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Abstract. Let G = (V, E) be a graph and P, = {V}, V3, ..., Vi, } be a partition of V. Recently
we have introduced the partition energy of a graph Ep_(G) and computed partition energy of
some families of graphs with respect to a given partition. In this paper, we introduce the con-
cept of partition Laplacian energy LEp, (G) which depends on the underlying graph G and the
partition of the vertex set V' of G. We obtain an upper bound and few lower bounds for parti-
tion Laplacian energy, also obtain partition Laplacian energy of some families of graphs, their
internal-complements and show that k-partition Laplacian energy of a r-regular graph G is equal
to its k-partition energy with respect to any partition Py of V.

1 Introduction

Let G = (V, E) be a graph of order n. The energy of a graph G was defined by I. Gutman
in 1978 as the sum of the absolute values of eigenvalues of G [4]. The concept of graph energy
has origin in chemistry which is used to estimate the total m-electron energy of a molecule. In
chemistry the conjugated hydrocarbons can be represented by a graph called molecular graph
whose eigenvalues with respect to adjacency matrix A(G) represent the energy level of the elec-
tron in the molecule. In Hiickel theory the sum of the energies of all the electrons in a molecule
is called the m-electron energy of a molecule. In spectral graph theory, the energy-like quantities
such as Laplacian energy, distance energy, color energy, color Laplacian energy of a graph etc.,
are studied in [1], [5], [6], [7].

E. Sampathkumar and M. A. Sriraj in [9] have introduced L-matrix with respect to a partition
P, = {W,Va,...,Vi} of the vertex set V of a graph G = (V, E) of order n represented by
a unique square symmetric matrix P;(G) = [a;;] of order n, whose entries a;; are defined as
follows:
(i) Suppose for some V;. € Py, both v;, v; € V;.. Then a;; = 2 or —1 according as v;v; is an edge
or not.
(ii) For r # s, suppose v; € V,. and v; € V,. Then a;; = 1 or 0 according as v;v; is an edge or
not.
The matrix Py (G) thus defined is called the L-matrix of the partition Py, of the graph G = (V, E).

Recently in [10], we have defined k-partition eigenvalues of G as the eigenvalues of the ma-
trix Py(G) and the k-partition energy Ep,(G) is defined as the sum of the absolute values of
k-partition eigenvalues of GG. In this paper we have determined partition energy of some known
graphs, their k-complement and k(i)-complement. We have also obtained some bounds for
Ep (G).

The concept of color energy was introduced by C. Adiga et al. in [1]. In [7], Pradeep
G Bhat and Sabitha D’Souza have studied the color Laplacian energy of a graph. Let G be
a colored graph on n vertices and m edges. The color Laplacian matrix of G is defined as
L.(G) = D(G)—A.(G) where D(G) = diag(dy,da, . .., d,) represents the diagonal matrix with
vertex degrees dy,d, . .., d, of vi,vy,...,v, of G and A.(QG), the color matrix. The eigenvalues
{p1, p2y -+, pn } of Lo(G) are called color Laplacian eigenvalues of the graph G. If auxiliary
color eigenvalues ~;, ¢ = 1 to n are defined as v; = p; — 27’" then color Laplacian energy of G
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is defined as Z |7 |-

i=1
Now we state definitions of two types of complements of a partition graph called k-complement
and k(7)-complements as follows:

Definition 1.1. [8] Let G be a graph and P, = {V}, V5, ..., Vi } be a partition of its vertex set V.
Then the k-complement of G is obtained as follows: For all V; and V; in Py, ¢ # j remove the
edges between V; and V; and add the edges between the vertices of V; and V; which are not in G

and is denoted by (G),.

The matrix of k-complement is obtained from L-matrix Py (G) as follows: In Py (G) inter-
change 1 and O in the non-principal diagonal entries. The matrix thus obtained is the matrix of
G, and denoted by P, ((G),).

Definition 1.2. [8] Let G be a graph and P, = {V},V,,..., V. } be a partition of its vertex set
V. Then the k(:)-complement of G is obtained as follows: For each set V,. in P, remove the
edges of G joining the vertices within V;. and add the edges of G (complement of G) joining the
vertices of V.., and is denoted by (G), ;).

