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Abstract. Aim of the paper is to study the structure of the compression of slant Hankel
operators that are of finite rank. Slant Hankel operators become a particular case of the notion
of weighted slant Hankel operators and paper describes symbols so that the compression of the
kth-order slant Hankel operators for integer k ≥ 2 is a finite rank operator.

1 Introduction

The Hardy space H2 of analytic functions in the open unit disk D is defined as

H2 = {f(z) =
∞∑
n=0

anz
n : ‖f‖2 =

∞∑
n=0

|an|2 <∞}.

Let µ denote the normalized Lebesgue measure on the unit circle T (the boundary of D) and L2

the Hilbert space of all complex-valued measurable functions f defined on T satisfying∫
|f |2dµ <∞.

It is customary to identify the functions of H2 with the space of their boundary functions (see
[8]). The boundary functions correspond to those functions in L2 whose negative Fourier coeffi-
cients vanish. With this identification, H2 is a closed subspace of L2.

Hankel operators, which first appeared in the work of Hankel, arise in many applications,
constitute one of the important classes of non isometric operators. In terms of operator equation,
a Hankel operator is seen as an operator H satisfying the equation U∗H = HU (see [2, 3,
9]), where U denotes the unilateral shift operator on H2. A symbolic representation of Hankel
operators is obtained by Nehari Theorem [3], by which, a Hankel operator H on H2 is defined
as H = PJMφ for some φ ∈ L∞, where P is the orthogonal projection of L2 to H2, J is
the operator on L2 given by Jf(z) = f(z) and Mφ is the multiplication operator defined as
Mφf(z) = φ(z)f(z). In this terminology H is said to be induced by the symbol φ ∈ L∞ and is
denoted as Hφ. For the details and applications of Hankel operators, we refer [3, 6, 7, 9, 10].

The study of Hankel operators becomes more demanding with the inception of the notion
of slant Hankel operators [1], having the property that their matrices with respect to the stan-
dard orthonormal basis could be obtained by eliminating every alternate row of the matrices
of the corresponding Hankel operators. The study in this direction is further enhanced over
various function spaces which led to different generalizations of the original concept, like, kth-
order slant Hankel operators, compression of slant Hankel operators, λ−Hankel operators and
(λ, µ)−Hankel operators ( see [2],[4],[12] and the references therein).

Around the year 1974, Shields [11] brought forth the attention of mathematicians towards
the study of the weighted multiplication operator Mβ

φ (f 7→ φf) on L2(β) with the symbol
φ ∈ L∞(β). However, weighted Hardy spaces appeared in the work of Zorboska [13], where
he discussed the notion of composition operators on these spaces. In the year 2005, Lauric [8]
discussed the notion of weighted Toeplitz operator T βφ = P βMβ

φ on H2(β). The study is further
extended with the introduction of the notions of weighted Hankel operators and weighted slant
Hankel operators in [5], where the authors also discuss the compression of kth-order weighted
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slant Hankel operators. It is also shown that an operator A on H2(β) is compression of a kth-
order weighted slant Hankel operator only if it satisfies the equation T β

z−1A = AT β
zk

.
The spaces L2(β), H2(β) and L∞(β) considered in the paper are under the assumption that

{βn} is a sequence of positive numbers with β0 = 1, r ≤ βn

βn+1
≤ 1 for n ≥ 0 and r ≤ βn

βn−1
≤ 1

for n ≤ 0, for some r > 0. Throughout the paper, an additional condition of semi-duality on the
sequence β = {βn}n∈Z (that is βn = β−n for each n) is assumed.

The space L2(β) consists of all formal Laurent series f(z) =
∞∑

n=−∞
anz

n, an ∈ C (whether

or not the series converges for any values of z) for which ‖f‖β < ∞. The space L2(β) is

a Hilbert space with the norm ‖ · ‖β induced by the inner product
〈
f, g
〉
=

∞∑
n=−∞

an bnβn
2,

for f(z) =
∞∑

n=−∞
anz

n, g(z) =
∞∑

n=−∞
bnz

n. The collection {en(z) = zn/βn}n∈Z forms an

orthonormal basis for L2(β).

