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Abstract. Let G = (V,E) be a graph and Pk = {V1, V2, ..., Vk} be a partition of V . Recently
we have introduced the partition energy of a graph EPk(G) and computed partition energy of
some families of graphs with respect to a given partition. In this paper, we introduce the con-
cept of partition Laplacian energy LEPk(G) which depends on the underlying graph G and the
partition of the vertex set V of G. We obtain an upper bound and few lower bounds for parti-
tion Laplacian energy, also obtain partition Laplacian energy of some families of graphs, their
internal-complements and show that k-partition Laplacian energy of a r-regular graph G is equal
to its k-partition energy with respect to any partition Pk of V .

1 Introduction

Let G = (V,E) be a graph of order n. The energy of a graph G was defined by I. Gutman
in 1978 as the sum of the absolute values of eigenvalues of G [4]. The concept of graph energy
has origin in chemistry which is used to estimate the total π-electron energy of a molecule. In
chemistry the conjugated hydrocarbons can be represented by a graph called molecular graph
whose eigenvalues with respect to adjacency matrix A(G) represent the energy level of the elec-
tron in the molecule. In Hückel theory the sum of the energies of all the electrons in a molecule
is called the π-electron energy of a molecule. In spectral graph theory, the energy-like quantities
such as Laplacian energy, distance energy, color energy, color Laplacian energy of a graph etc.,
are studied in [1], [5], [6], [7].

E. Sampathkumar and M. A. Sriraj in [9] have introduced L-matrix with respect to a partition
Pk = {V1, V2, . . . , Vk} of the vertex set V of a graph G = (V,E) of order n represented by
a unique square symmetric matrix Pk(G) = [aij ] of order n, whose entries aij are defined as
follows:
(i) Suppose for some Vr ∈ Pk, both vi, vj ∈ Vr. Then aij = 2 or −1 according as vivj is an edge
or not.
(ii) For r 6= s, suppose vi ∈ Vr and vj ∈ Vs. Then aij = 1 or 0 according as vivj is an edge or
not.
The matrix Pk(G) thus defined is called the L-matrix of the partition Pk of the graphG = (V,E).

Recently in [10], we have defined k-partition eigenvalues of G as the eigenvalues of the ma-
trix Pk(G) and the k-partition energy EPk(G) is defined as the sum of the absolute values of
k-partition eigenvalues of G. In this paper we have determined partition energy of some known
graphs, their k-complement and k(i)-complement. We have also obtained some bounds for
EPk(G).

The concept of color energy was introduced by C. Adiga et al. in [1]. In [7], Pradeep
G Bhat and Sabitha D’Souza have studied the color Laplacian energy of a graph. Let G be
a colored graph on n vertices and m edges. The color Laplacian matrix of G is defined as
Lc(G) = D(G)−Ac(G) whereD(G) = diag(d1, d2, . . . , dn) represents the diagonal matrix with
vertex degrees d1, d2, . . . , dn of v1, v2, . . . , vn of G and Ac(G), the color matrix. The eigenvalues
{µ1, µ2, · · · , µn} of Lc(G) are called color Laplacian eigenvalues of the graph G. If auxiliary
color eigenvalues γi, i = 1 to n are defined as γi = µi − 2m

n , then color Laplacian energy of G
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is defined as
n∑

i=1

| γi | .

Now we state definitions of two types of complements of a partition graph called k-complement
and k(i)-complements as follows:

Definition 1.1. [8] Let G be a graph and Pk = {V1, V2, ..., Vk} be a partition of its vertex set V .
Then the k-complement of G is obtained as follows: For all Vi and Vj in Pk, i 6= j remove the
edges between Vi and Vj and add the edges between the vertices of Vi and Vj which are not in G
and is denoted by (G)k.

The matrix of k-complement is obtained from L-matrix Pk(G) as follows: In Pk(G) inter-
change 1 and 0 in the non-principal diagonal entries. The matrix thus obtained is the matrix of
Gk and denoted by Pk((G)k).

Definition 1.2. [8] Let G be a graph and Pk = {V1, V2, ..., Vk} be a partition of its vertex set
V . Then the k(i)-complement of G is obtained as follows: For each set Vr in Pk, remove the
edges of G joining the vertices within Vr and add the edges of G (complement of G) joining the
vertices of Vr, and is denoted by (G)k(i).

The matrix of k(i)-complement is obtained by interchanging 2 and −1 in the matrix Pk(G)

and is denoted by Pk((G)k(i)).

2 Partition Laplacian energy

Consider a graph G = (V,E) of order n and size m with a partition Pk = {V1, V2, . . . , Vk}
of V . Let Pk(G) be partition matrix and D(G) = diag(d1, d2, . . . , dn) represents the diago-
nal matrix with vertex degrees d1, d2, . . . , dn of v1, v2, . . . , vn of G. Then we define the parti-
tion Laplacian matrix of G as LPk(G) = D(G) − Pk(G). The eigenvalues {µ1, µ2, · · · , µn}
of this matrix LPk(G) are called k-partition Laplacian eigenvalues. We also define auxiliary
partition eigenvalues γi, i = 1, 2, · · · , n as γi = µi − 2m

n . The k-partition Laplacian energy

of G or partition Laplacian energy of G, denoted by LEPk(G) is defined as
n∑

i=1

| γi | .

i, e., LEPk(G) =
n∑

i=1

| µi −
2m
n
|.

