FABER POLYNOMIAL COEFFICIENTS ESTIMATES OF BI-UNIVALENT FUNCTIONS ASSOCIATED WITH GENERALIZED HYPERGEOMETRIC FUNCTIONS

Saqib Hussain, Shahid khan, Bilal Khan and Zahid Shareef

Communicated by Ayman Badawi

MSC 2010 Classifications: Primary 20M99, Secondary 13A15, 13M05.

Keywords and phrases: Bi-univalent function, Faber polynomial expansions, Generalized Hypergeometric function.

The authors wish to thank the referee, for the helpful suggestions and comments.

Abstract. In this paper, we introduce certain new subclass of bi-univalent functions in an open unit disk associated with generalized Hypergeometric function. By using Faber polynomial expansions to find a general coefficient bounds $|a_n|$, for $n \ge 3$, of class of bi-subordinate functions subject to a gap series condition, also find initial coefficients bounds.

1 Introduction

Let A denotes the class of all function f(z) which are analytic in the open unit disk

$$E = \{ z : z \in \mathbb{C} \quad \text{and} \quad |z| < 1 \}$$

and of the form:

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n, \quad z \in E,$$
(1.1)

Let S be the subclass of A, consisting of univalent functions. Let $f \in A$ given by (1.1) and $g \in A$ given by

$$g(z) = z + \sum_{n=2}^{\infty} b_n z^n, \quad z \in E$$

We define the convolution product (or Hadamard) of f and g as

$$(f * g)(z) = z + \sum_{n=2}^{\infty} b_n a_n z^n, \quad z \in E.$$
 (1.2)

The Koebe-one quarter theorem [11] shows that the image of E under every univalent function $f \in \mathcal{A}$ contains a disk $\{w : |w| < \frac{1}{4}\}$ of radius $\frac{1}{4}$. Every univalent function f has an inverse f^{-1} defined on some disk containing the disk $\{w : |w| < \frac{1}{4}\}$ and satisfying:

$$f^{-1}(f(z)) = z, \ z \in E,$$

and

$$f(f^{-1}(w)) = w, \ |w| < r_0(f), \ r_0(f) \ge \frac{1}{4}$$

where

$$g(w) = f^{-1}(w) = w - a_2w^2 + (2a_2^2 - a_3)w^3 - (5a_2^3 - 5a_2a_3 + a_4)w^4 + \dots$$
(1.3)

A function $f \in S$ is said to be bi-univalent on E if $g = f^{-1}$ are both univalent on E.

Lewin [27] studied the class of bi-univalent functions, obtained the bound $|a_2| \le 1.51$. Netanyahu [28] showed that Max $|a_2| = \frac{4}{3}$. Brannan and Clunie [10] conjectured that $|a_2| \le \sqrt{2}$. Ali et al. [1], Altinkaya and Yalcin [6, 7, 8], Frasin and Aouf [13], Hamidi and Jahangiri [15, 16, 22, 23], Srivastava et al. [29, 30] and Bulut [9] investigate the coefficients bounds for the subclasses of bi-univalent functions.

The Faber polynomials introduced by Faber [12] play an important role in various areas of mathematical sciences, especially in geometric function theory see also [14, 31, 32]. Not much is known about the bounds on general coefficients $|a_n|$, for $n \ge 4$ of bi-univalent functions as Ali et al. [1] also declared the bounds for the *n*-th $(n \ge 4)$ coefficients of bi-univalent functions an open problem. In the literature only a few work determining the general coefficient $|a_n|$, for $n \ge 4$ for the analytic bi-univalent function given by (1.1). For more study see [2, 3, 9, 12, 15, 16, 17, 19, 20, 21, 23, 26, 33].

Using the Faber polynomial expansion of functions f of the form (1.1), the coefficients of its inverse map $g = f^{-1}$ are given by,

$$g(w) = f^{-1}(w) = w + \sum_{n=2}^{\infty} \frac{1}{n} K_{n-1}^{-n}(a_2, a_3, ...) w^n,$$

where

$$\begin{split} K_{n-1}^{-n} &= \frac{(-n)!}{(-2n+1)!(n-5)!} a_2^{n-1} + \frac{(-n)!}{[2(-n+1)]!(n-3)!} a_2^{n-3} a_3 \\ &+ \frac{(-n)!}{(-2n+3)!(n-4)!} a_2^{n-4} a_4 \\ &+ \frac{(-n)!}{[2(-n+2)]!(n-5)!} a_2^{n-5} \left[a_5 + (-n+2) a_3^2 \right] \\ &+ \frac{(-n)!}{(-2n+5)!(n-6)!} a_2^{n-6} \left[a_6 + (-2n+5) a_3 a_4 \right] \\ &+ \sum_{j \ge 7} a_2^{n-j} V_j, \end{split}$$