The collection of all f(z) =
∞∑
n=0

anz
n (formal power series) for which ‖f‖2

β =
∞∑
n=0
|an|2βn2 <

∞, is denoted by H2(β). H2(β) is a subspace of L2(β).

Let L∞(β) denote the set of formal Laurent series φ(z) =
∞∑

n=−∞
anz

n such that φL2(β) ⊆

L2(β) and there exists some c > 0 satisfying ‖φf‖β ≤ c‖f‖β for each f ∈ L2(β). For φ ∈
L∞(β), define the norm ‖φ‖∞ as

‖φ‖∞ = inf{c > 0 : ‖φf‖β ≤ c‖f‖β for each f ∈ L2(β)}.

The space L∞(β) is complete with respect to ‖ ·‖∞. The space H∞(β) denotes the set of formal
power series φ such that φH2(β) ⊆ H2(β). In the present paper, first section comprises of
notational familiarities needed in the paper. In the second section, we provide the structure of
rank one compression of kth-order weighted slant Hankel operators for some specific bounded
sequences β = {βn}n∈Z along with a characterization for rank one compression of kth-order
slant Hankel operators. Partial isometries of these operators are also discussed. One of the
important results in the theory of Hankel operators is the Kronecker theorem, which characterizes
the symbols inducing finite rank Hankel operators [3]. Our third section explores the Kronecker
theorem for the finite rank compressions of kth-order slant Hankel operators which provides a
necessary condition for the symbols inducing these operators.

2 Rank One Compression

We begin with the following definitions, the detailed study of which can be seen in [1], [3] and
[5].

Definition 2.1. [5] For fixed integer k ≥ 2 and φ ∈ L∞(β), a kth-order weighted slant Hankel
operator Dβ

k,φ on L2(β) is given by Dβ
k,φ = JβWkM

β
φ , where Jβ is the reflection operator given

by Jβen = e−n for each n ∈ Z and Wk is given by

Wken(z) =

{
βm

βkm
em(z) if n = km for some m ∈ Z

0 otherwise
.

It is clear from the definition that if φ(z) =
∞∑

n=−∞
anz

n, then for each integer j,

Dβ
k,φej =

1
βj

∞∑
n=−∞

a−nk−jβ−nen.

The 2nd-order weighted slant Hankel operators are simply called weighted slant Hankel oper-
ators and denoted by Dβ

φ , φ ∈ L∞(β). If we take the particular case of the sequence β with
βn = 1 for each n, then Dβ

k,φ, φ ∈ L∞(β) on L2(β) is nothing but a kth-order slant Hankel
operator on L2.
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Definition 2.2. [1] A kth-order slant Hankel operator Dk,φ on L2 is given by

Dk,φej =
∞∑

n=−∞
a−nk−jen.

for each integer j.

Definition 2.3. [3] The reproducing kernel function of H2 at ω ∈ D is denoted by Kω, that is,

Kω(z) =
∞∑
n=0

ω̄nzn.

We list here some known facts about rank one operator f ⊗ g on a Hilbert space, defined as
(f ⊗ g)h =

〈
h, g
〉
f (see [3]).

(i) ‖f ⊗ g‖ = ‖f‖2‖g‖2.

(ii) (f ⊗ g)∗ = g ⊗ f .

(iii) For operators S and T , S(f ⊗ g)T = Sf ⊗ T ∗g.

(iv) Two non-zero rank one operators f1 ⊗ g1 and f2 ⊗ g2 are equal if and only if there exists a
non-zero complex number c such that f1 = cf2 and g2 = c̄g1.

These elementary properties are used to study the structure of the compression of kth-order
weighted slant Hankel operators on H2(β) that are of rank one.

Theorem 2.4. Let β = {βn}n∈Z be a bounded sequence such that {βkn

βn
}n∈Z is bounded. A rank

one compression on H2(β) of a kth-order weighted slant Hankel operator is always written as
a linear combination of rank one operators of the form Kᾱ ⊗ T βziV

β
k,i+1Kα, i = 0, 1, · · ··, k − 1,

for some |α| < 1, where T βzi stands for the weighted Toeplitz operator induced by zi ( T β
z0 is

the identity operator ) and each V βk,i+1 is a bounded operator on L2(β) defined as V βk,i+1en =
βkn

βnβ2
kn+i

ekn for each n ∈ Z.