If the vertex set of a graph G of order n is partitioned into n sets then the partition Laplacian
energy coincides with the usual Laplacian energy of a graph. So partition Laplacian energy may
be considered as a generalization of Laplacian energy of a graph.

In this paper, we define the partition Laplacian energy and establish an upper bound and some
lower bounds for partition Laplacian energy. We obtain partition Laplacian energy of some fam-
ily of graphs, its k-complement and k(i)-complement. Also prove that k-partition Laplacian
energy of a r-regular graph G = (V,E) is equal to its k-partition energy with respect to any
partition Pk of V .

3 Some basic properties of partition Laplacian eigenvalues of a graph

Let G = (V,E) be a graph with n vertices, m edges and Pk = {V1, V2, . . . , Vk} be a partition
of V . For 1 ≤ r ≤ k, let bt denote the total number of edges joining the vertices of Vr and ct
be the total number of edges joining the vertices from Vr to Vs for r 6= s, 1 ≤ s ≤ k and et

be the number of non-adjacent pairs of vertices within Vr. Let m1 =
k∑

t=1

bt , m2 =

k(k−1)
2∑

t=1

ct

and m3 =
k∑

t=1

et and di represent the degree of vi where i = 1, 2, · · · , n. Let LPk(G) be the
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partition Laplacian matrix. If the characteristic polynomial LΦPk(G,µ) = det[µI − LPk(G)] =
a0µ

n+a1µ
n−1 +a2µ

n−2 + · · ·+an, then the coefficient ai can be interpreted using the principal
minors of LPk(G).

The first three coefficients of the characteristic polynomial of LPk(G) are determined in the
following proposition.

Proposition 3.1. The first three coefficients of LΦPk(G,µ) are given as follows:

(1) a0 = 1, (2) a1 = −2m, (3) a2 =
k∑

1≤i<j≤n

didj − [4m1 +m2 +m3].

Proof. (1) It follows from the definition LΦPk(G,λ) = det[µI − LPk(G)] that a0 = 1.

(2) Note that for each i ∈ {1, 2, 3, . . . , n}, the number (−1)iai is the sum of those princi-
pal minors of LPk(G) which have i rows and i columns. Since the diagonal elements are di,
(−1)a1 =

∑n
i=1 di = 2m.

Hence a1 = −2m.

(3)

(−1)2a2 =
∑

1≤i<j≤n

∣∣∣∣∣aii aij

aji ajj

∣∣∣∣∣
=

∑
1≤i<j≤n

aiiajj − ajiaij

=
∑

1≤i<j≤n

didj −
∑

1≤i<j≤n

a2
ij

=
∑

1≤i<j≤n

didj − [4m1 +m2 +m3].

Hence, a2 =
k∑

1≤i<j≤n

didj − [4m1 +m2 +m3].2

We prove the following results to obtain the bounds for partition Laplacian energy of a graph
G.

Proposition 3.2. If µ1, µ2, · · · , µn are partition Laplacian eigenvalues of LPk(G), then
n∑

i=1

µi
2 = 2[4m1 +m2 +m3] +

n∑
i=1

d2
i .

Proof. We know that
n∑

i=1

µ2
i =

n∑
i=1

n∑
j=1

aijaji

= 2
∑
i<j

a2
ij +

n∑
i=1

a2
ii

= 2[4m1 +m2 +m3] +
n∑

i=1

d2
i .

Proposition 3.3. Let G1 and G2 be two graphs of order n. Suppose that Pk and P ′k are partitions
of vertex sets of G1 and G2 respectively. If µ1, µ2, . . . , µn and µ′1, µ

′
2, . . . , µ

′
n are the eigenvalues

of LPk(G1) and LP ′k(G2) respectively, then

∑
µiµ
′
i ≤

√√√√(2(4m1 +m2 +m3) +
n∑

i=1

d2
i

)(
2(4m′1 +m′2 +m′3) +

n∑
i=1

(d′i)
2

)
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where m1,m2,m3 are as defined above for G1 and m′1,m
′
2,m

′
3 for G2 and di,d′i are degrees of

an ith vertex of corresponding graphs respectively.

Proof. By Cauchy - Schwartz inequality we have

(
n∑

i=1

aibi

)2

≤

(
n∑

i=1

ai
2

)(
n∑

i=1

bi
2

)
.

Setting ai = µi and bi = µ′i in the above inequality, we get(
n∑

i=1

µiµ
′
i

)2

≤

(
n∑

i=1

µi
2

)(
n∑

i=1

µ′i
2

)

n∑
i=1

µiµ
′
i ≤

√√√√(2(4m1 +m2 +m3) +
n∑

i=1

(di)2

)(
2(4m′1 +m′2 +m′3) +

n∑
i=1

(d′i)
2

)
. 2

4 Some bounds for partition Laplacian energy of a graph

In the present section, we obtain an upper bound and some lower bounds for LEPk(G).

Theorem 4.1. Let G be a graph of order n and size m and Pk be a partition of vertex set of G.
Then

LEPk(G) ≤

√√√√n

(
2(4m1 +m2 +m3) +

n∑
i=1

d2
i

)
− 4m2

where m1,m2,m3 are as defined above for G.