The matrix of k(i)-complement is obtained by interchanging 2 and —1 in the matrix Py (G)
and is denoted by P, ((G);))-

2 Partition Laplacian energy

Consider a graph G = (V, E) of order n and size m with a partition P, = {V}, V4,..., Vi}
of V. Let Py(G) be partition matrix and D(G) = diag(dy,da,...,d,) represents the diago-
nal matrix with vertex degrees d;,d,...,d, of vj,vp,...,v, of G. Then we define the parti-
tion Laplacian matrix of G as LP,(G) = D(G) — Px(G). The eigenvalues {p1, 2, - , tin}
of this matrix LPy(G) are called k-partition Laplacian eigenvalues. We also define auxiliary
partition eigenvalues v;, ¢ = 1,2,--- ,nas vy = p; — zr—’L” The k-partition Laplacian energy

of G or partition Laplacian energy of G, denoted by LEp, (G) is defined as Z | v | -

i=1

. 2m
Z,e.,LEpk(G) = Z ‘ i — — |

If the vertex set of a graph G of order n is partitioned into n sets then the partition Laplacian
energy coincides with the usual Laplacian energy of a graph. So partition Laplacian energy may
be considered as a generalization of Laplacian energy of a graph.

In this paper, we define the partition Laplacian energy and establish an upper bound and some
lower bounds for partition Laplacian energy. We obtain partition Laplacian energy of some fam-
ily of graphs, its k-complement and k(i)-complement. Also prove that k-partition Laplacian
energy of a r-regular graph G = (V, F) is equal to its k-partition energy with respect to any
partition Py, of V.

3 Some basic properties of partition Laplacian eigenvalues of a graph

Let G = (V, E) be a graph with n vertices, m edges and P, = {Vj,Va,...,V;} be a partition
of V. For 1 < r <k, let b; denote the total number of edges joining the vertices of V. and ¢;
be the total number of edges joining the vertices from V,. to V; for r # s,1 < s < k and ¢
& k(kz—])
be the number of non-adjacent pairs of vertices within V,.. Let m; = Z by, my = Z Ct

t=1 t=1
k

and m3 = Z e and d; represent the degree of v; where 7 = 1,2,--- ,n. Let LP;(G) be the
t=1
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partition Laplacian matrix. If the characteristic polynomial L®p, (G, ) = det[ul — LP(G)] =
aop™ +aip™ "' +ayu" "%+ -+ a,, then the coefficient a; can be interpreted using the principal
minors of LPy(G).

The first three coefficients of the characteristic polynomial of L Py (G) are determined in the
following proposition.

Proposition 3.1. The first three coefficients of L®p, (G, 1) are given as follows:
k
(1)ap =1, (2) a; = —2m, (3)ay = Z dz-djf[4m1+m2—|—m3].
1<i<j<n

Proof. (1) It follows from the definition L®p, (G, \) = det[ul — LP,(G)] that ag = 1.

(2) Note that for each i € {1,2,3,...,n}, the number (—1)’a; is the sum of those princi-
pal minors of LP;(G) which have i rows and i columns. Since the diagonal elements are d;,

(—1)a1 = ZZI:I d'i = 2m.

Hence a; = —2m.
(3)
Gs s
(1P = 3|
I<i<j<n |%3i @]
= ) auay; - ajia
1<i<j<n
_ } : Z 2
= dzdj — aij
1<i<j<n 1<i<j<n
= E d;dj — [4my + my + m3).
1<i<j<n

k
Hence, a, = Z didj — [4m1 +myp + mg].\]

1<i<j<n
We prove the following results to obtain the bounds for partition Laplacian energy of a graph
G.

