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Abstract. For a derivation δ of a ring R, we introduce the δ-McCoy rings which are a
generalization of the δ-Armendariz rings, and investigate their properties. Some properties of
this generalization are established, and connections of properties of a δ-McCoy ring R with
n× n upper triangular T (R,n, σ) are investigated. We study relationship between the δ-McCoy
property ofR and its polynomial ring,R[x]. We also prove that every ring isomorphism preserves
δ-McCoy structure. As a consequence we extend and unify several known results related to
McCoy rings.

1 Introduction

Throughout this paper, all rings are associative with identity. We use R[x] to denote the poly-
nomial ring with indeterminate x over R. Denote Eij for the matrix with (i, j)-entry 1 and
elsewhere 0. Let R be a ring, δ be a derivation of R, that is δ is an additive map such that
δ(ab) = δ(a)b + aδ(b), for all a, b ∈ R. We denote R[x; δ] the Ore extension whose elements
are the polynomials over R, the addition is defined as usual and the multiplication subject to the
relation xa = ax + δ(a), for any a ∈ R. Rege and Chhawchharia[13] introduced the notion of
an Armendariz ring. They defined a ring R to be an Armendariz ring if whenever polynomials
f(x) = a0 + a1x + · · · + anx

n, g(x) = b0 + b1 + · · · + bmx
m ∈ R[x] satisfy f(x)g(x) = 0

then aibj = 0 for all i, j. The name "Armendariz ring" was chosen because Armendariz had
been showed that a reduced ring (i.e., a ring without nonzero nilpotent elements) satisfies this
condition. According to cohn [2], a ring R is called reversible if ab = 0 implies ba = 0, for all
a, b ∈ R. R is called semicommutative if for all a, b ∈ R, ab = 0 implies aRb = {0}. Semi-
commutative rings are studied in papers of Du [3], Hirano [7], Huh, Lee and Smoktunowicz
[8], and Nielnes [11]. Reduced rings are clearly reversible and reversible rings are semicom-
mutative, but the converse is not true in general [11]. For a derivation δ, Nasr and Moussavi
[10], introduced a generalization of reduced rings and Armendariz rings which they called a
δ-Armendariz ring. They defined a ring R to be a δ-Armendariz ring if whenever polynomials
f(x) = a0 + a1x + · · · + anx

n, g(x) = b0 + b1 + · · · + bmx
m ∈ R[x, δ] satisfy f(x)g(x) = 0

then aixibjxj = 0 for all i, j.
According to Nielson [11], a ring R is called right McCoy (resp., left McCoy) if for any

polynomials f(x), g(x) ∈ R[x]\{0}, f(x)g(x) = 0 implies f(x)c = 0 (resp., sg(x) = 0 ) for
some 0 6= c ∈ R (resp., 0 6= s ∈ R). A ring is called McCoy if it is both left and right McCoy. By
McCoy [9], commutative rings are McCoy rings. Reduced rings are Armendariz and Armendariz
rings are McCoy. Habibi, Moussavi and Alhevaz [4], called a ring R to be δ-skew McCoy, if for
each polynomials f(x) = a0 + a1x+ · · ·+ anx

n, g(x) = b0 + b1 + · · ·+ bmx
m ∈ R[x, δ] satisfy

f(x)g(x) = 0 then there exists 0 6= c ∈ R such that aixic = 0 for all i.
Motivated by the above results, for a derivation δ of a ring R, we investigate a generalization

of the δ-skew McCoy and δ-Armendariz rings which we call it δ-McCoy ring. We call a ring R
δ-McCoy, if for each polynomials f(x) = a0 +a1x+ · · ·+anxn, g(x) = b0 + b1 + · · ·+ bmxm ∈
R[x, δ], f(x)g(x) = 0 implies that there exists 0 6= c ∈ R such that f(x)c = 0. Clearly,
aix

ic = 0 for all i, implies f(x)c = 0 but the converse is not true. On the other hand, it is
obvious that every δ-Armendariz ring is δ-McCoy but Example 2.1, shows that δ-McCoy rings
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are a proper generalization of δ-Armendariz rings.