Proof. Let µ1, µ2, . . . , µn be the eigenvalues of LPk(G).
We know that Cauchy - Schwartz inequality is(

n∑
i=1

aibi

)2

≤

(
n∑

i=1

ai
2

)(
n∑

i=1

bi
2

)
.

Let ai = 1 , bi =| γi |. Then

(LEPk(G))
2

=

(
n∑

i=1

| γi |

)2

≤ n
n∑

i=1

| γi |2

= n

n∑
i=1

γi
2

= n

n∑
i=1

(µi −
2m
n

)2

= n

n∑
i=1

µ2
i − 4m2

= n

(
2(4m1 +m2 +m3) +

n∑
i=1

d2
i

)
− 4m2.

Thus, LEPk(G) ≤
√
n
(
2(4m1 +m2 +m3) +

∑n
i=1 d

2
i

)
− 4m2. 2
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Corollary 4.2. If G is r-regular, then

LEPk(G) = EPk(G) ≤
√

2n(4m1 +m2 +m3)

Theorem 4.3. Let G be a graph of order n and size m and Pk be a partition of vertex set of G.
If D= det [LPk(G)− 2m

n I], then

LEPk(G) ≥

√√√√2(4m1 +m2 +m3) +
n∑

i=1

d2
i −

4m2

n
+ n(n− 1)D 2

n .

Proof. We know that

(LEPk(G))
2

=

(
n∑

i=1

| γi |

)2

=
n∑

i=1

| γi |
n∑

j=1

| γj |

=

(
n∑

i=1

| γi |2
)
+
∑
i 6=j

| γi || γj | .

Now we use arithmetic mean and geometric mean inequality which is as follows.

1
n(n− 1)

∑
i6=j

| γi || γj | ≥

∏
i 6=j

| γi || γj |

 1
n(n−1)

.

(LEPk(G))
2 ≥

n∑
i=1

| γi |2 +n(n− 1)

∏
i 6=j

| γi || γj |

 1
n(n−1)

=
n∑

i=1

| γi |2 +n(n− 1)

(
n∏

i=1

| γi |2(n−1)

) 1
n(n−1)

=
n∑

i=1

γ2
i + n(n− 1)D

2
n

=
n∑

i=1

µ2
i −

4m2

n
+ n(n− 1)D

2
n

= 2(4m1 +m2 +m3) +
n∑

i=1

d2
i −

4m2

n
+ n(n− 1)D

2
n .

Thus, LEPk(G) ≥
√

2(4m1 +m2 +m3) +
∑n

i=1 d
2
i − 4m2

n + n(n− 1)D 2
n . 2

Corollary 4.4. If G is r-regular, then

LEPk(G) = EPk(G) ≥
√

2(4m1 +m2 +m3) + n(n− 1)D 2
n .

We need the following two theorems to establish some more lower bounds for partition Lapla-
cian energy of a graph.
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Theorem 4.5. [2] Let a, a1, a2, · · · , an, A and b, b1, b2, · · · , bn, B be real numbers such that
a ≤ ai ≤ A and b ≤ bi ≤ B for all i = 1, 2, · · · , n then the following inequality is valid.
| n
∑n

i=1 aibi −
∑n

i=1 ai
∑n

i=1 bi |≤ α(n)(A − a)(B − b) where α(n) = n[n2 ](1 −
1
n [

n
2 ]) and

[n2 ] denotes the greatest integer part of n
2 and equality holds iff a1 = a2 = · · · = an and

b1 = b2 = · · · = bn.

Theorem 4.6. [3] Let ai 6= 0, bi, r and R are real numbers satisfying rai ≤ bi ≤ Rai then∑n
i=1 b

2
i + rR

∑n
i=1 ai ≤ (r +R)

∑n
i=1 aibi.

Theorem 4.7. LetG be a graph with n vertices andm edges. If | γ1 |≥| γ2 |≥, · · · ,≥| γn | where
γ1, γ2, · · · , γn are auxiliary partition eigenvalues of G with respect to Pk = {V1, V2, · · · , Vk},
Then

LEPk(G) ≥

√√√√n

(
2(4m1 +m2 +m3) +

n∑
i=1

d2
i

)
− 4m2 − α(n) (| γ1 | − | γn |)2

.

Proof. Consider a graph G with n vertices and m edges.Given | γ1 |≥| γ2 |≥, · · · ,≥| γn |.
Put ai =| γi |, bi =| γi |, a =| γn |, b =| γn |, A = B =| γ1 | in Theorem 4.5 to get∣∣n∑n

i=1 | γi |2 −(
∑n

i=1 | γi |)2
∣∣ ≤ α(n) (| γ1 | − | γn |)2

.

But
∑n

i=1 | γi |2=
(
2(4m1 +m2 +m3) +

∑n
i=1 d

2
i

)
− 4m2

n and

LEPk(G) ≤
√
n (2(4m1 +m2 +m3) +

∑n
i=1(di)

2)− 4m2.