Proposition 3.2. If j11, pi2, - - - , py, are partition Laplacian eigenvalues of LPy(G), then

Z,uf =2[4m; + my + m3] + de

i=1 i=1
Proof. We know that

n n n

2
E Hi = E E @ijQji
i=1

i=1 j=1

= 22“%"’%“%
I

1<j =

= 2[dm; +my +m3] + Z d%.
i=1
Proposition 3.3. Let G| and G, be two graphs of order n. Suppose that Py, and P, are partitions

of vertex sets of G| and G respectively. If piy, fta, . . ., o, and piy, pih, . . ., p1, are the eigenvalues
of LP,(G,) and LP|(G,) respectively, then

St < (z<4m1 s +ms) + Zd%) <2<4ma i+ ) + Z(d;>2>

i=1 i=1
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where my, my, m3 are as defined above for G and m/, my, m5 for G» and d;,d; are degrees of

an it" vertex of corresponding graphs respectively.

Proof. By Cauchy - Schwartz inequality we have

(5] < (5) ()

Setting a; = p; and b; = i, in the above inequality, we get

(Br) = () (824

Z,u,;u; < (2(4m1 +my+m3) + Z(d2)2> (2(4m’1 +mb +m}) + Z(d;)2> O

i=1

i=1

4 Some bounds for partition Laplacian energy of a graph

In the present section, we obtain an upper bound and some lower bounds for LEp, (G).

Theorem 4.1. Let G be a graph of order n and size m and Py, be a partition of vertex set of G.
Then

i=1

LEp,(G) < \|n (2(4m1 +my +m3) + Zd%> — 4m2

where my, my, m3 are as defined above for G.

Proof. Let uy, ua, . . ., pu, be the eigenvalues of LP;(G).
We know that Cauchy - Schwartz inequality is

(5] = (£) (Bv)

Let a; = 1 . bl :| Yi | Then
n 2
2
wrn@? = (1)
i=1
=n Z i [P
i=1
= n) o
i=1
- 2m
= "Z(M - 7)2
i=1
= nZuf —4m?
i=1

= n (2(4m1 + mo + m3) =+ Zd?) — 4m2.

i=1

Thus, LEp, (G) < \/n (2(4my +my +ma) + S0, d2) — 4m2. O
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Corollary 4.2. If G is r-regular, then

LEp, (G) = Ep,(G) < \/2n(4m1 + my + m3)

Theorem 4.3. Let G be a graph of order n and size m and Py, be a partition of vertex set of G.
If D= det [LP,(G) — 221), then

n

4m
LEp,(G) > | 2(4my + my + ms) +Zd2——+n(n—l)Dn.
=1

Proof. We know that

n 2

2
(LEp,(G))” = (ZI Yi |>
i=1
= > 1wl 1l
i=1 j=1

= (ZI% I2> +) vl |

i=1 i#j

Now we use arithmetic mean and geometric mean inequality which is as follows.

1
n(n—T)

Z\%II%\ > ] 1%l

1#1 i7#]

n(n—1)

(LEp,(G))* > ZI%I Hn(n—1) ( T] 11|
i#]

= ZI%IZMR*I (Hlv [P 1)
= Z’y,;z—l—n(nfl)D%

i=1

n Am?>
= Zugfﬂﬁ-n(nfl)D%
n

i=1

1
n(n—1)

= 2(4my +m2+m3)+2d377+n(n— 1)Dx.
i=1

Thus, LEp,(G) 2 \/2(4m1 Fmy+ms) + Y0, @ — 4 p(n —1)D7. O

Corollary 4.4. If G is r-regular, then

: \w

LEp,(G) = Ep, (G \/2 (4my +ma +m3) +n(n —1)D

We need the following two theorems to establish some more lower bounds for partition Lapla-
cian energy of a graph.
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Theorem 4.5. [2] Let a,ay,a3, - ,a,, A and b,by,by,--- ,b,, B be real numbers such that

a <a; < Aandb < b; < Bforalli = 1,2,--- ,n then the following inequality is valid.
| n 3oy aibi = 3o ai Yo b |< a(n)(A — a)(B — b) where a(n) = n[3](1 — ;[3]) and
(5] denotes the greatest integer part of 5 and equality holds iff ay = a, = --- = a, and
by =by="--=by,.