and $g = f^{-1}$ given by (1.3), V_j with $7 \le j \le n$ is a homogeneous polynomial in the variables $|a_2|, |a_3|, \dots, |a_n|$ [4]. In particular, the first three terms of K_{n-1}^{-n} are

$$\frac{1}{2}K_1^{-2} = -a_2,$$

$$\frac{1}{3}K_2^{-3} = 2a_2^2 - a_3,$$

$$\frac{1}{4}K_3^{-4} = -(5a_2^3 - 5a_2a_3 + a_4).$$
(1.4)

In general, for any $p \in N$ and $n \ge 2$, an expansion of K_{n-1}^p [3] is,

$$K_{n-1}^{p} = pa_{n} + \frac{p(p-1)}{2}D_{n-1}^{2} + \frac{p!}{(p-3)!3!}D_{n-1}^{3} + \dots + \frac{p!}{(p-n+1)!(n-1)!}D_{n-1}^{n-1}, \quad (1.5)$$

where $D_{n-1}^p = D_{n-1}^p(a_2, a_3....)$ [5] given by

$$D_{n-1}^{m}(a_2,...,a_n) = \sum_{n=2}^{\infty} \frac{m!(a_2)^{\mu_1}...(a_n)^{\mu_{n-1}}}{\mu_{1!},...,\mu_{n-1}!}, \quad for \ m \le n$$

While $a_1 = 1$, and the sum is taken over all nonnegative integer $\mu_1, ..., \mu_n$ satisfying:

$$\mu_1 + \mu_2 + \dots + \mu_n = m_1$$

and

$$\mu_1 + 2\mu_2 + \dots + (n-1)\mu_{n-1} = n-1.$$

Evidently, $E_{n-1}^{n-1}(a_2, ..., a_n) = a_2^{n-1}$, (see [2]), or equivalently,

$$D_n^m(a_1, a_2, ..., a_n) = \sum_{n=1}^{\infty} \frac{m!(a_1)^{\mu_1} ...(a_n)^{\mu_n}}{\mu_{1!}, ..., \mu_n!}, \quad \text{for } m \le n$$

again $a_1 = 1$, and the taking the sum over all nonnegative integer $\mu_1, ..., \mu_n$ satisfying:

$$\mu_1 + \mu_2 + \dots + \mu_n = m,$$

$$\mu_1 + 2\mu_2 + \dots + (n)\mu_n = n.$$

It is clear that

$$D_n^n(a_1, ..., a_n) = D_1^n$$

the first and last polynomials are

$$D_n^n = a_1^n$$
 and $D_n^1 = a_n$.

For f(z) and g(z) analytic in E, we say that f(z) is subordinate to g(z) (written as $f \prec g$) if there exists a Schwarz function

$$u(z) = \sum_{n=1}^{\infty} u_n z^n,$$

with u(0) = 0 and |u(z)| < 1 in E, such that f(z) = g(u(z)). For the Schwarz function u(z), $|u_n| \le 1$, see [11].

For a complex parameters a, b, c, with $c \neq 0, -1, -2$...,the generalized Hypergeometric function $_2F_1(a, b, c, k, z)$ is defined as"

$${}_{2}F_{1}(a,b,c,k,z) = \frac{\Gamma(c)}{\Gamma(b)} \sum_{n=0}^{\infty} \frac{(a)_{n} \Gamma(b+kn)}{\Gamma(c+kn)n!} z^{n}$$

$$= 1 + \frac{\Gamma(c)}{\Gamma(b)} \sum_{n=0}^{\infty} \frac{(a)_{n-1} \Gamma(b+k(n-1)) z^{n-1}}{\Gamma(c+k(n-1))(n-1)!},$$
(1.6)

where $\Re(c-1-b) > 0$, |z| < 1, and $(a)_n$ is the Pochhammer symbol.