∴
∣∣∣n (2(4m1 +m2 +m3) +

∑n
i=1 d

2
i

)
− 4m2 − (LEPk(G))

2
∣∣∣ ≤ α(n) (| γ1 | − | γn |)2

⇒ n
(
2(4m1 +m2 +m3) +

∑n
i=1 d

2
i

)
− 4m2 − (LEPk(G))

2 ≤ α(n) (| γ1 | − | γn |)2

Hence,

LEPk(G) ≥
√
n
(
2(4m1 +m2 +m3) +

∑n
i=1 d

2
i

)
− 4m2 − α(n) (| γ1 | − | γn |)2

. 2

Theorem 4.8. LetG be a graph with n vertices andm edges. If | γ1 |≥| γ2 |≥, · · · ,≥| γn | where
γ1, γ2, · · · , γn are auxiliary partition eigenvalues of G with respect to Pk = {V1, V2, · · · , Vk},
Then

LEPk(G) ≥
2(4m1 +m2 +m3) +

∑n
i=1 d

2
i − 4m2

n + n | γ1 || γn |
| γ1 | + | γn |

.

Proof. Consider a graph G with n vertices and m edges. Given | γ1 |≥| γ2 |≥, · · · ,≥| γn |.
Choose bi =| γi | and ai = 1, r =| γn | and R =| γ1 | Then | γnai |≤| γi |≤| γ1ai | and by
Theorem 4.6∑n

i=1 | γi |2 + | γ1 || γn |
∑n

i=1 1 ≤ (| γ1 | + | γn |)
∑n

i=1 | γi |

⇒ 2(4m1 +m2 +m3) +
∑n

i=1 d
2
i − 4m2

n + n | γ1 || γn |≤ (| γ1 | + | γn |)LEPk(G).
Hence,

LEPk(G) ≥
2(4m1 +m2 +m3) +

∑n
i=1 d

2
i − 4m2

n + n | γ1 || γn |
| γ1 | + | γn |

. 2

5 Partition Laplacian energy of some family of graphs

In this section we prove that k-partition Laplacian energy of a r-regular graph G is equal to its
k-partition energy with respect to any partition Pk of V . We obtain partition Laplacian energy
of complete product of two circulant graphs, its k-complement, k(i)-complement. Also we
determine partition Laplacian energy of star graph, its (k+1)(i)-complement, multipartite graphs
and its k(i)-complements.

Theorem 5.1. LetG = (V,E) be r-regular graph with n vertices,m edges and Pk = {V1, V2, . . . , Vk}
be a partition of V then, LEPk(G) = EPk(G).
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Proof.We know that LΦk(G, x) = det[xI −LPk(G)] = det[xI − rI+Pk(G)] = det[(x− r)I+
Pk(G)] = (−1)ndet[(r − x)I − Pk(G)] = (−1)nΦk(G, r − x).
Thus, if λ1, λ2, · · · , λn represent the k-partition eigenvalues of a r-regular graph G, then
r − λ1, r − λ2, · · · , r − λn represent the k-partition Laplacian eigenvalues of G. Also for a r-
regular graph G, γi = µi − 2m

n = µi − r = −λi.
Hence LEPk(G) = EPk(G). 2

Theorem 5.2. [10] LetG1 = (V1, E1),G2 = (V2, E2) be two r1, r2 regular graphs of order n1, n2
with Φ1(G1 : λ), Φ1(G2 : λ) as characteristic polynomials respectively. Then the characteristic
polynomial of G1∇G2 with respect to the partition P2 = {V1, V2} is

Φ2(G1∇G2 : λ) =
Φ1(G1 : λ)Φ1(G2 : λ)[(λ− (3r1 − n1 + 1))(λ− (3r2 − n2 + 1))− n1n2]

[λ− (3r1 − n1 + 1)][λ− (3r2 − n2 + 1)]
,

where 3r1 − n1 + 1 and 3r2 − n2 + 1 are the 1-partition eigenvalues of G1 and G2 respectively.

Theorem 5.3. If Gi = (Vi, Ei) is a circulant graph of degree ri with ni vertices i = 1, 2 with
P2 = {V1, V2} and S1 = LP1(G1) + n2In1 , S2 = LP1(G2) + n1In2 then

(1) LEP2(G1∇G2) =
n1−1∑
t=1

∣∣∣∣r1 + n2 − λt −
2m1

n

∣∣∣∣+ n2−1∑
l=1

∣∣∣∣r2 + n1 − ξl −
2m1

n

∣∣∣∣+∣∣∣∣n− (r1 + r2)− 1 +
√
[n− (r1 + r2)− 1]2 − (n− 2r1 − 1)(n− 2r2 − 1) + n1n2 −

2m1

n

∣∣∣∣+∣∣∣∣n− (r1 + r2)− 1−
√
[n− (r1 + r2)− 1]2 − (n− 2r1 − 1)(n− 2r2 − 1) + n1n2 −

2m1

n

∣∣∣∣where

m1 =
n1r1 + n2r2 + n1n2

2
, λt and ξl are 1-partition eigenvalues of G1 and G2 respectively .

(2) LEP2((G1∇G2)2) = LEP1(G1) + LEP1(G2).

