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Abstract. In this paper, we introduce certain new subclass of bi-univalent functions in an
open unit disk associated with generalized Hypergeometric function. By using Faber polyno-
mial expansions to find a general coefficient bounds |an|, for n ≥ 3, of class of bi-subordinate
functions subject to a gap series condition, also find initial coefficients bounds.

1 Introduction

Let A denotes the class of all function f(z) which are analytic in the open unit disk

E = {z : z ∈ C and |z| < 1}

and of the form:

f(z) = z +
∞∑
n=2

anz
n, z ∈ E, (1.1)

Let S be the subclass of A, consisting of univalent functions. Let f ∈ A given by (1.1) and g ∈
A given by

g(z) = z +
∞∑
n=2

bnz
n, z ∈ E.

We define the convolution product (or Hadamard) of f and g as

(f ∗ g)(z) = z +
∞∑
n=2

bnanz
n, z ∈ E. (1.2)

The Koebe-one quarter theorem [11] shows that the image of E under every univalent func-
tion f ∈ A contains a disk {w : |w| < 1

4} of radius 1
4 . Every univalent function f has an inverse

f−1 defined on some disk containing the disk {w : |w| < 1
4} and satisfying:

f−1(f(z)) = z, z ∈ E,

and
f(f−1(w)) = w, |w| < r0(f), r0(f) ≥

1
4
,

where

g(w) = f−1(w) = w − a2w
2 + (2a2

2 − a3)w
3 − (5a3

2 − 5a2a3 + a4)w
4 + ... (1.3)

A function f ∈ S is said to be bi-univalent on E if g = f−1 are both univalent on E.
Lewin [27] studied the class of bi-univalent functions, obtained the bound |a2| ≤ 1.51. Ne-
tanyahu [28] showed that Max |a2| = 4

3 . Brannan and Clunie [10] conjectured that |a2| ≤
√

2.
Ali et al. [1], Altinkaya and Yalcin [6, 7, 8], Frasin and Aouf [13], Hamidi and Jahangiri
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[15, 16, 22, 23], Srivastava et al. [29, 30] and Bulut [9] investigate the coefficients bounds
for the subclasses of bi-univalent functions.
The Faber polynomials introduced by Faber [12] play an important role in various areas of math-
ematical sciences, especially in geometric function theory see also [14, 31, 32]. Not much
is known about the bounds on general coefficients |an| , for n ≥ 4 of bi-univalent functions
as Ali et al. [1] also declared the bounds for the n-th (n ≥ 4) coefficients of bi-univalent
functions an open problem. In the literature only a few work determining the general coeffi-
cient |an| , for n ≥ 4 for the analytic bi-univalent function given by (1.1). For more study see
[2, 3, 9, 12, 15, 16, 17, 19, 20, 21, 23, 26, 33].

Using the Faber polynomial expansion of functions f of the form (1.1), the coefficients of its
inverse map g = f−1 are given by,

g(w) = f−1(w) = w +
∞∑
n=2

1
n
K−nn−1(a2, a3, ...)w

n,

where

K−nn−1 =
(−n)!

(−2n+ 1)!(n− 5)!
an−1

2 +
(−n)!

[2(−n+ 1)]!(n− 3)!
an−3

2 a3

+
(−n)!

(−2n+ 3)!(n− 4)!
an−4

2 a4

+
(−n)!

[2(−n+ 2)]!(n− 5)!
an−5

2

[
a5 + (−n+ 2)a2

3
]

+
(−n)!

(−2n+ 5)!(n− 6)!
an−6

2 [a6 + (−2n+ 5)a3a4]

+
∑
j≥7

an−j2 Vj ,

and g = f−1 given by (1.3), Vj with 7 ≤ j ≤ n is a homogeneous polynomial in the variables
|a2| , |a3| , ..... |an| [4]. In particular, the first three terms of K−nn−1 are

1
2
K−2

1 = −a2,

1
3
K−3

2 = 2a2
2 − a3,

1
4
K−4

3 = −(5a3
2 − 5a2a3 + a4). (1.4)

In general, for any p ∈ N and n ≥ 2, an expansion of Kp
n−1 [3] is,

Kp
n−1 = pan +

p(p− 1)
2

D2
n−1 +

p!
(p− 3)!3!

D3
n−1 + ...+

p!
(p− n+ 1)!(n− 1)!

Dn−1
n−1, (1.5)

where Dp
n−1 = Dp

n−1(a2, a3....) [5] given by

Dm
n−1(a2, ..., an) =

∞∑
n=2

m!(a2)µ1 ...(an)µn−1

µ1!, ..., µn−1!
, for m ≤ n.