2 δ -McCoy rings

We begin this section by the following definition and also we study properties of δ-McCoy rings.

Definition 2.1. Let δ be a derivation of a ringR. The ringR is called δ-McCoy if for any nonzero
polynomials f(x) =

∑m
i=0 aix

i and g(x) =
∑n

j=0 bjx
j in R[x; δ], f(x)g(x) = 0, implies that

there exists c ∈ R− {0} such that f(x)c = 0 i.e.,
∑m

l=k (
l
k)alδ

l−k(c) = 0 for k = 0, 1, ...,m.

It is clear that a ring R is right McCoy if R is 0-McCoy, where 0 is the zero mapping.

Proposition 2.2. Let δ be a derivation of a ring R. Let S be a ring and ϕ : R → S be a ring
isomorphism. Then R is δ-McCoy if and only if S is ϕδϕ−1-McCoy.

Proof. Let α′ = ϕαϕ−1 and δ′ = ϕδϕ−1. Since δ′(ab)=ϕδ(ϕ−1(a)ϕ−1(b))=ϕ((δϕ−1(a)ϕ−1(b)+
ϕ−1(a)(δϕ−1(b)))=δ′(a)b + aδ′(b), then δ′ is a derivation of S. Suppose a′=ϕ(a), for each
a ∈ R. Therefore p(x) =

∑m
i=0 aix

i and q(x)=
∑n

j=0 bjx
j are nonzero in R[x; δ] if and only if

p′(x)=
∑m

i=0 a
′
ix

i and q′(x)=
∑n

j=0 b
′
jx

j are nonzero in S[x; δ′]. On the other hand, p(x)q(x)=0 if
and only if

∑k
l=0
∑m

i=l (
i
l)aiδ

i−l(bk−l)=0 if and only if
∑k

l=0
∑m

i=l (
i
l)a
′
iϕ(δ

i−l(bk−l)) = 0 if and
only if

∑k
l=0
∑m

i=l (
i
l)a
′
iϕ(ϕ

−1ϕδi−lϕ−1ϕ(bk−l)) = 0 if and only if
∑k

l=0
∑m

i=l (
i
l)a
′
iδ
′i−l(b′k−l)=0

if and only if p′(x)q′(x)=0 for k = 0, 1, ...,m+n. Also
∑m

l=k (
l
k)alδ

l−k(c) = 0, for some nonzero
c ∈ R if and only if ϕ(

∑m
l=k (

l
k)alδ

l−k(c))=0 if and only if
∑m

l=k (
l
k)ϕ(al)ϕδ

l−kϕ−1ϕ(c) = 0 if
and only if

∑m
l=k (

l
k)a
′
lδ
′l−k(c′) = 0, for some nonzero c′=ϕ(c) ∈ S. Thus R is δ-McCoy if and

only if S is ϕδϕ−1-McCoy. 2

For any derivation δ, R is said to be δ-compatible if for each a, b ∈ R, ab = 0 implies that
aδ(b) = 0. The following lemma is appeared in [6].

Lemma 2.3. LetR be a δ-compatible ring. If ab = 0, then aδm(b) = 0 = δm(a)b, for all positive
integer m.

In the following result we prove that δ-McCoy rings is a fairly big class which includes for
instance, reversible δ-compatible rings.

Theorem 2.4. Every reversible δ-compatible ring is δ-McCoy.

Proof. Let f(x) =
∑m

i=0 aix
i and g(x) =

∑n
j=0 bjx

j be nonzero polynomials inR[x; δ] such that
f(x)g(x) = 0. We can assume g(x) has minimum degree that satisfies f(x)g(x) = 0 and b1 6= 0.
As in the proof of [4, Theorem 3.6], we can show that aibj = 0, for each i and j, and this implies∑m

l=k (
l
k)alδ

l−k(b1) = 0 by Lemma 2.3, and so R is δ-McCoy. Since f(x)g(x) = 0 and R is
reversible, we have ambn = 0 = bnam. So bnxnam = 0, since R is δ-compatible. On the other
hand, f(x)g(x)am = f(x)(