Proof. Let A = f ⊗ g be the compression of a kth-order weighted slant Hankel operator for

some non-zero elements f(z) =
∞∑
n=0

anz
n and g(z) =

∞∑
n=0

bnz
n of H2(β). Then using [1,4],

T β
z−1(f ⊗ g) = (f ⊗ g)T β

zk
. Hence, for each n≥ 0,

〈
en, g

〉
T βz−1f =

〈
en, T

β∗
zk
g
〉
f . This yields that

for m,n≥ 0
am+1bnβ

2
n = bn+kβ

2
n+kam. (2.1)

Pick non-negative integer m0 such that am0 6= 0 (such m0 exists as f is non-zero). Now we
complete the proof by considering the two cases.
Case(i) : Let am0+1 = 0. Then equation (2.1) provides b̄n = 0 for each n ≥ k and am = 0 for
each m ≥ 1. This means that m0 = 0 and as a consequence, we have

A = a0β0e0 ⊗ (b0β0e0 + b1β1e1 + · · ·+ bk−1βk−1ek−1)

= a0b0(e0 ⊗ β0e0) + a0b1(e0 ⊗ β1e1) + · · ·+ a0bk−1(e0 ⊗ βk−1ek−1).

Now for each 0 ≤ i ≤ k − 1, (e0 ⊗ βiei) = (e0 ⊗ e0)T
β∗
zi = ciK0̄ ⊗ T

β
ziV

β
k,i+1K0 for some

constant ci = a0b̄iβ
2
i , where V βk,i+1 and K0 are same as defined in the statement of the theorem.

This provides the required form for A with α = 0.

Case(ii) : Suppose am0+1 6= 0. Each element g =
∞∑
n=0

bnz
n in H2(β) can be expressed as

g =
k−1∑
i=0

gi, where each gi =
∞∑
n=0

bkn+iz
kn+i ∈ H2(β). Using (2.1), we find that if bn = 0 for

some positive integer n and n0 is the least positive integer satisfying bn0 = 0 then n0 < k and
bn0+kn = 0 for each n≥ 0 so that gn0 = 0. Let S = {i : 0 ≤ i ≤ k − 1 and bi 6= 0}. Then
g =

∑
i∈S

gi. The following facts can be gathered using (2.1):
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(i) S is non-empty and for each i ∈ S, bkn+i 6= 0 for every n ≥ 0.

(ii) am 6= 0 for each m≥ 0 and am+1
am

is independent of the choice of integer m ≥ 0.

(iii) For i ∈ S, bk(n+1)+i = ᾱn+1 β2
i

β2
k(n+1)+i

bi for each n ≥ 0, where α = am+1
am

satisfies |α| < 1.

These facts give that for i ∈ S, gi = biβ
2
i

∞∑
n=0

ᾱn

β2
kn+i

zkn+i and an = αna0 for each n ≥ 0. A

simple computation shows that for i ∈ S, f ⊗ gi = di(Kᾱ ⊗ T βziV
β
k,i+1Kα), where di = a0b̄iβ

2
i .

This provides the required form as A = f ⊗ g =
k−1∑
i=0

ci(Kᾱ ⊗ T βziV
β
k,i+1Kα), where

ci =

{
di if i ∈ S
0 otherwise

.

The structure of rank one compression of the weighted slant Hankel operators is given by the
following result, which is nothing but the case k = 2 of Theorem 2.4.

Corollary 2.5. The rank one compression of a weighted slant Hankel operator is always of the
form C0(Kᾱ ⊗ V β2,1Kα) + C1(Kᾱ ⊗ T βz V

β
2,2Kα), for constants C0, C1 and some |α| < 1, where

V β2,1, V β2,2 and {βn} are same as defined in Theorem 2.4.

The existence of rank one compression of kth-order weighted slant Hankel operators can be
justified with the following example.

Example 2.6. Let k ≥ 6 be a fixed integer. Consider a bounded sequence {βn}n∈Z defined as

βn =


1 if n = 0
2|n| if 0 6= |n| < 5
64 otherwise

.

