2, n=1273,... . (3.7)

As a result of applying Favard’s theorem, we obtain the orthogonality of r,, () is

0, m#n;
)\IAZ"')\TL+17 m=mn,

LDzC {rm (aﬁ)rn(x)} = {

where \y = 1and A\, = (2k —2)!2k—1)!, k=2,3,...,n+ 1.

Suppose 7, (x) = " + rp_12" ' + -+ + riz 4 ro. Since Lp, {ro(z)rn(z)} = 0, we can
compute e, using

en=—[rn_1€n_1+---+ries+r), eo=1, n=12,... .
Orthogonality of p,,(z) of convergent S- fraction:
Following the literature [2], we obtain the series

1
Ds.( _M_l_ 2 a3 (1)
3. (%) = oo = fiz+ fra” — frz’ + -+ (=1)" foz" + .

The linear moment generating function with respect to Ds3_ () denoted by Lp, has n'" moment

LDzn {xn} = (_l)nfn~
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The three term recurrence relation of p,,(z) is

pnri(x) = (@+(2n+2)!'+ 2n+3))) pu(z) — 2n+ D20 +2)py_1(x),
po(z) = 1, pz)=x24+8, n=12,3,.... (3.8)

As a result of applying Favard’s theorem, we obtain the orthogonality of p, () is

0, m # n;
L m n =
D3C{p (l‘)p (x)} { )‘1)‘2"')\n+1’ m=mn,
where \; = 1 and A\, = (2k)!(2k +1)!, k=2,3,....,n+ L.

Suppose p,(z) = 2™ + pp_12" "' + -+ + prx + po. Since Lp, {po(z)pn(z)} = 0, we can
compute f, using

fo=—[n-tfo1+-+po1fi+p), fo=1 n=12,... .

4 Nature of orthogonal polynomials

The following theorem [1], gives necessary and sufficient conditions for classical orthogonality
of polynomials:

Theorem 4.1. The pair {Pn (z), di (Pn:l_(lx)) } is a classical orthogonal polynomials if and
T\ n

only if
A. P,(x) form orthogonal polynomials with respect to L.

oo - 2 (B2) 0 (B2 ()

n=2,3,... ,where o, and o,,_| are non-zero numbers.

Let us reconsider the divergent S- fraction (2.1) and derive the following result.

Theorem 4.2. The polynomials g, (x), sn(x), r(x) and p,(z) of the divergent S- fraction are
non-classical orthogonal polynomials.

Proof. Using (3.1), (3.2), (3.3) and (3.4), we directly obtain the result that q,, (), s, (z), r,(z)
and p,,(z) of divergent S- fraction are orthogonal polynomials with respect to Lp, Lp,, Lp,
and Lp, respectively. Now, we observe that g, (z), s,(x), r,(z) and p,(z) do not satisfy the
condition B of Theorem 4.1, because

¢,() di(z) 1553536 ¢h(z) 9742592 ¢()
¢ (x) 1 330 3 T3 o T3 1
' ((x) | 4841632 s, /
s3(z) = 844(56) — 5428 s3§x) + 8 363 52? +30581376 3153’)
_ ryl@) ri(x) 4835368 ri(xz) 105060112 7 (x)
ry(x) = 2 5429 3 T3 >t 3 1
_ pyle) pi(x) 12794536 ph(x) = 563096000 p)(z)
pm(z) = 1 8368 3 + 3 > T 3 T

Hence ¢, (), sn (), r»(x) and p,(z) of divergent S- fraction are non-classical orthogonal poly-
nomials. =

Let us reconsider the convergent S- fraction (2.2) and derive the following result.

Theorem 4.3. The polynomials q, (), sn(x), rn(x) and p,(x) of the convergent S- fraction are
non-classical orthogonal polynomials.
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Proof. Using (3.5), (3.6), (3.7) and (3.8), we directly obtain the result that ¢, (x), s,(x), rn(z)
and p,, () of convergent S- fraction are orthogonal polynomials with respect to Lp,, Lp, , Lp,,
and Lp, respectively. Now, we observe that ¢, (z), s, (z), 7.(2) and p, () do not satisfy the
condition B of Theorem 4.1, because

o aqy(@) 17127 g4(z) | 79755 g3(x) | 2907 gj(x)
a(@) = = i 3 T2 2 T

_sy(w) 135207 sh(x) | 6799350 sy(z) | 480627 si(z)
sle) = =4 i 3 4 2 TTa

_ory(@) ri(xz) 5099080 r(x) 341216 r|(z)
r3(z) = ) 33802 3 + 3 > + 3 1

/ / / /

pa(z) = P 45”) — 300922 pf”) + 288528520 Z@ + 14591514688 2 lgm).

Hence g, (z), sn(z), rn(z) and p,(z) of convergent S- fraction are non-classical orthogonal
polynomials. O
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