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Abstract. In this paper, we introduce the Tribonacci and Tribonacci-Lucas quaternion poly-
nomials. We obtain the Binet formulas, generating functions and exponential generating func-
tions of these quaternions. Moreover, we give some properties and identities for the Tribonacci
and Tribonacci-Lucas quaternions.

1 Introduction

For any positive real number x, the Tribonacci and Tribonacci-Lucas polynomials, {T},(x) }nen
and {¢, ()} nen, are defined by, for n > 3,

T, (z) = 2®Tp_1(2) + 2Ty _a(z) + Tp_3(x) (1.1)
and
to(z) = 2%ty (2) 4+ 2ty_o(x) + t_3(2), (1.2)

respectively, where Ty(z) = 0, Ti(z) = 1, Ta(x) = 22, to(x) = 3, t;(x) = 2% and t(z) =
x* 4 2.

Let a(z), wi (z) and wy () be the roots of the characteristic equation \*> — 22X\ — 2\ —1 = 0.
Then, the Binet formulas for the Tribonacci and Tribonacci-Lucas polynomials are given by

a”“(x) wn-&-l(x)

z) —w(2))  (a(z) - wi(@))(wi(2) — wa(x))

,n>0

where
320 23 1 0 T3 1
A(x) ﬁ+€+2+ 37 H‘f‘z,
Y AT B | 0 Tx3 1
Blr)=\3+5 3 \Vxmtssta

with e = —1 4 283,
One can easily see that

az) + wi(z) + wr(z) = 2% and ax)w (z)w(x) = 1. (1.3)

The generating functions of the Tribonacci and Tribonacci-Lucas polynomials are given by

- y
N7 (2)y" = 1.4
G(y) ;L:O (@)y" = 1= Ty R— (1.4)
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and

= 3 — 222y — xy?
9) = tala)y" = L (1.5)
n=0

=2y —ay? — 3

where T,,(z) is the n-th Tribonacci polynomial and ¢,,(z) is the n-th Tribonacci-Lucas polyno-
mial. For more details and properties related to the Tribonacci and Tribonacci-Lucas polyno-
mials, we refer to [7, 16]. Taking z = 1 in (1.4) and (1.5), we obtain the generating function
of the Tribonacci and Tribonacci-Lucas numbers, respectively, for more of this type of numbers
[2, 19].
On the other hand, a quaternion ¢, with real components ¢,, g;, ¢;, ¢ and basis 1, i, j, k, is
an element of the form
q=qr+ai+qi+ak, (¢1=q),
where S )
i"=j =k =ijk= -1,
! ! (1.6)
ij=—ji=k, jk=—-Kkj=iki=-ik =j.
In [9], Horadam defined the n-th Fibonacci and n-th Lucas quaternions as
Qn=F,+ Foi+ F,0j+ Foi3k, n>0

and
K,=1L,+ Ln—Hi + Ln+2j + Ln+3k7 n>0

respectively, where F;, and L,, are the n-th Fibonacci number and the n-th Lucas number and i,
J» k satisfy the multiplication rules (1.6).
Recently, in [6], we defined the n-th generalized Tribonacci quaternion as

Q'u,n =V, + Vn+1i + Vn+2j + Vn+3ka n > 07

where V,, is the n-th generalized Tribonacci number and i, j, k satisfy the multiplication rules
(1.6).

The Fibonacci and Lucas quaternions have been studied in several papers. For instance, Iyer
[13, 14] gave some relations connecting the Fibonacci and Lucas quaternions. lakin [11, 12]
introduced the concept of a higher order quaternion and generalized quaternions with quaternion
components. In [10], Horadam studied the quaternion recurrence relations. Swamy [20] derived
the relations of generalized Fibonacci quaternions. Halici [8] derived the generating functions
and many other identities for the Fibonacci and Lucas quaternions. Akyigit et al. [1] introduced
the Fibonacci generalized quaternions. Cerda-Morales [5] gave some properties of third order
Jacobsthal quaternions in a generalized quaternion algebra. Ramirez [17] has obtained some
combinatorial properties of the k-Fibonacci and the k-Lucas quaternions. Catarino [4] has de-
rived some properties of the h(x)-Fibonacci quaternion polynomials. Polatli et al. [15] gave
some properties of Split k-Fibonacci and Split k-Lucas quternions. Szynal-Liana and Wioch
[21] have introduced Pell quaternions and Pell octonions. Bolat and Ipek [3] have given various
identities related to Pell quaternions and Pell-Lucas quaternions.