∑n
j=0 bjx

j)am = 0. Thus f(x)(b0 + ...+ bn−1x
n−1)am = 0. Since

the degree of g(x) is minimum, we have (b0 + ... + bn−1x
n−1)am = 0. So bjam = ambj = 0,

for each 0 ≤ j ≤ n − 1, since R is reversible and δ-compatible. Hence amxmbj = 0, for
0 ≤ j ≤ n, since R is δ-compatible. So (a0 + ...+ am−1x

m−1)g(x) = 0, and hence am−1bn =
0. Therefore, am−1bn = bnam−1 = 0. On the other hand, we have f(x)g(x)am−1 = 0.
This implies that f(x)(b0 + ... + bn−1x

n−1)am−1 = 0, since bnxnam−1 = 0. Thus we have
(b0 + ...+ bn−1x

n−1)am−1 = 0, since the degree of g(x) is minimum, and so according to above
am−1bj = bjam−1 = 0, for each j. Continuing in this way, we get aibj = 0, for each i and j,
and the result follows. 2

If we take δ = 0 in Theorem 2.4, we deduce the following result.

Corollary 2.5. Reversible rings are McCoy.

The following result shows that, for any derivation δ ofR, δ-McCoy ringR is a generalization
of reduced rings.
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Corollary 2.6. Every reduced ring R is δ-McCoy, for any derivation δ of R.

Now we turn our attention to study some extensions of δ-McCoy rings.
Let Rk be a ring, for each k ∈ I , δk a derivation of Rk and R =

∏
k∈I Rk. Then the map

δ : R→ R defined by δ((ak)) = (δk(ak)) is a derivation of R.

Proposition 2.7. Let Rk be a ring with a derivation δk, where k ∈ I . If Rk is δk- McCoy, for
each k ∈ I then R =

∏
k∈I Rk is δ-McCoy.

Proof. Let each Rk be a δk- McCoy ring, R =
∏

k∈I Rk and f(x) =
∑m

i=0 aix
i and g(x) =∑n

j=0 bjx
j ∈ R[x; δ]\{0} such that f(x)g(x) = 0, where ai = (a

(k)
i ) and bj = (b

(k)
j ). Consider

fk(x) =
∑m

i=0 a
(k)
i xi and gk(x) =

∑n
j=0 b

(k)
j xj ∈ R[x; δk]. Since fk(x)gk(x) = 0 and Rk is

δk-McCoy ring, there exists sk ∈ Rk such that
∑m

l=t (
l
t)a

(k)
l δl−tk (sk) = 0. Thus,

m∑
l=t

(
l

t

)
(a

(1)
l , · · · , a(k)l , · · · )δl−t(0, · · · , sk, 0, · · · ) =

(0, · · · ,
m∑
l=t

(
l

t

)
a
(k)
l δl−t(sk), 0, · · · ) = 0.

Therefore R is δ-McCoy. 2

Now we provide several examples of δ-McCoy rings. Let R be a ring and σ denotes an
endomorphism of R with σ(1) = 1. In [1], the authors introduced skew triangular matrix ring
as a set of all triangular matrices with addition point-wise and a new multiplication subject to
condition Eijr = σj−i(r)Eij . So (aij)(bij) = (cij), where cij = aiibij + ai,i+1σ(bi+1,j) + ...+
aijσ

j−i(bjj), for each i ≤ j and denoted it by Tn(R, σ). The derivation δ of R is extended to
δ : Tn(R, σ)→ Tn(R, σ) defined by δ((aij)) = (δ(aij)).

The subring of the skew triangular matrices with constant main diagonal is denoted by
S(R,n, σ); and the subring of the skew triangular matrices with constant diagonals is denoted
by T (R,n, σ). We can denote A = (aij) ∈ T (R,n, σ) by (a11, ..., a1n). Then T (R,n, σ) is a
ring with addition point-wise and multiplication given by,

(a0, ..., an−1)(b0, ..., bn−1) = (a0b0, a0 ∗ b1 + a1 ∗ b0, ..., a0 ∗ bn−1 + ...+ an−1 ∗ b0),

with ai ∗ bj = aiσ
i(bj), for each i and j. Therefore, clearly one can see that T (R, n, σ) ∼=

R[x; σ]/(xn), where (xn) is the ideal generated by xn in R[x; σ].
We consider the following two subrings of S(R,n, σ), as follows (see[5]),

A(R,n, σ) =

[n2 ]∑
j=1

n−j+1∑
i=1

ajEi,i+j−1 +
n∑

j=[n2 ]+1

n−j+1∑
i=1

ai,i+j−1Ei,i+j−1

B(R,n, σ) = {A+ rE1k|A ∈ A(R,n, σ), r ∈ R}, n = 2k ≥ 4.