Then {βn}n∈Z is a semi-dual sequence of positive numbers with β0 = 1, {βkn

βn
}n∈Z is bounded

and 1
2 ≤

βn

βn+1
≤ 1 for n ≥ 0. Let φ(z) = z−k+1. Clearly φ ∈ L∞(β). Consider the kth-order

weighted slant Hankel operator Dβ
k,φ induced by φ given as Dβ

k,φ = JβWkM
β
φ . Then

Dβ
k,φ(ej) =

{
βn

βkn+k−1
e−n if j = kn+ k − 1 for n ∈ Z

0 otherwise
.

Taking Lβk,φ to be the compression of Dβ
k,φ on H2(β), we have

Lβk,φ(ej) =

{
1
64e0 if j = k − 1
0 otherwise

.

Thus Lβk,φ is a rank one operator. Further, we can see that Lβk,φ = f ⊗ g, where f(z) = 1
8192e0

and g(z) = 2zk−1. We can further prove that Lβk,φ can be expressed as Lβk,φ = ck−1(Kᾱ ⊗
T β
zk−1V

β
k,kKα) with ck−1 = 1 and α = 0, which verifies Theorem 2.4 for rank one compression

Lβk,φ.

However, we show with the help of next example that each rank one operator of the form
c0(Kᾱ ⊗ V βk,1Kα) need not be a compression of kth-order weighted slant Hankel operator.

Example 2.7. Let {βn}n∈Z be the same sequence as defined in the last example. Let k ≥ 6

be a fixed integer. Consider a rank one operator A = i(
∞∑
n=0

αnzn ⊗
∞∑
n=0

ᾱn

β2
kn

zkn), then we have
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A = c0(Kᾱ ⊗ V βk,1Kα) where c0 = i and α = 1
2 . Further we see that A(ekn+i) = 0 for each

n ≥ 0, i = 1, 2, · · ··, k − 1 and

A(ekn) =

{
f0 n = 0

1
2n+6 f0 n > 0

,

where f0 is an element of H2(β) given by f0(z) = i(1+ z
2 +

z2

22 + · · ··). We find that this operator
A doesn’t satisfy the equation T β

z−1A = AT β
zk

as T β
z−1A(ekn) =

1
2n+6 (f0 − i) and AT β

zk
(ekn) =

1
2n+1 f0 for n > 0. Thus, A is not a compression of any kth-order weighted slant Hankel operator.

Remark 2.8. We have proved Theorem 2.4 under the assumption of the boundedness of sequence
{βn}n∈Z. However, the existence of rank one compression of the form suggested in Theorem
2.4 can also be seen when the sequence {βn}n∈Z is unbounded. For, consider the sequence {βn}
defined as

βn =

{
1 n = 0
|n| otherwise

.

Then {βn}n∈Z is an unbounded semi-dual sequence of positive numbers with β0 = 1, {βkn

βn
}n∈Z

is bounded and r ≤ βn

βn+1
≤ 1 for n ≥ 0 and r ≤ βn

βn−1
≤ 1 for n ≤ 0, where k ≥ 6 is a fixed

integer and r = 1/2. Now the compression Lβk,φ of kth-order weighted slant Hankel operator
Dβ
k,φ = JβWkM

β
φ with φ(z) = z−k+1 is a rank one operator given as

Lβk,φ(ej) =

{
1

k−1e0 if j = k − 1
0 otherwise

.

Also, we find that it can be expressed as Lβk,φ = ck−1(Kᾱ ⊗ T βzk−1V
β
k,kKα) with ck−1 = 1 and

α = 0.

Now on considering the sequence β under βn = 1 for each n, Theorem 2.4 provides the

structure for the rank one compression onH2 of kth-order slant Hankel operators as
k−1∑
i=0

ci(Kᾱ⊗

TziVkKα), where ci, α ∈ C with |α| < 1 and Vk is an operator on L2 given by Vk(en) = ekn for
each n ∈ N. In this case, it is interesting to observe that the converse of Theorem 2.4 also holds.