(3) LEP2(G1∇G2)2(i) =
n1−1∑
t=1

∣∣∣∣n− r1 − 1− λ′t −
2m2

n

∣∣∣∣ + n2−1∑
l=1

∣∣∣∣n− r2 − 1− ξ′l −
2m2

n

∣∣∣∣ +∣∣∣∣r1 + r2 + 1 +
√
(r1 + r2 + 1)2 − (n2 − n1 + 2r1 + 1)(n1 − n2 + 2r1 + 1) + n1n2 −

2m2

n

∣∣∣∣+∣∣∣∣r1 + r2 + 1−
√
(r1 + r2 + 1)2 − (n2 − n1 + 2r1 + 1)(n1 − n2 + 2r1 + 1) + n1n2 −

2m2

n

∣∣∣∣where

n = n1 + n2, m2 =
n2 − n− n1r1 − n2r2

2
and λ′t and ξ′l are 1-partition eigenvalues of (G1)1(i)

and (G2)1(i) respectively .

Proof. (1) The Laplacian partition matrix of G1∇G2 with respect to P2 = {V1, V2} is

LP2(G1∇G2) =

(
S1 B

BT S2

)

where B is an n1 × n2 matrix in which all the entries are 1′s.
Since G1 and G2 are regular graphs, it follows that row sum of S1 = LP1(G1) + n2In1 and
S2 = LP1(G2)+n1In2 are n1 +n2− 2r1− 1 and n1 +n2− 2r2− 1 which represent eigenvalues
of the matrices S1 and S2 respectively.
Hence by Theorem 4.2, we get the following.
LΦP2(G1∇G2, µ)=
Φ(S1, µ)Φ(S2, µ)[µ2 − 2µ[n− (r1 + r2)− 1] + (n− 2r1 − 1)(n− 2r2 − 1)− n1n2]

(µ− (n− 2r1 − 1))(µ− (n− 2r2 − 1))
where Φ(S1, µ) and Φ(S2, µ) represent the characteristic polynomials of S1 and S2 respectively.
Therefore the 2-partition Laplacian eigenvalues of G1∇G2 are the roots of

Φ(S1, µ)

µ− (n− 2r1 − 1)
= 0,

Φ(S2, µ)

µ− (n− 2r2 − 1)
= 0 and

µ2 − 2µ[n− (r1 + r2)− 1] + (n− 2r1 − 1)(n− 2r2 − 1)− n1n2] = 0.
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Also G1 and G2 are circulant implies that the matrices S1 and S2 are circulant.
Hence the 2-partition Laplacian eigenvalues of G1∇G2 are

µ1 once

µ2 once

r1 + n2 − λt for t = 1, 2, · · · , n1 − 1
r2 + n1 − ξl for l = 1, 2, · · · , n2 − 1

where µ1 = n− (r1 + r2)− 1 +
√
[n− (r1 + r2)− 1]2 − (n− 2r1 − 1)(n− 2r2 − 1) + n1n2,

µ2 = n− (r1 + r2)− 1−
√
[n− (r1 + r2)− 1]2 − (n− 2r1 − 1)(n− 2r2 − 1) + n1n2,

λt =
n1∑
s=2

ase
2πit(s−1)

n1 and ξl =
n1∑
s=2

bse
2πil(s−1)

n2 .

Here −as and −bs are first row entries(except principal diagonal) of S1 and S2 respectively.
It can also be observed that λt and ξl are 1-partition eigenvalues of G1 and G2.

Consider γi = µi − 2m1
n where m1 =

n1r1 + n2r2 + n1n2

2
is the number of edges in G1∇G2.

Thus LEP2(G1∇G2) =
n1−1∑
t=1

∣∣∣∣r1 + n2 − λt −
2m1

n

∣∣∣∣+ n2−1∑
l=1

∣∣∣∣r2 + n1 − ξl −
2m1

n

∣∣∣∣+∣∣∣∣n− (r1 + r2)− 1 +
√
[n− (r1 + r2)− 1]2 − (n− 2r1 − 1)(n− 2r2 − 1) + n1n2 −

2m1

n

∣∣∣∣+∣∣∣∣n− (r1 + r2)− 1−
√
[n− (r1 + r2)− 1]2 − (n− 2r1 − 1)(n− 2r2 − 1) + n1n2 −

2m1

n

∣∣∣∣ .
(2) It can be easily observed that

LP2(G1∇G2)2 =

(
LP1(G1) 0

0 LP1(G2)

)

Hence LΦP2((G1∇G2)2, µ) = LΦP1(G1, µ)LΦP1(G2, µ)

Thus LEP2(G1∇G2)2 = LEP1(G1) + LEP1(G2).

(3) The Laplacian partition matrix of (G1∇G2)2(i) is

LP2((G1∇G2)2(i)) =

(
H1 B

BT H2

)

where H1 = LP1(G1)1(i) + n2In1 and H2 = LP1(G2)1(i) + n1In2 .
Row sum of H1 and H2 are n2−n1 +2r1 +1 and n1−n2 +2r2 +1 which represent eigenvalues
of H1 and H2 respectively. With simplification similar to (1), we get the partition Laplacian
eigenvalues of (G1∇G2)2(i) as follows.