By using generalized Hypergeometric function given by (1.6) we define a convolution operator $\mathcal{J}(a, b, c, k)$ as follows:

$$\mathcal{J}(a,b,c,k)f(z) = z_2 F_1(a,b,c,k;z) * f(z) = z + \sum_{n=2}^{\infty} \Upsilon_n a_n z^n,$$
(1.7)

where

$$\Upsilon(a, b, c, n) = \frac{\Gamma(c)(a)_{n-1}\Gamma(b+k(n-1))}{\Gamma(b)\Gamma(c+k(n-1))(n-1)!}.$$
(1.8)

For convenience we write $\Upsilon(a, b, c, n) = \Upsilon_n$.

Here in this investigation we use the Faber polynomial expansions for the class $S[A, B, \Upsilon_n]$, to determine a general coefficients bounds $|a_n|$, for $(n \ge 3)$.

2 Coefficient bounds for the function class $S[A, B, \Upsilon_n]$

Definition 2.1. A function f defined by (1.1) is said to be in the class $S[A, B, \Upsilon_n]$ if the following condition are satisfied:

$$\left(\frac{z\left[\mathcal{J}(a,b,c,k)f(z)\right]'}{\mathcal{J}(a,b,c,k)f(z)}\right) \prec \frac{1+Az}{1+Bz}, \quad -1 \le B < A \le 1, \ z \in E,$$
(2.1)

and

$$\left(\frac{z\left[\mathcal{J}(a,b,c,k)g(w)\right]'}{\mathcal{J}(a,b,c,k)g(w)}\right) \prec \frac{1+Aw}{1+Bw}, \quad -1 \le B < A \le 1, \ w \in E,$$
(2.2)

where the function g(z) is given by (1.3), that is, the extension of f^{-1} to E.

Special Cases:

i) For a = c and b = 1 in (2.1) and (2.2) we have the class $S[A, B, \Upsilon_n] = S[A, B]$, defined by Hamidi and Jahangiri [17].

Lemma 2.2. [11, 21]. Let $p(z) = 1 + \sum_{n=1}^{\infty} p_n z^n \in A$ be a positive real part functions so that $\Re(p(z)) > 0$ for |z| < 1. If $\alpha \ge \frac{-1}{2}$. Then

$$|p_2 + \alpha p_1^2| \le 2 + \alpha |p_1|^2$$
.

Lemma 2.3. [17]. Let $\varphi(z) = \sum_{n=1}^{\infty} \varphi_n z^n \in A$ be a Schwarz function so that $|\varphi(z)| < 1$ for |z| < 1. If $\gamma \ge 0$. Then

$$\left|\varphi_{2}+\gamma\varphi_{1}^{2}\right|\leq1+\left(\gamma-1\right)\left|\varphi_{1}\right|^{2}.$$

3 Main Results

In this section, we will prove our main results.

Theorem 3.1. For $-1 \leq B < A \leq 1$, if both functions f and f^{-1} map $g = f^{-1}$ are in $S[A, B, \Upsilon_n]$, for $a_k = 0$; $2 \leq k \leq n-1$, then

$$|a_n| \le \frac{(A-B)}{(n-1)\Upsilon_n}, \qquad n \ge 3$$

Proof. For the function $f \in S[A, B, \Upsilon_n]$ of the form (1.1) we have the expansion

$$\frac{z\left[\mathcal{J}(a,b,c,k)f(z)\right]'}{\mathcal{J}(a,b,c,k)f(z)} = 1 - \sum_{n=2}^{\infty} F_{n-1}(a_2,a_3,...,a_n)z^{n-1},$$
(3.1)

As for the inverse map $g = f^{-1}$, considering (1.3) we obtain

$$\frac{z\left[\mathcal{J}(a,b,c,k)g(w)\right]}{\mathcal{J}(a,b,c,k)g(w)} = 1 - \sum_{n=2}^{\infty} F_{n-1}(b_2,b_3,\dots,b_n)w^{n-1},$$
(3.2)

where, $b_n = \frac{1}{n} K_{n-1}^{-n}(a_2, a_3, ...).$

$$F_{1} = -\Gamma_{2}a_{2},$$

$$F_{2} = \Upsilon_{2}^{2}a_{2} - 2\Upsilon_{3}a_{3},$$

$$F_{2} = -\Upsilon_{2}^{3}a_{2}^{3} + 3\Upsilon_{2}\Upsilon_{3}a_{2}a_{3} - 3\Upsilon_{4}a_{4}.$$