Let σ be an endomorphism and δ a derivation of a ring R such that δσ = σδ. One can see that
the map σ : R[x; δ] → R[x; δ] defined by σ(

∑m
i=0 aix

i) =
∑m

i=0 σ(ai)x
i is an endomorphism

of the polynomial ring R[x; δ].

Theorem 2.8. Let R be a ring, σ be an endomorphism and δ a derivation of R. Then S is
δ- McCoy if and only if R is δ-McCoy, where S is one of the rings S(R,n, σ), A(R,n, σ),
B(R,n, σ), or T (R,n, σ).

Proof. We only prove that S(R,n, σ) is δ-McCoy, and the proof of the other cases are similar.
First, consider the map φ : S(R,n, σ)[x; δ]→ S(R[x; δ], n, σ), given by φ(

∑r
k=0 Akx

k) = (fij),
where Ak = (a

(k)
ij ) in S(R,n, σ) and fij(x) =

∑r
k=0 a

(k)
ij x

k in R[x; δ], for each 0 ≤ k ≤ r
and 1 ≤ i, j ≤ n. It is easy to see that φ is an isomorphism. Suppose R is δ-McCoy. Let
p(x) =

∑r
k=0 Akx

k and q(x) =
∑s

t=0 Btx
t be nonzero polynomials in S(R,n, σ)[x; δ] such that
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p(x)q(x) = 0, where Ak = (a
(k)
ij ) and Bt = (b

(t)
ij ) in S(R,n, σ), for 0 ≤ k ≤ r and 0 ≤ t ≤ s.

Thus (hij) = (fij)(gij) = 0, where fij(x) =
∑r

k=0 a
(k)
ij x

k and gij(x) =
∑s

t=0 b
(t)
ij x

l in R[x; δ],
for 1 ≤ i, j ≤ n. So we have the following equations,

h11 = f11g11 = 0;

h12 = f11g12 + f12σ(g11) = 0;

h23 = f11g23 + f23σ(g11) = 0;

.

.

.

hn−1,n = f11gn−1,n + fn−1,nσ(g11) = 0;

h13 = f11g13 + f12σ(g23) + f13σ
2(g33) = 0;

.

.

.

If f11(x) = 0, clearly
∑r

l=k (
l
k)Alδ

(l−k)
(E1n) = 0 for k = 0, 1, ..., r. Thus S(R,n, σ) is δ-

McCoy. Let f11(x) 6= 0. By above equations, there exists a nonzero g′ ∈ {gij |1 ≤ i, j ≤ n} such
that f11g

′ = 0. Since R is δ-McCoy, there exists 0 6= c ∈ R such that
∑r

l=k (
l
k)a

(l)
11 δ

(l−k)(c) = 0
for k = 0, 1, ..., r. Let C = cE1n. We have

r∑
l=k

(
l

k

)
Alδ

(l−k)
(C) =


0 0 · · · 0

∑r
l=k (

l
k)a

(l)
11 δ

(l−k)(c)

0 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · 0 0

 = 0

for k = 0, 1, ..., r and so S(R,n, σ) is δ-McCoy. Conversely, suppose that S(R,n, σ) is δ-
McCoy. Let f(x) =

∑r
i=0 aix

i and g(x) =
∑s

j=0 bjx
j be nonzero polynomials in R[x; δ]

such that f(x)g(x) = 0. Let F (x) =
∑r

i=0(aiIn)x
i and G(x) =

∑s
j=0(bjIn)x

j . Therefore,
F (x)G(x) = 0. Since S(R,n, σ) is δ-McCoy, there exists 0 6= C = (cij) ∈ S(R,n, σ) such that∑r

l=k (
l
k)alInδ

(l−k)(C) = 0 for k = 0, 1, ..., r. Since C is nonzero, there exists nonzero Cuv, for
some 1 ≤ u, v ≤ n, and

∑r
l=k (

k
l)alδ

(l−k)(cuv) = 0, for k = 0, 1, ..., r. So R is δ-McCoy, and
the result follows. 2

Corollary 2.9. For a ring R and for n ≥ 2, let

Rn =




a a12 a13 · · · a1n

0 a a23 · · · a2n
...