µ1 once

µ2 once

n− r1 − 1− λ′t for t = 1, 2, · · · , n1 − 1
n− r2 − 1− ξ′l for l = 1, 2, · · · , n2 − 1

where µ1 = r1 + r2 + 1 +
√
(r1 + r2 + 1)2 − (n2 − n1 + 2r1 + 1)(n1 − n2 + 2r1 + 1) + n1n2

µ2 = r1 + r2 + 1−
√
(r1 + r2 + 1)2 − (n2 − n1 + 2r1 + 1)(n1 − n2 + 2r1 + 1) + n1n2,

λ′t =
n1∑
s=2

cse
2πit(s−1)

n1 ξ′l =
n2∑
s=2

dse
2πil(s−1)

n2 are 1-partition eigenvalues of (G1)1(i) and (G2)1(i)
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respectively and −cs, −ds are first row entries(except principal diagonal) of H1 and H2 respec-
tively. Thus

LEP2(G1∇G2)2(i) =
n1−1∑
t=1

∣∣∣∣n− r1 − 1− λ′t −
2m2

n

∣∣∣∣+ n1−1∑
l=1

∣∣∣∣n− r2 − 1− ξ′l −
2m2

n

∣∣∣∣+∣∣∣∣r1 + r2 + 1 +
√
[(r1 + r2 + 1)2 + (n2 − n1 + 2r1 + 1)(n1 − n2 + 2r1 + 1) + n1n2 −

2m2

n

∣∣∣∣+∣∣∣∣∣r1 + r2 + 1−
√
[(r1 + r2 + 1)2 − (n2 − n1 + 2r1 + 1)(n1 − n2 + 2r1 + 1) + n1n2 −

2m2

n

∣∣∣∣∣where

n = n1 + n2 and m2 =
n2 − n− n1r1 − n2r2

2
is the number of edges in (G1∇G2)2(i). 2

Theorem 5.4. Let v0 be the vertex of degree n−1 ofK1,n−1 = (V,E) and Pk+1 = {V0, V1, V2, · · · , Vk}
be a partition of V where V0 = {v0} and Vj = {vj1, vj2, · · · , vjnj} for j = 1, 2, · · · , k and
n1 + n2 + · · ·+ nk = n− 1. Then

(1) 0 is a k + 1- partition Laplacian eigenvalue of K1,n−1 repeated n− k − 1 times.

(2) LEPk+1(K1,n−1) =

∣∣∣∣2(n− 1)
n

∣∣∣∣ (n− k − 1) + (k − 1)
∣∣∣∣p− 2(n− 1)

n

∣∣∣∣
+

∣∣∣∣∣(n+ p− 1) +
√
(n+ p− 1)2 − 4(n− 1)(p− 1)

2
− 2(n− 1)

n

∣∣∣∣∣
+

∣∣∣∣∣(n+ p− 1)−
√
(n+ p− 1)2 − 4(n− 1)(p− 1)

2
− 2(n− 1)

n

∣∣∣∣∣
if n1 = n2 = · · · = nk = p.

Proof.The matrix LPk(K1,n−1) with respect to Pk+1 = {V0, V1, V2, · · · , Vk} is

=



- v0 v12 v13 · · · v1n1 v21 v22 · · · v2n2 · · · vk1 vk2 · · · vknk
v0 n− 1 −1 −1 . . . − 1 −1 −1 . . . −1 . . . −1 −1 . . . −1
v11 −1 1 1 . . . 1 0 0 . . . 0 . . . 0 0 . . . 0
v12 −1 1 1 . . . 1 0 0 . . . 0 . . . 0 0 . . . 0
...

...
...

...
. . .

...
...

...
. . .

...
. . .

...
...

. . .
...

v1n1 −1 1 1 . . . 1 0 0 . . . 0 . . . 0 0 . . . 0
v21 −1 0 0 . . . 0 1 1 . . . 1 . . . 0 0 . . . 0
v22 −1 0 0 . . . 0 1 1 . . . 1 . . . 0 0 . . . 0
...

...
...

...
. . .

...
...

...
. . .

...
. . .

...
...

. . .
...

v2n2 −1 0 0 . . . 0 1 1 . . . 1 . . . 0 0 . . . 0
...

...
...

...
. . .

...
...

...
. . .

...
. . .

...
...

. . .
...

vk1 −1 0 0 . . . 0 0 0 . . . 0 . . . 1 1 . . . 1
vk2 −1 0 0 . . . 0 0 0 . . . 0 . . . 1 1 . . . 1
...

...
...

...
. . .

...
...

...
. . .

...
. . .

...
...

. . .
...

vknk −1 0 0 . . . 0 0 0 . . . 0 . . . 1 1 . . . 1



Consider the characteristic equation det[µI − LPk+1(G)] = 0 and perform the following opera-
tions.

(1) Subtract the row corresponding to the vertex vi1 from the rows corresponding to the ver-
tices vij where j = 2, 3, · · · , ni for each i = 1, 2, 3, · · · , k and

(2) Add the columns corresponding to the vertices vi2, · · · , vini to the column corresponding
to vi1 for i = 1, 2, · · · , k.
On further simplification we get,
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µn1+n2+···+nk−k

∣∣∣∣∣∣∣∣∣∣∣∣

µ− (n− 1) n1 n2 . . . nk

1 µ− n1 0 . . . 0
1 0 µ− n2 . . . 0
...

...
...

...
...