While a1 = 1, and the sum is taken over all nonnegative integer µ1, ..., µn satisfying:

µ1 + µ2 + ...+ µn = m,

and
µ1 + 2µ2 + ...+ (n− 1)µn−1 = n− 1.

Evidently, En−1
n−1(a2, ..., an) = an−1

2 ,(see [2]), or equivalently,

Dm
n (a1,a2, ..., an) =

∞∑
n=1

m!(a1)µ1 ...(an)µn

µ1!, ..., µn!
, for m ≤ n,
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again a1 = 1, and the taking the sum over all nonnegative integer µ1, ..., µn satisfying:

µ1 + µ2 + ...+ µn = m,

µ1 + 2µ2 + ...+ (n)µn = n.

It is clear that
Dn
n(a1, ..., an) = Dn

1 ,

the first and last polynomials are

Dn
n = an1 and D1

n = an.

For f(z) and g(z) analytic in E, we say that f(z) is subordinate to g(z) (written as f ≺ g) if
there exists a Schwarz function

u(z) =
∞∑
n=1

unz
n,

with u(0) = 0 and |u(z)| < 1 in E, such that f(z) = g(u(z)). For the Schwarz function u(z),
|un| ≤ 1, see [11].

For a complex parameters a, b, c, with c 6= 0,−1,−2...,the generalized Hypergeometric function
2F1(a, b, c, k, z) is defined as"

2F1(a, b, c, k, z) =
Γ(c)

Γ(b)

∞∑
n=0

(a)nΓ(b+ kn)

Γ(c+ kn)n!
zn

= 1 +
Γ(c)

Γ(b)

∞∑
n=0

(a)n−1Γ(b+ k(n− 1))zn−1

Γ(c+ k(n− 1))(n− 1)!
, (1.6)

where <(c− 1− b) > 0, |z| < 1, and (a)n is the Pochhammer symbol.
By using generalized Hypergeometric function given by (1.6) we define a convolution operator
J (a, b, c, k) as follows:

J (a, b, c, k)f(z) = z 2F1(a, b, c, k; z) ∗ f(z) = z +
∞∑
n=2

ϒnanz
n, (1.7)

where

ϒ(a, b, c, n) =
Γ(c)(a)n−1Γ(b+ k(n− 1))

Γ(b)Γ(c+ k(n− 1))(n− 1)!
. (1.8)

For convenience we write ϒ(a, b, c, n) = ϒn.
Here in this investigation we use the Faber polynomial expansions for the class S[A,B,ϒn], to
determine a general coefficients bounds |an|, for (n ≥ 3).

2 Coefficient bounds for the function class S[A,B,Υn]

Definition 2.1. A function f defined by (1.1) is said to be in the class S[A,B,ϒn] if the following
condition are satisfied:(

z [J (a, b, c, k)f(z)]
′

J (a, b, c, k)f(z)

)
≺ 1 +Az

1 +Bz
, − 1 ≤ B < A ≤ 1, z ∈ E, (2.1)

and (
z [J (a, b, c, k)g(w)]

′

J (a, b, c, k)g(w)

)
≺ 1 +Aw

1 +Bw
, − 1 ≤ B < A ≤ 1, w ∈ E, (2.2)

where the function g(z) is given by (1.3), that is, the extension of f−1 to E.

Special Cases:
i) For a = c and b = 1 in (2.1) and (2.2) we have the class S[A,B,ϒn] = S[A,B], defined by
Hamidi and Jahangiri [17].
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Lemma 2.2. [11, 21]. Let p(z) = 1 +
∑∞
n=1 pnz

n ∈ A be a positive real part functions so that
<(p(z)) > 0 for |z| < 1. If α ≥ −1

2 . Then∣∣p2 + αp2
1

∣∣ ≤ 2 + α |p1|2 .

Lemma 2.3. [17]. Let ϕ(z) =
∑∞
n=1 ϕnz

n ∈ A be a Schwarz function so that |ϕ(z)| < 1 for
|z| < 1. If γ ≥ 0. Then

∣∣ϕ2 + γϕ2
1

∣∣ ≤ 1 + (γ − 1) |ϕ1|2 .

3 Main Results

In this section, we will prove our main results.

Theorem 3.1. For −1 ≤ B < A ≤ 1, if both functions f and f−1 map g = f−1 are in
S[A,B,ϒn], for ak = 0; 2 ≤ k ≤ n− 1, then

|an| ≤
(A−B)
(n− 1)ϒn

, n ≥ 3.