Theorem 4.6. [3] Let aZ # 0,b;,r and R are real numbers satisfying ra; < b; < Ra; then
Zz 1% +TRZ lal — (T+R)Z la‘lbl

Theorem 4.7. Let G be a graph with n vertices and m edges. If | y1 |>] v2 |>,- -+, =| vn | where
V1,72, s Yn are auxiliary partition eigenvalues of G with respect to P, = {V1,Va,--- , Vi },
Then

LEp (G) > ,|n (2(47711 +my +m3) + de) —4dm2—an)(|n |- |7 ‘)2

i=1

Proof. Consider a graph G with n vertices and m edges.Given | v; |>| v2 |>,- -+, =] Y |-
Puta; =| v |,b0: =|vi |,a =| v |,b =| ¥ |, A = B =| 7 | in Theorem 4.5 to get
i [ P = 1 P < alm) (T | = [ 1)’

i=1 17 i=1 1 Vi = M Tn .

But Y7, | 7 [P= (2(4my +ma +m3) + Y0 d?) — #2° and

LEp, (G) < /n(2(4my +ma +m3) + >, (d;)?) — 4m?2.
I (2(4m1 +ma +ms) + S0, &) = 4m? = (LEp, ()] < a() (|31 | = 7 )}

n (2(4my +my +my) + Y0 d2) — 4m? — (LEp,(G))* < a(n) (| | — |7 1)’
Hence,

LEp,(G) = \/n (2(4m) +my +m3) + S0 &) —4m? —a(n) (|1 | — | 3 )% O

Theorem 4.8. Let G be a graph with n vertices and m edges. If | v |>| v |[>, -+, >| yn | where
YisY2s s Yn are auxiliary partition eigenvalues of G with respect to P, = {V,Va,--+ , Vi },
Then 2
2(4my + my +m3) + 2 -4 4 n
LEPk(G)Z ( 1 2 3) Z’L 1 n |'71||7 |
[+ |
Proof. Consider a graph G with n vertices and m edges. Given | v; |>| v2 |>,-,>| T |-

Choose b; =| v; |and a; = 1,7 =| 7, | and R =| 7, | Then | ypa; |<| v |<| 11a; | and by
Theorem 4.6
S v Pl o L2 U< (v L Ty D25 [ |

:>2(4m1+m2+m3)+21 1 z —7+TL|’}/1 ||’Yn ‘< (|71 | +|’7n |)LEPk(G)
Hence,

n m2
2(4my +my +ma) + >0 dF — 2 4y || | -

LEp (G) >
(G) T+ ]

5 Partition Laplacian energy of some family of graphs

In this section we prove that k-partition Laplacian energy of a r-regular graph G is equal to its
k-partition energy with respect to any partition Py of V. We obtain partition Laplacian energy
of complete product of two circulant graphs, its k-complement, k(i)-complement. Also we
determine partition Laplacian energy of star graph, its (k+1)(z)-complement, multipartite graphs
and its k(7)-complements.

Theorem 5.1. Let G = (V, E) be r-regular graph with n vertices, m edges and P, = {V,Va, ..., Vi }
be a partition of V then, LEp_ (G) = Ep, (G).
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Proof.We know that LDy, (G, z) = det[z] — LP(G)| = det[xI —rI + Pi(G)] = det[(x — )] +
P(@)] = (=1)"det[(r — x)I — P(G)] = (—1)"®x(G,r — z).

Thus, if A1, A, - -+, A, represent the k-partition eigenvalues of a r-regular graph G, then

r— AL, T — A, -, 7 — Ay, represent the k-partition Laplacian eigenvalues of G. Also for a r-
regular graph G, v; = p; — 2% =l —r=—\.

Hence LEp, (G) = Ep,(G). D

Theorem 5.2. [10] Let Gy = (V1, Ey), G2 = (Va, Ey) be two 1, 1 regular graphs of order ny, ny
with ®1(G : N), ®1(Ga : \) as characteristic polynomials respectively. Then the characteristic
polynomial of G|V G, with respect to the partition P, = {V},V,} is

q)l(Gl : )\)(I)l(Gz : )\)[()\ — (37’1 —n1 + 1))()\ — (37‘2 —np + 1)) — nmz]

(GG, 1 \) = A= (3r1 — 1 + DJA— (3r2 —ma + 1)] ’

where 3r; — ny + 1 and 31y — ny + 1 are the 1-partition eigenvalues of G| and G, respectively.