In general

$$F_{n-1}(a_2, a_3, \dots, a_n) = \left\lfloor \sum_{i_1+2i_2+\dots+(n-1)i_{n-1}=n-1} \left\{ A(i_1, i_2, i_2, \dots, i_{n-1}) (\Upsilon_2 a_2)^{i_1} (\Upsilon_3 a_3)^{i_2} \dots (\Upsilon_n a_n)^{i_{n-1}} \right\} \right\rfloor$$

$$A(i_1, i_2, i_2, \dots, i_{n-1}) = (-1)^{(n-1)+2i_1+\dots+ni_{n-1}} \frac{(i_1+i_2+i_2, \dots+i_{n-1}-1)! (n-1)}{(i_1!)(i_2!)\dots(i_{n-1}!)}$$

Since, both functions f and its inverse map $g = f^{-1}$ are in $S[A, B, \Upsilon_n]$, by the definition of subordination, there exist two Schwarz functions $p(z) = \sum_{n=1}^{\infty} c_n z^n$, and $q(w) = \sum_{n=1}^{\infty} d_n w^n$, where $z, w \in E$. So that we have

$$\frac{z\left[\mathcal{J}(a,b,c,k)f(z)\right]'}{\mathcal{J}(a,b,c,k)f(z)} = \frac{1+A(p(z))}{1+B(p(z))} = 1 - \sum_{n=1}^{\infty} (A-B)K_n^{-1}(c_1,c_2,...,c_n,B)z^n$$
(3.3)

and

$$\frac{z\left[\mathcal{J}(a,b,c,k)g(w)\right]'}{\mathcal{J}(a,b,c,k)g(w)} = \frac{1+A(q(w))}{1+B(q(w))} = 1 - \sum_{n=1}^{\infty} (A-B)K_n^{-1}(d_1,d_2,...,d_n,B)w^n.$$
(3.4)

In general [2, 3] for any $p \in N$ and $n \ge 2$, an expansion of $K_n^p(k_1, k_2, ..., k_n, B)$

$$\begin{split} K_n^p(k_1, k_2, \dots, k_n, B) &= \frac{p!}{(p-n)!n!} k_1^n B^{n-1} + \frac{p!}{(p-n+1)!(n-2)!} k_1^{n-2} k_2 B^{n-2} \\ &+ \frac{p!}{(p-n+2)!(n-3)!} \times k_1^{n-3} k_3 B^{n-3} \\ &+ \frac{p!}{(p-n+3)!(n-4)!} k_1^{n-4} \left[k_4 B^{n-4} + \frac{p-n+3}{2} k_3^2 B \right] \\ &+ \frac{p!}{(p-n+4)!(n-5)!} k_1^{n-5} \left[k_5 B^{n-5} + (p-n+4) k_3 k_4 B \right] \\ &+ \sum_{j \ge 6} k_1^{n-1} X_j, \end{split}$$

where X_j is a homogeneous polynomial of degree j in the variables $k_1, k_2, ..., k_n$. For the coefficients of the Schwarz functions p(z) and $q(w) |c_n| \le 1$ and $|d_n| \le 1$, [11]. Comparing the corresponding coefficients of (3.1) and (3.3) we have

$$F_{n-1}(a_2, a_3, \dots, a_n) = (A - B)K_{n-1}^{-1}(c_1, c_2, \dots, c_{n-1}, B)$$
(3.5)

which under the assumption $a_m = 0$; $2 \le k \le n - 1$, we have

$$-(n-1)\Upsilon_n a_n = -(A-B)c_{n-1}.$$
(3.6)

Similarly corresponding coefficients of (3.2) and (3.4) we have

$$F_{n-1}(b_2, b_3, ..., b_n) = (A - B)K_{n-1}^{-1}(d_1, d_2, ..., d_{n-1}, B),$$
(3.7)

which by hypothesis, we obtain

$$-(n-1)\Upsilon_n b_n = -(A-B)d_{n-1}.$$

Note that for $a_m = 0$; $2 \le k \le n - 1$, we have $b_n = -a_n$ and therefore

$$(n-1)\Upsilon_n a_n = -(A-B)d_{n-1}.$$
(3.8)