Inspired by these, in this paper, we introduce the Tribonacci and Tribonacci-Lucas quater-
nion polynomials. We obtain the Binet formulas, generating functions and exponential generat-
ing functions of these quaternions. Moreover, we give some properties for the Tribonacci and
Tribonacci-Lucas quaternions.

2 Some properties of the Tribonacci and Tribonacci-Lucas quaternion
polynomials

Definition 2.1. For n > 0, the Tribonacci and Tribonacci-Lucas quaternion polynomials are
defined by

QT,n(z) = Tn(x) + Tt (l‘)i + T7L+2(13)j + Tn+3 (-T)k (2.1)
and
Qt,n (LC) =tp ((E) + tntl (-T)i + tni2 (.’L’)j + tnt3 ($)k (2.2)

where T),(z) and ¢, () are the n-th Tribonacci polynomial and the n-th Tribonacci-Lucas poly-
nomial. Here i, j, k are quaternionic units which satisfy the multiplication rules (1.6).
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Taking z = 1 in (2.1) and (2.2), we obtain the usualTribonacci and Tribonacci-Lucas quater-
nions, respectively, for more of this type of numbers [6].

Proposition 2.2. For n > 0, the following identities hold:

QT,n+3 (LE) = szT,7L+2($) + xQT,nH (ZC) + QT,n(x)v (23)

Qun+3(7) = 22Qpn2(2) + 2Qpns1 (%) + Qun(T). 2.4
Proof. (2.3): From equations (1.1) and (2.1), we obtain
P Qrni2(®) + 2Qrni1(2) + Qrn ()
= 2} (Thia(2) + Thys(2)i + Tpia(2)j + This(2)K)
+ 2(Ty1(2) + T2 ()i + Try3(2)j + Thsa(2)k)
+ To() + Tot1 (2)i + Tot2(2)j + Tnss(2)k
= (2 Tora(@) + 2Tt (2) + Tu(@)) + (07 Tas3(2) + 2Tnra (@) + Tugr ()i
+ (2 Tosa(w) + 2Tny3(2) + Topa(2)j + (2 Toys () + 2Tnga(2) + Toss () k
= Thi3(2) + Toga(2)i+ This(2)j + Toro(2)k = Qronss(x).

(2.4): The proof is similar to (2.3), using the equations (1.2) and (2.2). O
Theorem 2.3 (Binet formulas). For n > 0, we have
gO/H»] (t) _ ﬂwanrl (:E)
— (a(z)—wi(z))(a(z)—w(z)  (a(z)—wi(z))(w(z)—w(z))
Tn (l‘) - + wzw;“(.’l)) (25)
(a(@)—wz(z))(wi (z)—w2(x))
and
tn(2) = aa"(z) + wiwi () + wawy' (z), (2.6)

where o = 1+ a(2)i+ a?(z)j+ o (2)k, wi = 1 +wi (2)i+wi(z)+wi(2)k, wr = 1 +wr(2)i+
w3 (2)j + w3 (z)k and i, j, k are quaternion units which satisfy the multiplication rules (1.6).