Theorem 5.3. If G; = (V;, E;) is a circulant graph of degree r; with n; vertices i = 1,2 with
P = {Vl, Vz} and S| = LPI(Gl) +naly,, S, = LPl(Gz) +nily, then

n;—1

(1) LEp,(G1VGy) = )

t=1

ny,—1

2
r1+n2—/\t—% +Z
=1

2
T2+n1—§l—% +

2
n—(T1+T2)—1+\/[n—(T1+T2)—1]2—(n—2T]—1)(71—27‘2—1)—*—%1’02—% +

2
n(rl—i—rz)l\/[n(rl—i—rz)l]z(anll)(n2r21)+n1n2ml‘where
n

niry + nary + ning
mp = 2

(2) LEPZ((G1VG2)2) = LEPI(GI) + LEPI (Gz)

, A and &; are 1-partition eigenvalues of G| and G, respectively .

’I’Llfl nzfl
_ 2my 2my
(3) LEPz(GIVGZ)Z(z) = E n—mr _1—)\2_7 + E n-—mry — l _gl/_ T +
t=1 =1
5 2my
7“1+7°2+1+\/(7“1+7“2+1) —(nz—n1+2rl+l)(n1—n2+2r1+1)—|—nm2—7 +

2
r1+r2+1—\/(m+r2+1)2—(n2—n1+2r1+1)(n1—n2+2T1+1)+n1n2—T:z’where

’I’L2 —NnN—ni1ry — N2

2

n=mn; +ny my = and X\, and & are 1-partition eigenvalues Of(Gl)l(i)

and (G2),(;) respectively .
Proof. (1) The Laplacian partition matrix of G; VG, with respect to P, = {V;, V,} is

Si B
LP, (G1VG2) = 5T 55
where B is an n; X n, matrix in which all the entries are 1’s.
Since G and G, are regular graphs, it follows that row sum of S; = LP(G) + nI,, and
Sy = LP(Ga) +ny1,, are ng +ny — 2r; — 1 and ny + ny — 2r, — 1 which represent eigenvalues
of the matrices S and S, respectively.
Hence by Theorem 4.2, we get the following.
Lq)pz(lec;z, u)=
D(Sy1, )P (Sa, p) [ — 2un — (r1 +72) — 1]+ (n—2r; — 1)(n — 21 — 1) — nyny]

(i~ (21— ))(u— (n— 212 1))
where ®(S7, 1) and P(.S,, i) represent the characteristic polynomials of S} and S, respectively.

Therefore the 2-partition Laplacian eigenvalues of G} VG, are the roots of

D(S1, 1) P(S52, 1)
= = d
uw—(n—2r —1) 0’/1—(71—27"2—1) Oan

w2 =2uln — (ry +m) = 1]+ (n—2r — 1)(n —2r, — 1) — nyny] = 0.
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Also G| and G, are circulant implies that the matrices S| and S, are circulant.
Hence the 2-partition Laplacian eigenvalues of G1 VG, are

1 once

142 once
r+ny—X fort=1,2-- n;—1
rm+m—§& forl=1,2,--- ny—1

where iy =n— (r1 +12) — 1+ /[n— (r +m2) =112 = (n—=2r; — 1)(n —2r, — 1) + nina,

,ug—n—(rl—i—rz)—l—\/[n—(rl—i—rz) 12— (n—=2r —1)(n—2r, — 1) + nnay,
2mit(s—1) 2mil(s—1)

ase ™ and§ = Ebe 2

Here as and —b; are first row entrles(except principal diagonal) of .S; and S, respectively.