...
. . .

...
...

0 0 · · · 0 a

 |a, aij ∈ R


and

Vn(R) =





a1 a2 a3 a4 · · · an

0 a1 a2 a3 · · · an−1

0 0 a1 a2 · · · an−2
...

...
. . .

...
...

0 0 0 0 · · · a2

0 0 0 · · · 0 a1


|a1, a2, · · · an ∈ R


.

Since Rn = S(R,n, idR) and Vn(R) = T (R,n, idR), then Rn (resp., Vn(R)) is δ-McCoy if
and only if R is δ-McCoy by Theorem 2.7.
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Note that Vn(R) ∼= R[x]/(xn), where (xn) is an ideal of R[x] generated by xn for n ≥ 2.
Hence we have the following corollary.

Corollary 2.10. Let δ be a derivation of a ring R and n ≥ 2. Then R is δ-McCoy if and only if
the factor ring R[x]/(xn) is δ-McCoy.

Given a ring R and a bimodule RMR, the trivial extension of R by M is the T (R,M) =
R
⊕
M with the usual addition and the multiplication:

(r1,m1)(r2,m2) = (r1r2, r1m2 +m1r2).

This is isomorphic to the ring of all matrices

(
r m

0 r

)
, where r ∈ R andm ∈M and the usual

matrix operations are used. Let δ be a derivation of a ring R. Then δ is extended to the derivation

δ : T (R,R)→ T (R,R) by δ

(
r m

0 r

)
=

(
δ(r) δ(m)

0 δ(r)

)
for any

(
r m

0 r

)
∈ T (R,R).

Corollary 2.11. Let δ be a derivation of a ring R. Then R is a δ-McCoy ring if and only if the
trivial extension T (R,R) is a δ-McCoy ring.

It is clear that δ-Armendariz rings are δ-McCoy but the converse is not true by the following
Example.

Example 2.12. T (Z4,Z4) is 0-McCoy by corollary 2.5, but since Z4 is not reduced, it is not
0-Armendariz by [10, corollary 5.6].

Based on Theorem 2.8, one may suspect that Tn(R) over a δ-McCoy ring is still δ-McCoy.
But the following proposition erases the possibility.

Proposition 2.13. Let R be a ring and δ a derivation of R. Then Tn(R) is not δ-McCoy for any
n > 1.

Proof. Let f(x) = E12 + E33 + E44 + · · ·+ Enn + E11x and g(x) = E12 − E22x ∈ Tn(R)[x],
where Eij’s are the usual matrix units. Thus f(x)g(x) = 0, but if f(x)C = 0 for some C =
(cij) ∈ Tn(R) then A+Bx = 0 where

A =



δ(c11) c22 + δ(c12) c23 + δ(c13) · · · c2n + δ(c1n)

0 0 0 · · · 0
0 0 c33 · · · c3n
...

. . .
...

...
0 0 0 · · · cnn


and

B =



c11 c12 · · · c1n

0 0 · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0


and so C = 0. Therefore Tn(R) is not δ-McCoy. 2

Let I be an ideal and δ be a derivation of R. If δ(I) ⊆ I , then δ′ : R/I → R/I defined by
δ′(a + I) = δ(I) + I for a ∈ R, is a derivation of the factor ring R/I . Now it is natural to ask
whether R is a δ-McCoy ring if for any nonzero proper ideal I of R, R/I is δ-McCoy and I is
δ-McCoy, where I considered as a δ-McCoy ring without identity. However, we have a negative
answer to this question by the following example.
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Example 2.14. Let F be a field and δ be a derivation of F . Consider R = T2(F ), which is not
δ- McCoy by Proposition 2.13. Next we show that R/I is δ′-McCoy and I is δ−McCoy ring

for any nonzero proper ideal I of R. Note that the only nonzero ideals of R are

(
F F

0 0

)
,(

0 F

0 F

)
and

(
0 F

0 0

)
.