Proof. (2.5): Using the Definition 2.1, Q7 (z) = T,,(x) + Ths1(2)i + Thsa(2)j + Thgs(z)k
and the classic Binet formulas for the Tribonacci and Tribonacci-Lucas polynomials, we obtain

M;L+l(£)

a™ N (z . Wit (z)
Qrn(z) = ( (a(z)—wi(@))(a(z)—w(z))  (c(z)—wi(@))(wi(z)—w(z)) )

T e o) @i @) —w@)
a2 (z) _ Wlnﬂ(w)
4| CEe @@ e @@ -m@ |
+ w2n+ (I)
(a(z)—ws(z)) (Wi (z)—ws(x))
" (z) B Wl (a)
+ | EEEETeE@wE) | e @ |
+ Wy (x)
)o@ (e (&)= (@)
a™(z) o w'l”M(:c)
4| CEe@eE—aE) T GEmaEmE-we) | g
+ WZ’L (;C)
@@= @)@ (@) =)
S ety (L a(@)i+ @@+ o (2)k)
=\ e e (@ @i+ e @)+ e} @k)
- (1 + w ()i + w3 (2)j + w3 (2)k)

wywy " ()

a0™ (a) _ @il (@)
— (a(z)—wi(z))(a(z)—wa(z)) (a(z)—wi(z))(wi(z)—w(x))
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and
Qi () = tn(2) + tnr1 ()i + tra2(2)j + thys(2)k
= a"(z) + wi'(z) + Wi (2) + (" (2) + wi ™ (@) + wy ™ (@)
+ (@2 (@) + wi (@) + wp R (@))i + (@7 (@) + WP () +wp P () )k
a(2)(1 + a(x)i+ a*(2)j + o’ (2)k) + wi (z) (1 + wi ()i + wi (@) + wi (2)k)
+wp (2)(1 + wa(@)i + w3 (2)j + w3 (2)k)
= aa”(z) + wiwi'(v) + wwy (z).

Theorem 2.4. The generating functions for the Tribonacci and Tribonacci-Lucas quaternion
polynomials are

y+i+ (P +ay+y2 )+ @ o+ Py +y+aiyPk

Gr(y) = Tt @7
and
{ 3 —22%y — ay? + (2% + 2zy + 392)i + (2* + 22 + 23y + 3y + 2%92)j }
+(2® + 32 + 3 + 2%y + 3%y + 2ty + 22y? )k
9t(y) = 1= 22y — 2 — 1 . (2.8)
respectively.

Proof. LetGr(y) =Y 0" o Qrn(x)y™ and g, (y) = .7 o Qu.n(x)y™. Then we get the following
equation

(1-a?y — zy® — y°)Gr(y)
= Qr.0(2) + (Qr.1(2) — 22Qr0(2))y + (Qr2(2) — 2*Qr 1 (7) — 2Q70(2))y*

+ Y (Qra(r) = 2’ Qrin1(2) — 2Qrm2(x) — Qrn3())y"
n=3

Since, for each n > 3, the coefficient of y™ is zero in the right-hand side of this equation, we
obtain

Grly) = Qro(z) + (Qri(x) — 332QT,10($)z)zyy+(Z:g,2(Z)3— 2?Qr,1(x) — 2Qro(x))y?

Cytit (@ F+ay+ )i+ (@t 2+ Py +y+ a2tk
B 1 —a?y —xy? — 33 '

Similarly, we get
Quo(2) + (Qu1(x) — 2°Quo(@))y + (Qu2(2) — 2?Qu1 () — 2Qu0(x))y
1 — 2%y —axy? — o3
3 —22%y — ay? + (2% + 2zy + 32)i + (2* + 22 + 23y + 3y + 2%9?)j
+(2® + 327 + 3 + 2%y + 3%y + 2*y? + 22y? )k
1 — 22y —ay? — 3

g:(y) =

The proof is completed. O

Theorem 2.5. For m > 2, the generating functions for the Tribonacci quaternion polynomial
{Q1 n+m () }n>0 and the Tribonaci-Lucas quaternion polynomial {Q¢ n+m () }n>0 are

c- 2
e
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and
- m(T) + (2Qtm—1(2) + Qrom—2)y + Qrom—1(2)y?
ZQt,n+m(x)yn: Qt; ( ) ( Qt’ 1(2) Qté 2)3y Qt, 1( )y , (2‘10)
e 1 —2?y—zy? —y

respectively.