It can also be observed that A\, and &; are 1-partition eigenvalues of G| and G5.

nre 4 nery + ning
2

Consider ~; = p; — 2"“ where m; = is the number of edges in G| VGs.

na—1
mi

2
TL—(’I"1+T2)—1+\/[n—(’f‘l-f—’f‘z)—l]z—(n—ZT]—1)(71—27‘2—1)4‘711’”2—7 +

ny—1
Thus LEp, (G1VGy) = >
t=1

2m1

2m
! Ty + Ny — 51—7

r1+n2—/\t—— +

2
nf(T’]—FT’Q)*l*\/[TL*(Tl—i-Tz)*l]z*(n*ZTl71)(71727"271)4—7117127% .

(2) It can be easily observed that

(LP(G) | 0 )

LPZ(GlVG2)2 - \ ‘
LP\(G,))
Hence LCIDP2 ((GIVG2)2, /,L) = Lq)pl (Gl, /J)L‘bpl (Gz, ,u)
Thus LEp, (leaz)z = LEp, (Gl) + LEp, (Gz).
(3) The Laplacian partition matrix of (G 1VG2)2(i) is
—_— H, B
LPZ((GIVGZ)z(i)) = BT H,

where H| = LPI(Gl) 1(3) + nol,, and Hy = LP (Gz) 1(3) +nilp,.

Row sum of H; and H; are ny —n +2r; 4+ 1 and n; — ny + 21, + 1 which represent eigenvalues
of H| and H; respectively. With simplification similar to (1), we get the partition Laplacian
eigenvalues of (G, VG,) 1VG2)y ;) as follows.

75 once
2 once

n—ri—1=X fort=12,-- ,n -1

n—ry—1-=¢§ forl=12,-- n—1

where py =71 + 1+ 14+ /(1 + 72+ 1)2 = (ng —ny +2r1 + 1)(ng —na + 2 + 1) + nyna

1 —7“1 —i—rz—l—l— \/(rl +rm+1)2—(np—ny+2r + 1)(ng —na+2r1 + 1) + nyny,
2mit(s—1) 2mil(s—1)

ny
A= ch " = ste " are l-partition eigenvalues of (G);(;) and (G2)(;
s=2




280 E. Sampathkumar, S. V. Roopa, K. A. Vidya and M. A. Sriraj

respectively and —c,, —d, are first row entries(except principal diagonal) of H; and H, respec-
tively. Thus

nlfl

>

=1

nlfl

LEp,(Gi\VGa)ouy = Y

t=1

2m2

2
e n—ry—1-§¢——
n

n—r —1-X\ ——=

2
7"1+7“2+1—0—\/[(r1+r2—0—1)2+(n2—n1+2r1+l)(n1—n2+2r1+1)+n1n2—% +

where

2
r1+r2+1\/[(r1+r2+1)2(n2n1+2r1+1)(mn2+2m+1)+n1n27:2

2 _ = _ _
non T;lrl 1272 i the number of edges in (G1VG2),(;)- O

n=mn; +np and m, =

Theorem 5.4. Let vy be the vertex of degree n—1 of K ,,—1 = (V, E) and Py = {Vo, V1, Va, -+, Vi.}
be a partition of V where Vo = {vo} and V; = {v;1,vj0,- -+ ,vjn; } for j = 1,2,--- ,k and
ny+ny+---+ny=n—1.Then

(1) 0is a k + 1- partition Laplacian eigenvalue of K ,,— repeated n — k — 1 times.

@) LBy, (K ) = |21 <nk1>+(k1>‘pz(”nl)‘
L|ntp= D Vtp-1)? -4l -Dlp-1) 2n-1)
2 n
N m+p-1)—/(ntp—12-4(n-1)p-1) 2(n-1)
2 n
ifny=ny=---=mn,=p.