First, let I =

(
F F

0 0

)
. Then R/I ∼= F and so R/I is δ′-McCoy, by Corollary 2.6. Let

f(x) =
∑m

i=0

(
ai bi

0 0

)
xi and g(x) =

∑n
j=0

(
cj dj

0 0

)
xj be nonzero polynomials of I[x]

such that f(x)g(x) = 0, implying

f1(x)g1(x) = f1(x)g2(x) = 0, (2.1)

where f1(x) =
∑m

i=0 aix
i, g1(x) =

∑n
j=0 djx

j , g2(x) =
∑n

j=0 djx
j ∈ F [x]. If f1(x) = 0, then∑m

l=k (
l
k)

(
al bl

0 0

)
δ
(l−k)

(E11) = 0 for k = 0, 1, · · · ,m. Suppose f1(x) 6= 0. Since g(x) 6= 0,

g1(x) 6= 0. From (2.1) and the condition F is δ− McCoy, we have
∑m

l=k (
l
k)alδ

(l−k)(c) = 0 for
some nonzero c ∈ F , whence

m∑
l=k

(
l

k

)(
al bl

o 0

)
δ
(l−k)

(ce11) =


∑m

l=k (
l
k)alδ

(l−k)(c) 0 · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0

 = 0

for k = 0, 1, · · · ,m. Next let J =

(
0 F

0 F

)
. Then R/J is δ′-McCoy and J is δ-McCoy by

the same method. Finally, let K =

(
0 F

0 0

)
. Since R/K ∼= F ⊕ F , then R/K is δ′-McCoy

by Proposition 2.6. Since for any f(x) =
∑m

i=0

(
0 ai

0 0

)
xi

∈ K[x],
∑m

l=k (
l
k)

(
0 al

0 0

)
δ
(l−k)

(E12) = 0, K is obviously δ-McCoy.

For a ring R and a derivation δ of R, δ : R[x]→ R[x] defined by δ(f(x)) =
∑m

i=0 δ(ai)x
i for

any f(x) =
∑m

i=0 aix
i ∈ R[x] is a derivation of R[x]. Now, we have the following result.

Theorem 2.15. Let R be a ring and δ a derivation of R. Then R is δ-McCoy if R[x] is δ-McCoy.

Proof. Suppose that R[x] is δ-McCoy. Let f(x)g(x) = 0 for nonzero polynomials f(x) = a0 +
a1x+· · · amxm and g(x) = b0+b1x+· · ·+bnxn inR[x]. Then let f(y) = a0+a1y+· · ·+amym,
g(y) = b0 + b1y + · · · bnyn ∈ (R[x])[y], where (R[x])[y] is the polynomial ring with an indeter-
minate y over R[x]. Then f(y) and g(y) are nonzero since f(x) and g(x) are nonzero. Moreover
f(y)g(y) = 0. So there exists a nonzero c(x) = c0 + c1x + · · · + ctx

t ∈ R[x] such that
f(y)c(x) = 0, since R[x] is δ-McCoy. Then

∑m
l=k (

l
k)alδ

l−k
(c(x)) = 0 for k = 0, 1, · · · ,m.

Therefore
∑t

i=0(
∑m

l=k (
l
k)alδ

l−k(ci))xi = 0. Since c(x) is nonzero, there exists a cp 6= 0,
0 ≤ cp ≤ t. Hence

∑m
l=k (

l
k)alδ

l−k(cp) = 0 and so R is δ-McCoy. 2

A ringR is called right (resp., left) Ore if, for each a, b ∈ R with b regular there exists a1, b1 ∈
R with b1 regular such that ab1 = ba1 (resp. b1a = ab1). It is well-known that R is a right Ore
ring if and only if there exists the classical right quotient ring of R. In the following, we consider
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the classical quotient rings of δ-McCoy rings. LetR be an Ore ring with a classical right quotient
ring Q. Then a derivation δ of R, extends to Q, by setting δ(rc−1) = (δ(r) − rδ(c)c−1)c−1, for
each r, c ∈ R.