Taking the absolute values of (3.6) and (3.8) we obtain the required result

$$|a_n| \le \frac{(A-B)}{(n-1)\Upsilon_n}.$$

For a = c and b = 1 in Theorem 3.1, we have the following Corollary

Corollary 3.2. [17] For $-1 \le B < A \le 1$, if both functions f and f^{-1} map $g = f^{-1}$ are in S[A, B], for $a_k = 0$; $2 \le k \le n - 1$, then

$$|a_n| \le \frac{(A-B)}{n-1}, \quad n \ge 3.$$

Theorem 3.3. For $-1 \leq B < A \leq 1$, if both functions f and f^{-1} map $g = f^{-1}$ are in $S[A, B, \Upsilon_n]$ then

$$|a_2| \leq \begin{cases} \frac{(A-B)}{\Upsilon_2 \sqrt{(1+A)}}, & \text{if } 0 \leq B < A, \\ \frac{(A-B)}{\Upsilon_2}, & \text{otherwise}, \end{cases}$$

and

$$\left|a_{3} - \frac{\Upsilon_{2}^{2}}{\Upsilon_{3}}a_{2}^{2}\right| \leq \begin{cases} \frac{(A-B)}{2\Upsilon_{3}}\left(1 - \frac{(A+1)}{(A-B)^{2}}\left|\Upsilon_{2}a_{2}\right|^{2}\right), & \text{if } A \leq 0, \\ \\ \frac{(A-B)}{\Upsilon_{2}}, & \text{if } A > 0. \end{cases}$$
(3.9)

Proof. For n = 2, 3 in (3.5) and (3.7) we have

$$\Upsilon_2 a_2 = (A - B)c_1, \tag{3.10}$$

$$\Upsilon_2^2 a_2^2 - 2\Upsilon_3 a_3 = (A - B)(Bc_1^2 - c_2), \tag{3.11}$$

$$-\Upsilon_2 a_2 = (A - B)d_1, \tag{3.12}$$

$$-3\Upsilon_2^2 a_2^2 + 2\Upsilon_3 a_3 = (A - B)(Bd_1^2 - d_2).$$
(3.13)

Taking absolute values of both sides of (3.10) and (3.12) we have

$$|a_2| \le \frac{(A-B)}{\Upsilon_2}.$$

Adding (3.11) and (3.13) yields

$$-2\Upsilon_2^2 a_2^2 = (A-B) \left\{ (Bc_1^2 - c_2) + (Bd_1^2 - d_2) \right\}.$$

Taking absolute values of both sides of the above equation, we obtain

$$2\Upsilon_2^2 |a_2|^2 \le (A-B) \left\{ \left| c_2 + (-B)c_1^2 \right| + \left| d_2 + (-B)d_1^2 \right| \right\}.$$

If $B \leq 0$, then by lemma 2.3, we have

$$2\Upsilon_{2}^{2} |a_{2}^{2}| \leq (A-B) \left\{ 1 + (-B-1) |c_{1}|^{2} + 1 + (-B-1) |d_{1}|^{2} \right\}.$$

By using $\frac{|\Upsilon_2 a_2|^2}{(A-B)^2} = |c_1|^2 = |d_1|^2$, we have

$$|a_2|^2 \le \frac{(A-B)}{\Upsilon_2^2} - \frac{(1+B)}{(A-B)} |a_2|^2.$$

After simple algebraic calculation we have

$$|a_2| \le \frac{(A-B)}{\Upsilon_2\sqrt{(1+A)}}$$

Obviously, for A > 0 we have

$$\frac{(A-B)}{\Upsilon_2\sqrt{(1+A)}} < \frac{(A-B)}{\Upsilon_2}.$$

Now rewrite equation (3.13) as

$$2\Upsilon_3(a_3 - \frac{\Upsilon_2^2}{\Upsilon_3}a_2^2) = (A - B)(Bd_1^2 - d_2) + \Upsilon_2^2a_2^2.$$

By using $(A - B)^2 d_1^2 = \Upsilon_2^2 a_2^2$ we obtain

$$2\Upsilon_3(a_3 - \frac{\Upsilon_2^2}{\Upsilon_3}a_2^2) = -(A - B)(d_2 - Ad_1^2).$$

Taking the absolute values of both sides gives

$$2\Upsilon_3 \left| a_3 - \frac{\Upsilon_2^2}{\Upsilon_3} a_2^2 \right| = (A - B) \left| d_2 + (-A) d_1^2 \right|.$$