1 0 0 . . . µ− nk

∣∣∣∣∣∣∣∣∣∣∣∣
= 0.

This proves that µ = 0 is a root repeated n1 + n2 + · · · + nk − k times. Further if n1 = n2 =
n3 = · · · = nk = p in the above determinant then it reduces to

µn−1−k

∣∣∣∣∣∣∣∣∣∣∣∣

µ− (n− 1) p p . . . p

1 µ− p 0 . . . 0
1 0 µ− p . . . 0
...

...
...

...
...

1 0 0 . . . µ− p

∣∣∣∣∣∣∣∣∣∣∣∣
= 0.

Multiply first column by (p− µ) and add all the other columns to it. This on further simplifi-
cation gives µn−1−k(µ− p)k−1[µ2 − µ(n+ p− 1) + (n− 1)(p− 1)] = 0.
Hence its partition Laplacian spectrum is

0 (n− k − 1) times
p k − 1 times

(n+ p− 1) +
√
(n+ p− 1)2 − 4(n− 1)(p− 1)

2
once

(n+ p− 1)−
√
(n+ p− 1)2 − 4(n− 1)(p− 1)

2
once

Consider γi = µi −
2(n− 1)

n
.

Thus LEPk+1(K1,n−1) =

∣∣∣∣2(n− 1)
n

∣∣∣∣ (n− k − 1) + (k − 1)
∣∣∣∣p− 2(n− 1)

n

∣∣∣∣
+

∣∣∣∣∣(n+ p− 1) +
√
(n+ p− 1)2 − 4(n− 1)(p− 1)

2
− 2(n− 1)

n

∣∣∣∣∣
+

∣∣∣∣∣(n+ p− 1)−
√
(n+ p− 1)2 − 4(n− 1)(p− 1)

2
− 2(n− 1)

n

∣∣∣∣∣
if n1 = n2 = · · · = nk = p. 2

Theorem 5.5. Let v0 be the vertex of degree n−1 ofK1,n−1 = (V,E) and Pk+1 = {V0, V1, V2, · · · , Vk}
be a partition of V where V0 = {v0} and
Vj = {vj1, vj2, · · · , vjnj} for j = 1, 2, · · · , k and n1 + n2 + · · ·+ nk = n− 1. Then

(1) 2 + p is a k + 1- partition Laplacian eigenvalue of (K1,n−1)(k+1)(i) repeated n − k − 1
times.

(2) LEPk+1((K1,n−1)(k+1)(i)) =

∣∣∣∣n+ p+ 1
n

∣∣∣∣ (n− k − 1) +
∣∣∣∣n− 2np+ p+ 1

n
(k − 1)

∣∣∣∣
+

∣∣∣∣∣(n− p+ 1) +
√
(n− p+ 1)2 + 4(n− 1)(p− 1)

2
− (n− 1)(p+ 1)

n

∣∣∣∣∣
+

∣∣∣∣∣(n− p+ 1)−
√
(n− p+ 1)2 + 4(n− 1)(p− 1)

2
− (n− 1)(p+ 1)

n

∣∣∣∣∣
if n1 = n2 = · · · = nk = p.

Proof.The matrix LPk+1((K1,n−1)(k+1)(i)) can be obtained by replacing the non diagonal entries
1 by −2 and 1 in the principal diagonal corresponding to d(vi) by ni in LPk+1(K1,n−1). With
operations similar to those in Theorem 5.4 we get n1+2, n2+2, · · · , nk+2 as partition laplacian
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eigenvalues of (K1,n−1)(k+1)(i) repeated n1 − 1, n2 − 1, · · · , nk − 1 times respectively.
Further if n1 = n2 = n3 = · · · = nk = p, we get

(µ− 2− p)n−1−k

∣∣∣∣∣∣∣∣∣∣∣∣

µ− (n− 1) p p . . . p

1 µ+ p− 2 0 . . . 0
1 0 µ+ p− 2 . . . 0
...

...
...

...
...

1 0 0 . . . µ+ p− 2

∣∣∣∣∣∣∣∣∣∣∣∣
= 0.

Multiply first column by −(µ+ p − 2) and add all the other columns to it. Further simplifi-
cation gives
(µ− 2− p)n−1−k(µ+ p− 2)k−1[µ2 − µ(n− p+ 1)− (n− 1)(p− 1)] = 0.
Hence its partition Laplacian spectrum is

2 + p (n− k − 1) times
2− p k − 1 times

(n− p+ 1) +
√
(n− p+ 1)2 + 4(n− 1)(p− 1)

2
once

(n− p+ 1)−
√
(n− p+ 1)2 + 4(n− 1)(p− 1)

2
once

Consider γi = µi −
(n− 1)(p+ 1)

n
. Then

LEPk+1((K1,n−1)(k+1)(i)) =

∣∣∣∣n+ p+ 1
n

∣∣∣∣ (n− k − 1) +
∣∣∣∣n− 2np+ p+ 1

n
(k − 1)

∣∣∣∣
+

∣∣∣∣∣(n− p+ 1) +
√
(n− p+ 1)2 + 4(n− 1)(p− 1)

2
− (n− 1)(p+ 1)

n

∣∣∣∣∣
+

∣∣∣∣∣(n− p+ 1)−
√
(n− p+ 1)2 + 4(n− 1)(p− 1)

2
− (n− 1)(p+ 1)

n

∣∣∣∣∣ . 2
Theorem 5.6. Let Pk = {V1, V2, · · · , Vk} be a partition of the complete multipartite graph
Kn1,n2,··· ,nk where Vj = {vj1, vj2, · · · , vjnj} where j = 1, 2, · · · , k and n = n1 +n2 + · · ·+nk.
Then LEPk(Kn1,n2,··· ,nk) = 4n− 4p− 2k + 2 if n1 = n2 = · · · = nk = p.