Proof. Here we will just prove (2.10) since the proof of (2.9) can be done in a similar way. Using
Theorem 2.3 and Theorem 2.4, we obtain

D Qenim(@)y" = (aa™ ™ () + wiw] " (2) + wawy T (@))y"
n=0 n=0
= a0”(2) 3 (a(e)y)" + wief (1) D (2" + (@) Y (en(e)y)”
n=0 n=0 n=0
= aq (@m +wiw (ﬂﬂ)m + wawy (I)m
— Qt,m(l') + (th,m—l(x) + Qt,m—Z)y + Qt,m—l(w)yz
1 — 22y —wy? — o3 '

O

Theorem 2.6. For n € N, the exponential generating functions for the Tribonacci and Tribonacci-
Lucas quaternion polynomials are

wiwy (z)e«1 (@)

QT o aa(z)e* @y
Z nt VT (a(z) a

—~ —wi(2))(a(z) —wa(z))  (alz) —wi(z))(wi(z) —wa(z))
. @2.11)
wowy (z)ew2*
T ala) ~ (@) (@) — (@)
and -
Z %yn = qe®®¥ ﬂewl(év)y + ﬂeUJz(ﬂv)y7 (2.12)

respectively, where a = 1 + a(z)i + o?(z)j + o*(2)k, wi = 1 + wi(2)i + wi(z)j + wi(2)k,
wy = 14wy (2)i+w3(z)j+w3(2)k andi, j, k are quaternion units which satisfy the multiplication
rules (1.6).

Proof. By considering the Binet formulas for the Tribonacci and Tribonacci-Lucas quaternion
polynomials given in Theorem 2.3, we get

00 o aa™ N (z . ﬂwlnﬂ(f”)
Z 7QT’" y" = Z (az)—wi(z))(a(z)—wa(z)) M(@(mx)—wl(x))(wl(ﬂf)—wz(ﬂf)) vy

n! Waw n!
n=0 n=0 t G e @ —m@)
_ aa(x) = (a(2)y)"
(a(z) —wi(z))(a(z) —w(z)) = n!

aa(x)ex®)y wiwi (z) e @

)
Yeo
(a(z) —wi(@))(a(z) —w(z)  (a(z) —wi(@))(wi(z) - w(z))
(
)
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and
- Qtn n - n n yn
Yyt =Y (aa (@) + wiwf (@) + wawp (2) =
n=0 n=0
_ - (a@)y)” (w1y) o (w2y)”
—a S O, S, 5 e
n=0 n=0 n=0
— gea z)y + wlewl(ﬂﬁ)y + wZew”(l’)y
The proof is completed. O

Theorem 2.7. For n > 0 and related with Tribonacci and Tribonacci-Lucas quaternion polyno-
mials, we have

>0 (:L) (Z) 2" Qrris(7) = Qran(@) (2.13)
r=0 s=0
and
n T n r s
Z (’I“) <S>x Qt,r+s (.Z‘) = Qt,i’»n(x)a (2.14)
r=0 s=0
respectively.

Proof. In contrast, here we will just prove (2.13) since the proof of (2.14) can be done in a similar
way. By the Binet formulas for the Tribonacci and Tribonacci-Lucas quaternion polynomials,
we have

;) Z:;) (Z) (Z) P Qrrs(a)

_ wiwi (z) " (n () 4 B2 ()T
(a(z) — wi(x))(wi(z) — wa(x)) ; (7«)( 1(z) + 1(2))
wrws () ' /n o
+ (@) — wa(z))(wi(2) — wa(2)) = (r) (zwa () + 2°w3(x))
- ao™ () ) wwi™ (z)
(@(2) (@) () — (@)~ (@@) = wr(@) (@1 () — @)
+ wowy" ()  Orane)

(a(2) = wa(2))(wi (2) — wa(2))