Theorem 2.16. Let R be an Ore ring and δ a derivation of R. Then R is δ-McCoy if and only if
the classical quotient ring Q of R is δ-McCoy.

Proof. We only prove the sufficient condition. For this, first we show that for each element
f(x) ∈ Q[x; δ] there exists a regular element c ∈ R such that f(x) = f ′(x)c−1, for some f ′(x) ∈
R[x; δ], or equivalentlyf(x)c ∈ R[x; δ]. The proof is by induction on deg(f). The case deg(f) =
0 is clear. Now, suppose that for all elements f(x) ∈ Q[x; δ] of degree less than n, the assertion
holds, and let f(x) =

∑n
i=0 aic

−1
i xi ∈ Q[x; δ]. Then f(x)cn = h(x)+anx

n with h(x) ∈ Q[x; δ]
and deg(h) < n. By induction hypothesis, there exists some regular element e such that h(x)e ∈
R[x; δ]. Thus we have f(x)cne = h(x)e + anx

ncne ∈ R[x; δ]. Also de is a regular element
in R, and the result follows. Next suppose that R is δ-McCoy. Let f(x) =

∑m
i=0 aic

−1
i xi and

g(x) =
∑n

j=0 bjd
−1
j xj ∈ Q[x; δ] such that f(x)g(x) = 0. Let aic−1

i = c−1a′i and bid−1
i = d−1b′j

with c , d regular elements in R. Then we have (
∑m

i=0 a
′
ix

i)d−1(
∑n

j=0 b
′
jx

j) = 0. By the
above argument, there are a regular element s ∈ R and p(x) =

∑t
i=0 b

′′
i x

i ∈ R[x; δ] such that
d−1(

∑n
i=0 b

′
ix

i) = (
∑t

i=0 b
′′
i x

i)e−1. Hence (
∑m

i=0 a
′
ix

i)(
∑t

i=0 b
′′
i x

i) = 0. Since R is δ -McCoy,
there exists 0 6= r ∈ R such that

∑m
l=k (

l
k)a
′
lδ

l−k(r) = 0. Hence
∑m

l=k (
l
k)alc

−1
l δ

l−k
(r) = 0.

Therefore Q is δ-McCoy. 2

Let R be a ring, δ a derivation of R and ∆ a multiplicatively closed subset of R consisting of
central regular elements. We define ∆−1δ : ∆−1R −→ ∆−1R by ∆−1δ(b−1a) = (δ(b))−1a for
any b−1a ∈ ∆−1R. Then ∆−1δ is a derivation of ∆−1R.

Proposition 2.17. Let R be δ-McCoy . Then ∆−1R is ∆−1δ-McCoy.

Proof. Let S = ∆−1R and f(x) =
∑n

i=0 aix
i, g(x) =

∑m
j=0 bjx

j be nonzero polynomials in
S[x; ∆−1δ] such that f(x)g(x) = 0 . Then we can assume that ai = a′iu

−1 and bj = b′jv
−1 for

some a′i, b′j ∈ R and u, v ∈ ∆ for all i, j. Set f(x) =
∑n

i=0 a
′
ix

i, g(x) =
∑m

j=0 b
′
jx

j . Thus
f ′(x)g′(x) = 0 in R[x; δ]. Thus there exists 0 6= c ∈ R such that

∑m
l=k (

l
k)a
′
lδ

l−k(c′) = 0. Hence∑m
l=k (

l
k)a
′
l(∆
−1δ)

l−k
(c′) = 0. Therefore S is ∆−1δ-McCoy ring. 2

Corollary 2.18. Let R[x, δ] be a δ-McCoy ring. Then R[x;x−1, δ] is a δ-McCoy ring.

Proof. It is directly follows from proposition 2.17. Let ∆ = {1, x, x2, · · · }, then clearly ∆ is a
multiplicatively closed subset of R[x, δ] and R[x, x−1, δ] = ∆−1R[x, δ]. 2
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