Proof. For the function f ∈ S[A,B,ϒn] of the form (1.1) we have the expansion

z [J (a, b, c, k)f(z)]
′

J (a, b, c, k)f(z)
= 1−

∞∑
n=2

Fn−1(a2, a3...., an)z
n−1, (3.1)

As for the inverse map g = f−1, considering (1.3) we obtain

z [J (a, b, c, k)g(w)]
′

J (a, b, c, k)g(w)
= 1−

∞∑
n=2

Fn−1(b2, b3...., bn)w
n−1, (3.2)

where, bn = 1
nK
−n
n−1(a2, a3, ...).

F1 = −ϒ2a2,

F2 = ϒ
2
2a2 − 2ϒ3a3,

F2 = −ϒ
3
2a

3
2 + 3ϒ2ϒ3a2a3 − 3ϒ4a4.

In general

Fn−1(a2, a3...., an) =

 ∑
i1+2i2+...+(n−1)in−1=n−1

{
A(i1, i2, i2, ..., in−1)(ϒ2a2)

i1(ϒ3a3)
i2 ...(ϒnan)

in−1
} .

A(i1, i2, i2, ..., in−1) = (−1)(n−1)+2i1+...+nin−1
(i1 + i2 + i2, ...+ in−1 − 1)! (n− 1)

(i1!)(i2!)...(in−1!)
.

Since, both functions f and its inverse map g = f−1 are in S[A,B,ϒn], by the definition of
subordination, there exist two Schwarz functions p(z) =

∑∞
n=1 cnz

n, and q(w) =
∑∞
n=1 dnw

n,
where z, w ∈ E. So that we have

z [J (a, b, c, k)f(z)]
′

J (a, b, c, k)f(z)
=

1 +A(p(z))

1 +B(p(z))
= 1−

∞∑
n=1

(A−B)K−1
n (c1,c2, ..., cn, B)z

n (3.3)

and

z [J (a, b, c, k)g(w)]
′

J (a, b, c, k)g(w)
=

1 +A(q(w))

1 +B(q(w))
= 1−

∞∑
n=1

(A−B)K−1
n (d1,d2, ..., dn, B)w

n. (3.4)
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In general [2, 3] for any p ∈ N and n ≥ 2, an expansion of Kp
n(k1,k2,..., kn, B)

Kp
n(k1,k2,..., kn, B) =

p!
(p− n)!n!

kn1 B
n−1 +

p!
(p− n+ 1)!(n− 2)!

kn−2
1 k2B

n−2

+
p!

(p− n+ 2)!(n− 3)!
× kn−3

1 k3B
n−3

+
p!

(p− n+ 3)!(n− 4)!
kn−4

1

[
k4B

n−4 +
p− n+ 3

2
k2

3B

]
+

p!
(p− n+ 4)!(n− 5)!

kn−5
1

[
k5B

n−5 + (p− n+ 4)k3k4B
]

+
∑
j≥6

kn−1
1 Xj ,

where Xj is a homogeneous polynomial of degree j in the variables k1,k2,..., kn.
For the coefficients of the Schwarz functions p(z) and q(w) |cn| ≤ 1 and |dn| ≤ 1, [11].
Comparing the corresponding coefficients of (3.1) and (3.3) we have

Fn−1(a2, a3...., an) = (A−B)K−1
n−1(c1,c2, ..., cn−1, B) (3.5)

which under the assumption am = 0; 2 ≤ k ≤ n− 1, we have

−(n− 1)ϒnan = −(A−B)cn−1. (3.6)

Similarly corresponding coefficients of (3.2) and (3.4) we have

Fn−1(b2, b3...., bn) = (A−B)K−1
n−1(d1,d2, ..., dn−1, B), (3.7)

which by hypothesis, we obtain

−(n− 1)ϒnbn = −(A−B)dn−1.

Note that for am = 0; 2 ≤ k ≤ n− 1, we have bn = −an and therefore

(n− 1)ϒnan = −(A−B)dn−1. (3.8)

Taking the absolute values of (3.6) and (3.8) we obtain the required result

|an| ≤
(A−B)
(n− 1)ϒn

.

For a = c and b = 1 in Theorem 3.1, we have the following Corollary

Corollary 3.2. [17] For −1 ≤ B < A ≤ 1, if both functions f and f−1 map g = f−1 are in
S[A,B], for ak = 0; 2 ≤ k ≤ n− 1, then

|an| ≤
(A−B)
n− 1

, n ≥ 3.