Proof.The matrix LP; (K ,—1) with respect to Py = {Vp, Vi, V2, -+, Vi } is

- Vo V12 V13 - Vln, 21 V22 - Vop, - Vg1 Uk2 - Vkny,
) n-1 -1 -1 .. -1 -1 -1 ... -1 ... -1 -1 -1
v11 ~1 11 ... 1 0O 0 ... 0 ... 0 0 0
V12 -1 1 | B 1 0 0o ... o ... O 0 0
Vin, -1 1 1 1 0O O 0 0 0 0
V21 -1 0 O 0 1 1 1 0 0 0
v -1 0 O 0 1 1 1 0 0O 0
V2p, —1 0 0o ... 0 1 ... I ... 0 0o ... 0
Uk -1 0 0o ... 0 0 0o ... 0o ... 1 | I 1
Uy A\ =1 0 O ... 0 O O ... O .. 1 1 .. 1

Consider the characteristic equation det[u] — LPy.1(G)] = 0 and perform the following opera-
tions.

(1) Subtract the row corresponding to the vertex v;; from the rows corresponding to the ver-
tices v;; where j =2,3,--- ,n; foreachi =1,2,3,--- ,k and

(2) Add the columns corresponding to the vertices v;y, - - - , vip, to the column corresponding
towv;; fori =1,2,--- k.
On further simplification we get,
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uw—(n—1) ny ny N
1 w—nyp 0 e 0
Mn1+n2+"'+”k*k 1 0 n—ny ... 0 =0.
1 0 0 oo p—mg
This proves that i = 0 is a root repeated n; + np + - - - + ng — k times. Further if ny = n, =
n3 = --- = ng = p in the above determinant then it reduces to
p—m—1) p p ... D
1 w—p 0 e 0
pnk 1 0 w—=p ... 0 =0.
1 0 0 e W=D

Multiply first column by (p — i) and add all the other columns to it. This on further simplifi-
cation gives p" ' F(u — p)* [ — p(n +p— 1)+ (n - 1)(p - 1)] = 0.
Hence its partition Laplacian spectrum is

0 (n—Fk—1) times
P k—1 times
(tp-D+ JETp- P Am-Dp=0
2
(n+p—1)—/(n+p-12-4n-1{p-1) once
2
Consider v; = p; — w
Thus LEp, ., (K1) = ‘2("_1) (n—k—1)+(k—1) ‘p— 2(”_1)’
N (n+p—1)+\/(n+p—1)2—4(n—1)(p—1)72(n—1)
2 n
(ntp-1) - VT r TP -0 2 1)
2 n
ifni=ny=---=n,=p. 0

Theorem 5.5. Let vy be the vertex of degree n—1 of K ,,—1 = (V, E) and Py = {Vo, V1, V2, -+ , Vi }
be a partition of V- where Vo = {vo} and
Vi ={vj1,vj2,- - s vjm; Y for j=1,2,--- [kandn; +ny +---+np =n — 1. Then

(1) 2+ p is a k + 1- partition Laplacian eigenvalue of (K —1)(41)) repeated n — k — 1
times.

@ LB (o) = |25 (0= k- 1) 4 P22 Ly
et DV —pt P 4D -1)  (n-De+1)
2 n
et )=V —p+ 1P +4=Dp=1)  (n=Dp+1)
2 n
ifny=ny=---=mn,=p.

Proof.The matrix L Py (m) can be obtained by replacing the non diagonal entries
1 by —2 and 1 in the principal diagonal corresponding to d(v;) by n; in LPy4 (K ,—1). With
operations similar to those in Theorem 5.4 we getn;+2,n,+2, - - - , ni 42 as partition laplacian
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eigenvalues of (Klm_l)(kﬂ)(i) repeated n; — 1,np, — 1,--- . ny — 1 times respectively.
Furtherif ny =ny =n3 = --- = ny = p, we get
p—(n—1) p p p
1 w+p—2 0 0
(M_Z_p)n_l_k 1 0 /J,—I—p—z . 0 :0
1 0 0 . u+p-—2

Multiply first column by —(p + p — 2) and add all the other columns to it. Further simplifi-
cation gives
(n=2=p)" " Hu+p -2 —pn—p+1)—(n—1)(p-1)] =0.
Hence its partition Laplacian spectrum is