A simple computation shows that every operator A of the form A =
k−1∑
i=0

ci(Kᾱ ⊗ TziVkKα),

where ci, α ∈ C with |α| < 1, satisfies U∗A = AUk. Hence A is compression of a kth-order
slant Hankel operator ( using [1], where it is shown that a necessary and sufficient condition for
an operator A to be compression of a kth-order slant Hankel operator is U∗A = AUk). Pick
a0 6= 0 and bi = ( cia0

) for 0 ≤ i ≤ k − 1. Clearly bi 6= 0 for some i. Define an = αna0 for n ≥ 1

and bnk+k+i = ᾱ(n+1)bi for n ≥ 0. Let f(z) =
∞∑
n=0

anz
n and g(z) =

∞∑
n=0

bnz
n. Then f, g ∈ H2

and it is evident to see that A is a rank one operator satisfying A = f ⊗ g. Thus we have the
following.

Theorem 2.9. Let k ≥ 2 be fixed. The set consisting of all rank one compressions on H2 of
kth-order slant Hankel operators is

{
k−1∑
i=0

ci(Kᾱ ⊗ TziVkKα) : ci, α ∈ C and |α| < 1},

where Vk is the operator on L2 given by Vk(en) = ekn.

Theorem 2.10. A rank one compression A on H2 of a kth-order slant Hankel operator given

by A =
k−1∑
i=0

ci(Kᾱ ⊗ TziVkKα) with |α| < 1, is partial isometry if and only if ( 1
1−|α|2 )

2(c0c0 +

c1c1 + · · ·+ ck−1ck−1) = 1.
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Proof. Let A =
k−1∑
i=0

ci(Kᾱ ⊗ TziVkKα). Then A∗ =
k−1∑
i=0

TziVkKα ⊗ ciKᾱ so that for each

0 ≤ i ≤ k − 1,

A∗ekn+i = c0ᾱ
kn+i

∞∑
m=0

ᾱmzkm + · · ·+ ck−1ᾱ
kn+i

∞∑
m=0

ᾱmzkm+k−1.

With a routine computation, it can be easily seen that

AA∗Aekn+i = ciα
n(

1
1− |α|2

)2(c0c0 + c1c1 + · · ·+ ck−1ck−1)
∞∑
m=0

αmzm.

Now result follows using the fact that A be a partial isometry if and only if AA∗A = A. 2

Example 2.11. Let k ≥ 2 be fixed. If we consider the operator T : H2 → H2 defined as

Tej =


2

3n g0 if j = kn, n ≥ 0
i

3n g0 if j = kn+ 1, n ≥ 0
0 otherwise

,

where g0 is given by g0(z) = 1 + z
3 + z2

32 + · · ··. It can be easily verified that T = c0(Kᾱ ⊗
VkKα) + c1(Kᾱ ⊗ TzVkKα), where c0 = 2, c1 = i and α = 1

3 . Therefore by Theorem 2.9,
operator T is a rank one compression of a kth-order slant Hankel operator. Further, we find that
( 1

1−|α|2 )
2(c0c0 + c1c1 + · · ·+ ck−1ck−1) 6= 1, which shows that T is not a partial isometry using

Theorem 2.10.

Corollary 2.12. An operator A on H2 is a rank one compression of a slant Hankel operator if
and only if it is of the form A = c0(Kᾱ ⊗ V Kα) + c1(Kᾱ ⊗ TzV Kα) for constants c0, c1 and
|α| < 1. Further, A is partial isometry if and only if ( 1

1−|α|2 )
2(c0c0 + c1c1) = 1.

Example 2.13. Let k ≥ 2 be fixed. Define an operator A on H2 given by

Aej =


i
4(

1
2)
n
g0 if j = kn, n ≥ 0

i√
2
( 1

2)
n
g0 if j = kn+ 1, n ≥ 0

0 otherwise

,

where g0 is given by g0(z) = (1 + z
2 + z2

22 + · · ··). Here A is of the form c0(Kᾱ ⊗ VkKα) +

c1(Kᾱ ⊗ TzVkKα) for c0 = i
4 , c1 = i√

2
and α = 1

2 . Thus A is a rank one compression of a
kth-order slant Hankel operator which is partial isometry as we have ( 1

1−|α|2 )
2(c0c0 + c1c1) = 1.