Theorem 3.3. For −1 ≤ B < A ≤ 1, if both functions f and f−1 map g = f−1 are in
S[A,B,ϒn] then

|a2| ≤


(A−B)

ϒ2

√
(1+A)

, if 0 ≤ B < A,

(A−B)
ϒ2

, otherwise,

and ∣∣∣∣a3 −
ϒ2

2
ϒ3
a2

2

∣∣∣∣ ≤


(A−B)
2ϒ3

(1− (A+1)
(A−B)2 |ϒ2a2|2), if A ≤ 0,

(A−B)
ϒ2

, if A > 0.
(3.9)
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Proof. For n = 2 , 3 in (3.5) and (3.7) we have

ϒ2a2 = (A−B)c1, (3.10)

ϒ
2
2a

2
2 − 2ϒ3a3 = (A−B)(Bc2

1 − c2), (3.11)

−ϒ2a2 = (A−B)d1, (3.12)

−3ϒ
2
2a

2
2 + 2ϒ3a3 = (A−B)(Bd2

1 − d2). (3.13)

Taking absolute values of both sides of (3.10) and (3.12) we have

|a2| ≤
(A−B)

ϒ2
.

Adding (3.11) and (3.13) yields

−2ϒ
2
2a

2
2 = (A−B)

{
(Bc2

1 − c2) + (Bd2
1 − d2)

}
.

Taking absolute values of both sides of the above equation, we obtain

2ϒ
2
2 |a2|2 ≤ (A−B)

{∣∣c2 + (−B)c2
1

∣∣+ ∣∣d2 + (−B) d2
1

∣∣} .
If B ≤ 0, then by lemma 2.3, we have

2ϒ
2
2

∣∣a2
2

∣∣ ≤ (A−B)
{

1 + (−B − 1) |c1|2 + 1 + (−B − 1) |d1|2
}
.

By using |ϒ2a2|2
(A−B)2 = |c1|2 = |d1|2 , we have

|a2|2 ≤
(A−B)

ϒ2
2

− (1 +B)

(A−B)
|a2|2 .

After simple algebraic calculation we have

|a2| ≤
(A−B)

ϒ2
√
(1 +A)

.

Obviously, for A > 0 we have

(A−B)
ϒ2
√
(1 +A)

<
(A−B)

ϒ2
.

Now rewrite equation (3.13) as

2ϒ3(a3 −
ϒ2

2
ϒ3
a2

2) = (A−B)(Bd2
1 − d2) + ϒ

2
2a

2
2.

By using (A−B)2d2
1 = ϒ2

2a
2
2 we obtain

2ϒ3(a3 −
ϒ2

2
ϒ3
a2

2) = −(A−B)(d2 −Ad2
1).

Taking the absolute values of both sides gives

2ϒ3

∣∣∣∣a3 −
ϒ2

2
ϒ3
a2

2

∣∣∣∣ = (A−B)
∣∣d2 + (−A) d2

1

∣∣ .
If A ≤ 0, then by Lemma 2.3, we have∣∣∣∣a3 −

ϒ2
2

ϒ3
a2

2

∣∣∣∣ = (A−B)
2ϒ3

(1 + (−A− 1)
∣∣d2

1

∣∣),
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by using |d1|2 = |ϒ2a2|2
(A−B)2 , we obtain∣∣∣∣a3 −

ϒ2
2

ϒ3
a2

2

∣∣∣∣ = (A−B)
2ϒ3

(1− (A+ 1)
(A−B)2 |ϒ2a2|2).

For A > 0, we subtract (3.11) from (3.13) to get

4ϒ3

(
a3 −

ϒ2
2

ϒ3
a2

2

)
= (A−B)

[
B(d2

1 − c2
1) + (c2 − d2)

]
.

Using the fact that c2
1 = d2

1 and taking the absolute values of both sides of the above equation,
we obtain the desired inequality ∣∣∣∣a3 −

ϒ2
2

ϒ3
a2

2

∣∣∣∣ ≤ (A−B)
2ϒ3

.

For a = c and b = 1, we have following Corollary.

Corollary 3.4. [17] For −1 ≤ B < A ≤ 1, if both functions f and f−1 map g = f−1 are in
S[A,B] then

|a2| ≤


(A−B)√
(1+A)

, if 0 ≤ B < A,

(A−B), otherwise.

And ∣∣∣∣a3 −
ϒ2

2
ϒ3
a2

2

∣∣∣∣ ≤


(A−B)
2 (1− (A+1)

(A−B)2 |a2|2), if A ≤ 0,

(A−B), if A > 0.
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