If $A \leq 0$, then by Lemma 2.3, we have

$$\left|a_{3} - \frac{\Upsilon_{2}^{2}}{\Upsilon_{3}}a_{2}^{2}\right| = \frac{(A - B)}{2\Upsilon_{3}}(1 + (-A - 1)|d_{1}^{2}|),$$

by using $|d_1|^2 = \frac{|\Upsilon_2 a_2|^2}{(A-B)^2}$, we obtain

$$\left|a_{3} - \frac{\Upsilon_{2}^{2}}{\Upsilon_{3}}a_{2}^{2}\right| = \frac{(A-B)}{2\Upsilon_{3}}\left(1 - \frac{(A+1)}{(A-B)^{2}}\left|\Upsilon_{2}a_{2}\right|^{2}\right).$$

For A > 0, we subtract (3.11) from (3.13) to get

$$4\Upsilon_3\left(a_3 - \frac{\Upsilon_2^2}{\Upsilon_3}a_2^2\right) = (A - B)\left[B(d_1^2 - c_1^2) + (c_2 - d_2)\right].$$

Using the fact that $c_1^2 = d_1^2$ and taking the absolute values of both sides of the above equation, we obtain the desired inequality

$$\left|a_3 - \frac{\Upsilon_2^2}{\Upsilon_3}a_2^2\right| \le \frac{(A-B)}{2\Upsilon_3}.$$

For a = c and b = 1, we have following Corollary.

Corollary 3.4. [17] For $-1 \le B < A \le 1$, if both functions f and f^{-1} map $g = f^{-1}$ are in S[A, B] then

$$|a_2| \le \begin{cases} \frac{(A-B)}{\sqrt{(1+A)}}, & \text{if } 0 \le B < A, \\ (A-B), & \text{otherwise.} \end{cases}$$

And

$$\left|a_{3} - \frac{\Upsilon_{2}^{2}}{\Upsilon_{3}}a_{2}^{2}\right| \leq \begin{cases} \frac{(A-B)}{2} (1 - \frac{(A+1)}{(A-B)^{2}} |a_{2}|^{2}), & \text{ if } A \leq 0, \\ \\ \\ (A-B), & \text{ if } A > 0. \end{cases}$$

References

- R. M. Ali, S. K. Lee, V. Ravichandran, S. Supramaniam, Coefficient estimates for bi-univalent Ma–Minda starlike and convex functions, Appl. Math. Lett. 25 (3), 344–351, (2012).
- [2] H. Airault, Remarks on Faber polynomials, Int. Math. Forum. 3 (9–12), 449–456, (2008).
- [3] H. Airault, A. Bouali, Differential calculus on the Faber polynomials, Bull. Sci. Math. 130 (3), 179–222, (2006).
- [4] H. Airault, J. Ren, An algebra of differential operators and generating functions on the set of univalent functions, Bull. Sci. Math. 126 (5), 343–367, (2002).
- [5] H. Airault. Symmetric sums associated to the factorizations of Grunsky coefficients, in: Conference, Groups and Symmetries Montreal Canada, April 2007.
- [6] S. Altınkaya, S. Yalçin, Coefficient estimates for two new subclasses of bi-univalent functions with respect to symmetric points, J. Funct. Spaces, 145242, 5 pp,(2015).
- [7] S. Altinkaya, S. Yalçin, Coefficient estimates for a certain subclass of analytic and bi-univalent functions, Acta Univ. Apulensis, Mat. Inform. 40, 347–354, (2014).
- [8] S. Altinkaya, S. Yalçin, Initial coefficient bounds for a general class of bi-univalent functions, Int. J. Anal., 867871, 4 pp, (2014).
- [9] S. Bulut, Faber polynomial coefficient estimates for a comprehensive subclass of analytic bi-univalent functions, C. R. Acad. Sci. Paris. Ser. I 352 (6), 479–484, (2014).
- [10] D. A. Brannan, J. Clunie, Aspects of contemporary complex analysis, Proceedings of the NATO Advanced Study Instute Held at University of Durham, New York, Academic Press, 1979.
- [11] P. L. Duren, Univalent Functions, Grundlehren der Mathematischen Wissenschaften, vol. 259, Springer, New York, 1983.
- [12] G. Faber, Uber polynomische Entwickelungen, Math. Ann. 57 (3), 389-408, (1903).
- [13] B. A. Frasin, M. K. Aouf, New subclasses of bi-univalent functions, Appl. Math. Lett. 24 (9), 1569–1573, (2011).