2+4p (n—k—1) times
2—p k—1 times
(n=p+D)+Vn—p+1)?+4(n-Dp-1) once
2
(n—p 1)~ o p 1P T A0 (1) .
2
Consider v; = p; — W.Then
L (B wn) = [ (k- 4 [P E
et DAV —pt P4 -DEp-1) (n-De+1)
2 n
L|=mpt )=V —p+ 1P 4= D=1 =D+ |
2 n ’

Theorem 5.6. Let P, = {Vi,Va, -+, Vi.} be a partition of the complete multipartite graph
Ko ny,eo iy where Vi = {vj1,vj0, -+ ), } where j = 1,2,--- [ kandn =ny +ny +- - +ng.
Then LEp, (Kp, ny. o my) =4n —4p =2k +2ifny =ny = -+ = ng = p.

)

Proof.The partition Laplacian matrix of K, n,.... n, With respect to
Pk = {‘/17‘/27 7Vk}is

- U1 Y12 v Ui V21 V22t U2p, 0t Ukl Vg2t Uk
V11 T I ... 1 -1 -1 ... -1 ... -1 -1 ... -1
V12 Iz ... 1 -1 -1 ... -1 ... -1 -1 ... -1
Vln, 1 1 ... x -1 =1 ... =1 ... =1 -1 ... -1
21 -1 -1 ... -1 =z 1 .. 1 ... -1 -1 ... -1
(%] —1 —1 —1 1 T 1 —1 —1 -1
vy, | -1 -1 ... -1 1 I ... x ... 0 0 .. 0
ver | -1 -1 ... -1 =1 =1 ... 0 ... =z, 1 ... 1
Vk2 -1 -1 ... -1 -1 -1 ... -1 ... 1 =z .. 1
Uk, \—=1 =1 ... —1 —1 —1 ... —=1 ... 1 1 ..

where 2; = n—n, fori = 1to k. Consider the characteristic equation det[ul —LPy(Ky, 1y, ny )] =
0. By using operations similar to those in Theorem 5.4 we get the roots y = (n—n; — 1) repeated
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n; — 1 times for 7 = 1 to k and

p—(n—1) ny n3 Ny
ny p—(n—1) n3 g
n n2 p—(n—1) ... Nk =0.
ny no n3 oo op—(n-=1)

If ny =ny =---=mn, = pthen

p—(n—1) P P p
P p—(n—1) p P
P P p—(n—1) ... p =0.
p p p cee p—=(n—=1)

On simplification we get (u —p+ 1)[u— (n+p—1)]*~1 =0.
Hence if ny = ny = --- = ng, = p, the k-partition Laplacian eigenvalues of K, n, ... n, are

n—p—1 (n—k) times
n+p—1 k—1 times
p—1 once

Also vy; = p; — (k — 1)p.
Hence LEp, (Kp, pyoomi) =l =1 (n—=k)+|2p—1|(k—=1)+|2p—n—1]
=4n—4p—-2k+2.0

Theorem 5.7. [ 10] The k-partition energy of K,,, VK,,,V - - - VK, in which each of k partitions
contains ny,ny, . .., nyg vertices respectively where 2 < k < L%J ng=mny=--=mn, =pand
n=kpisd(ni +ny+ - +nx—k).

Theorem 5.8. Let P, = {V1,V3,---,Vi} be a partition of the vertex set of (Ky, n,.-- i k(i)
where V; = {vj1,vj0, - ,Ujn,; } where j = 1,2,--- [kandn = ny +ny + - -- + ng. Then

LEPk(Km,nz,“-,nk)k(i) :4(n1 +ny+-+np— k’) ifny=ny=--=np=n.

Proof.The matrix LPy,(Kp, n,,... n;,)k(;) can be obtained from Py (K, n,.... n, ) by interchanging
1 and -2 in the non principal diagonal entries and replacing z; = n — n; by y; = n — 1 for all
i = 1 to n which is nothing but the matrix LP;(K,,VK,,V---VK,, ). Since this is regular,
from Theorem 5.1 and 5.7

LEPk (Knl,nz,m ka)k(z) = EPk (KmVKnZV ce VKnk) = 4(”] +np+ -+ — k)

wheren| =n; =---=np =p. 0
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