3 Matrix Representation of Tribonacci Quaternion Polynomials

The most useful technique for generating {Qr,,, ()} is by means of what we call the S(x)-matrix
which has been defined and used in [18] and is a generalization of the R-matrix defined in [22].
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We defined the S(z)-matrix by

Thia(z) 22 oz 1 T»(x)
T, (x) 0 1 0 To(z)
and
2z 1]" Toir(z)  aTo(z)+Tooi(z)  Ta(z)
S*xz)y=1]1 0 0 = | To(z) 2Th_1(z)+Thoz) Thoi(z) |, (3.2)
0 1 0 To-1(z) 2Th—2(x) +Ths(z) Th_2(z)
where T_1(z) =0, T_»(x) = 1 and T_3(z) = —=x for convenience.

Now, let us define the following matrix as

Qra(z) 2Qrs(z) + Qra(z) Qrs(z)
Qs(®) = | Qra(z) 2Qra(z)+Qri(z) Qra(z) |- (3.3)
Qra(r) 2Qri(z)+Qro(r) Qra(z)
This matrix can be called as the Tribonacci quaternion polynomial matrix. Then, we can give
the next theorem to the @ g(x)-matrix.
Theorem 3.1. If Q1. (x) be the n-th Tribonacci quaternion polynomial. Then, for n > 0:

n

22 x 1 Qrn+4(x) Prns(®) Qrnis(x)
Qs (LE) : 1 00 = QT,n+3 (93) PT,nJrZ(fE) QT,nJrZ('T) ) (3.4)
0 1 0 Qrn2(x) Praii(z) Qranti(z)

where Pr,(x) = 2Qrn(x) + Qrpn_1(x).

Proof. (By induction on n) If n = 0, then the result is obvious. Now, we suppose it is true for
n = m, that is

QT,m+4(x) PT7m+3 (Z‘) QT,m+3 (33)
QS(I) -5 (Z‘) = QT,m+3 (ZL’) PT,m,JrZ(x) QT,erZ(x) )
QT,m-‘rZ(x) PT7m+1 (l‘) QT,m-H (Z‘)

with Pr, () = 2Qrn(z) + Qrn—1(z). Using the Proposition 2.2, for m > 0, Q7 m43(z) =
22Qr.mi2(%) + 2Q7.m+1(2) + tQr.m (). Then, by induction hypothesis we obtain

Qs(x) - 8™ (2) = (Qs(x) - S™(2)) - S(x)

(
Qrmia(@) Promi3(@) Qrmis(z) ][22 = 1
= QT,m+3(I) PT,m+2($) QT,m+2<x) 100
QT,m+2($) PT,m+1(x) QT,WH»I(‘T) _ 0 10
[ QT,’m+5 (‘T) PT,m+4(x) QT,m+4(x) |
= QT,m+4($) PT,m+3 (.Z') QT,m+3 (37)
Qrm+3(2)  Prpms2(z) Qrmsa(z) ]
Hence, the Eq. (3.4) holds for all n > 0. O

Corollary 3.2. Forn > 0,
Qrnt2(2) = Qr2(2) Tyt (z) + (2Qr1(2) + Qro(2)Th(z) + Qra (2)Th-1 (), (3.5)
with T_1(x) = 0 for convenience.

Proof. The proof can be easily seen by the coefficient (3,1) of the matrix Qg (z) - S™(z) and the
Eq. (3.2). O
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4 Conclusions

This study examines and studied Tribonacci and Tribonacci-Lucas quaternion polynomials with
the help of a simple formula. For this purpose, Tribonacci and Tribonacci-Lucas polynomials
was used and examined in detail particularly in Section 1, and it was shown that this sequences
to generalize the Tribonacci and Tribonacci-Lucas numbers on quaternions. In this study, Binet
formulas, generating functions, matrix representation and some properties of Tribonacci and
Tribonacci-Lucas quaternion polynomials were obtained. Quaternions have great importance as
they are used in quantum physics, applied mathematics and differential equations. Thus, in our
future studies we plan to examine Tribonacci octonion polynomials and their key features.
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