- [14] H. Grunsky, Koffizientenbedingungen fur schlict abbildende meromorphe funktionen, Math. Zeit., 45, 29-61, (1939).
- [15] S. G. Hamidi, J. M. Jahangiri, Faber polynomial coefficient estimates for analytic bi-close-to-convex functions, C. R. Acad. Sci. Paris. Ser. I 352 (1), 17–20, (2014).
- [16] S. G. Hamidi, J.M. Jahangiri, Faber polynomial coefficient estimates for bi-univalent functions defined by subordinations, Bull. Iran. Math. Soc. 41 (5), 1103–1119, (2015).
- [17] S. G. Hamidi, J. M. Jahangiri, Faber polynomial coefficients of bi-subordinate functions, C. R. Acad. Sci. Paris, Ser. I 354, 365–370, (2016).
- [18] S. Hussain, N. khan, S. khan, Coefficient bounds for a generalized multivalent functions, Proceedings of the Jangjeon Mathematical Society, 19 No. 3 pp, 503-513, (2016).
- [19] S. Hussain, S.Khan, M. A. Zaighum, M. Darus, On certain classes of bi-Univalent functions related to m-fold symmetry, J. Nonlinear Sci. Appl., 11, 425–434, (2018),
- [20] S. Hussain, S.Khan, M. A. Zaighum, M. Darus, Z. Shareef, Coefficients bounds for certain subclass of biunivalent functions associated with ruscheweyh q-Differential Operator, Journal of Complex Analysis, Article ID 2826514, (2017).
- [21] J. M. Jahangiri, On the coefficients of powers of a class of Bazilevic functions, Indian J. Pure Appl. Math. 17 (9), 1140–1144, (1986).
- [22] J. M. Jahangiri, S.G. Hamidi, Coefficient estimates for certain classes of bi-univalent functions, Int. J. Math. Math. Sci, 190560, 4 pp., (2013).
- [23] J. M. Jahangiri, S.G. Hamidi, S. Abd Halim, Coefficients of bi-univalent functions with positive real part derivatives, Bull. Malays. Math. Soc. (2) 3, 633–640, (2014).
- [24] W. Janowski, Extremal problems for a family of functions with positive real part and for some related families, Ann. Pol. Math. 23 159–177, (1970).
- [25] W. Janowski, Some extremal problems for certain families of analytic functions, I, Ann. Pol. Math. 28, 297–326, (1973).
- [26] S. Khan, N. Khan, S. Hussain, Q. Z. Ahmad, M. A. Zaighum, Some subclasses of bi-univalent functions associated with Srivastava-Attiya operator, Bulletin of Mathematical Analysis and Applications, 9 2, 37-44, (2017).
- [27] M. Lewin, On a coefficient problem for bi-univalent functions, Proc. Amer. Math. Soc. 18, 63-68, (1967).
- [28] E. Netanyahu, The minimal distance of the image boundary from the origin and the second coeffcient of a univalent function in |z| < 1, Archive for Rational Mechanics and Analysis, 32, 100-112, (1969).
- [29] H. M. Srivastava, A. K. Mishra, P. Gochhayat, Certain subclasses of analytic and bi-univalent functions, Appl. Math. Lett. 23 (10), 1188–1192, (2010).
- [30] H. M. Srivastava, S. S. Eker, R. M. Ali, Coefficient bounds for a certain class of analytic and bi-univalent functions, Filomat 29 (8), 1839–1845, (2015).
- [31] M. Schiffer, A method of variation within the family of simple functions, Proc. London Math. Soc., 44, 432-449, (1938).
- [32] A. C. Schaeffer, D. C. Spencer, The coeffcients of schlict functions, Duke Math. J. 10, 611-635, (1943).
- [33] P. G. Todorov, On the Faber polynomials of the univalent functions of class, J. Math. Anal. Appl. 162 (1), 268-276, (1991).

Author information

Saqib Hussain, Department of Mathematics COMSATS Institute of Information Technology, Abbottabad, Pakistan.

E-mail: saqib_math@yahoo.com

Shahid khan, Department of Mathematics Riphah International University Islamabad, Pakistan, Pakistan. E-mail: shahidmath761@gmail.com

Bilal Khan, Department of Mathematics Abbottabad University of Science and Technology, Abbottabad, Pakistan.

E-mail: bilalmaths7890gmail.com

Zahid Shareef, Division of Engineering, Higher Colleges of Technology, P.O. Box 4114, Fujairah, UAE, UAE. E-mail: zahidmath@gmail.com

```
Received: October 4, 2017.
Accepted: December 21, 2017.
```