Proof.The partition Laplacian matrix of Kn1,n2,··· ,nk with respect to
Pk = {V1, V2, · · · , Vk} is



- v11 v12 · · · v1n1 v21 v22 · · · v2n2 · · · vk1 vk2 · · · vknk
v11 x1 1 . . . 1 −1 −1 . . . −1 . . . −1 −1 . . . −1
v12 1 x1 . . . 1 −1 −1 . . . −1 . . . −1 −1 . . . −1
...

...
...

. . .
...

...
...

. . .
...

. . .
...

...
. . .

...
v1n1 1 1 . . . x1 −1 −1 . . . −1 . . . −1 −1 . . . −1
v21 −1 −1 . . . −1 x2 1 . . . 1 . . . −1 −1 . . . −1
v22 −1 −1 . . . −1 1 x2 . . . 1 . . . −1 −1 . . . −1
...

...
...

. . .
...

...
...

. . .
...

. . .
...

...
. . .

...
v2n2 −1 −1 . . . −1 1 1 . . . x2 . . . 0 0 . . . 0
...

...
...

. . .
...

...
...

. . .
...

. . .
...

...
. . .

...
vk1 −1 −1 . . . −1 −1 −1 . . . 0 . . . xk 1 . . . 1
vk2 −1 −1 . . . −1 −1 −1 . . . −1 . . . 1 xk . . . 1
...

...
...

. . .
...

...
...

. . .
...

. . .
...

...
. . .

...
vknk −1 −1 . . . −1 −1 −1 . . . −1 . . . 1 1 . . . xk


where xi = n−ni for i = 1 to k. Consider the characteristic equation det[µI−LPk(Kn1,n2,··· ,nk)] =
0. By using operations similar to those in Theorem 5.4 we get the roots µ = (n−ni−1) repeated
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ni − 1 times for i = 1 to k and∣∣∣∣∣∣∣∣∣∣∣∣

µ− (n− 1) n2 n3 . . . nk

n1 µ− (n− 1) n3 . . . nk

n1 n2 µ− (n− 1) . . . nk

...
...

...
...

...
n1 n2 n3 . . . µ− (n− 1)

∣∣∣∣∣∣∣∣∣∣∣∣
= 0.

If n1 = n2 = · · · = nk = p then∣∣∣∣∣∣∣∣∣∣∣∣

µ− (n− 1) p p . . . p

p µ− (n− 1) p . . . p

p p µ− (n− 1) . . . p
...

...
...

...
...

p p p . . . µ− (n− 1)

∣∣∣∣∣∣∣∣∣∣∣∣
= 0.

On simplification we get (µ− p+ 1)[µ− (n+ p− 1)]k−1 = 0.
Hence if n1 = n2 = · · · = nk = p, the k-partition Laplacian eigenvalues of Kn1,n2,··· ,nk are

n− p− 1 (n− k) times
n+ p− 1 k − 1 times

p− 1 once

Also γi = µi − (k − 1)p.
Hence LEPk(Kn1,n2,··· ,nk) =| −1 | (n− k)+ | 2p− 1 | (k − 1)+ | 2p− n− 1 |

= 4n− 4p− 2k + 2. 2

Theorem 5.7. [10] The k-partition energy ofKn1∇Kn2∇ · · ·∇Knk in which each of k partitions
contains n1, n2, . . . , nk vertices respectively where 2 ≤ k ≤ bn2 c, n1 = n2 = · · · = nk = p and
n = kp is 4(n1 + n2 + · · ·+ nk − k).

Theorem 5.8. Let Pk = {V1, V2, · · · , Vk} be a partition of the vertex set of (Kn1,n2,··· ,nk)k(i)
where Vj = {vj1, vj2, · · · , vjnj} where j = 1, 2, · · · , k and n = n1 + n2 + · · ·+ nk. Then
LEPk(Kn1,n2,··· ,nk)k(i) = 4(n1 + n2 + · · ·+ nk − k) if n1 = n2 = · · · = nk = p.

Proof.The matrix LPk(Kn1,n2,··· ,nk)k(i) can be obtained from Pk(Kn1,n2,··· ,nk) by interchanging
1 and -2 in the non principal diagonal entries and replacing xi = n − ni by yi = n − 1 for all
i = 1 to n which is nothing but the matrix LPk(Kn1∇Kn2∇ · · ·∇Knk). Since this is regular,
from Theorem 5.1 and 5.7

LEPk(Kn1,n2,··· ,nk)k(i) = EPk(Kn1∇Kn2∇ · · ·∇Knk) = 4(n1 + n2 + · · ·+ nk − k)

where n1 = n2 = · · · = nk = p. 2
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