3 Main Results

Throughout this section, we use the symbolHφ, φ ∈ L∞ to denote a non-zero Hankel operator on
H2. For a fixed integer k ≥ 2 and ψ ∈ L∞, the operators Ek,ψ on H2 represents a compression
of the kth-order slant Hankel operator induced by ψ and Lψ denotes the compression of slant
Hankel operator induced by ψ. Then Ek,ψ = Wk|H2Hψ and Lψ = W |H2Hψ. If no confusion
arises, we simply write Ek,ψ = WkHφ and Lψ = WHφ. We use the symbol U to denote the
unilateral shift operator.

A simple observation is that if the productHφEk,ψ is a Hankel operator then (U∗HφEk,ψU
k)U

= U∗(U∗HφEk,ψ)Uk = U∗(U∗HφEk,ψU
k) so that U∗HφEk,ψU

k is also a Hankel operator. For

a given symbol φ(z) =
∞∑

n=−∞
anz

n, an ∈ C, the notations φ̃ and φ respectively mean the expres-

sions φ̃(z) =
∞∑

n=−∞
a−nz

n and φ(z) =
∞∑

n=−∞
a−nz

n. We now attain the following.

Theorem 3.1. A necessary and sufficient condition for the product HφEk,ψ to be a Hankel op-
erator is that Hφ is a constant multiple of rank one Hankel operator Kω̄ ⊗ Kω and Ek,ψ is a
constant multiple of rank one operator Kω̄k ⊗Kω.
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Proof. Let HφEk,ψ be a Hankel operator. Then HφEk,ψ − U∗HφEk,ψU
k is also a Hankel

operator. Moreover, we find that it is non-zero as

HφEk,ψ − U∗HφEk,ψU
k = Hφ(e0 ⊗ e0)Ek,ψ

= Hφe0 ⊗ (WkHψ)
∗e0

= PJφe0 ⊗ PJψ∗e0

= Pφ̃⊗ Pψ̄,

and Pφ̃⊗ Pψ̄ = 0 provides that either Hφ = 0 or Ek,ψ = 0. Being Pφ̃⊗ Pψ̄ a rank one Hankel
operator, we have Pφ̃ ⊗ Pψ̄ = cKω̄ ⊗ Kω for some |ω| < 1 and scalar c. As a consequence,
we get that Pφ̃ = aKω̄ and Pψ̄ = bKω for some scalars a and b. Then we can easily see that
Pψ̄ = bKω̄. Hence the co-analytic parts of φ and ψ are multiples of Kω̄. As a consequence of
this, Hφ = aKω̄ ⊗Kω and Ek,ψ =WkHψ = bWkKω̄ ⊗Kω = bKω̄k ⊗Kω.

Conversely, let Hφ = aKω̄ ⊗Kω and Ek,ψ = bKω̄k ⊗Kω. Then for each f ∈ H2,

HφEk,ψf = ab(Kω̄ ⊗Kω)(Kω̄k ⊗Kω)f

= ab(Kω̄ ⊗Kω)
〈
f,Kω

〉
WkKω̄

= ab
〈
WkKω̄,Kω

〉
(Kω̄ ⊗Kω)f.

Hence, HφEk,ψ (= ab
〈
WkKω̄,Kω

〉
(Kω̄ ⊗Kω)) is a Hankel operator. This completes the proof.

2

An immediate consequence of Theorem 3.1 is the following.

Corollary 3.2. The product HφLψ of the Hankel operator Hφ and the compression Lψ of a
slant Hankel operator is a Hankel operator if and only if Hφ is a constant multiple of rank one
Hankel operatorKω̄⊗Kω and Lψ is a constant multiple of rank one compression of slant Hankel
operator Kω̄2 ⊗Kω.

It is easy to observe that ifHφEk,ψ onH2 is compression of a kth-order slant Hankel operator
i.e. satisfies the equationHφEk,ψU

k = U∗HφEk,ψ then (U∗HφEk,ψU
k)Uk = U∗(U∗HφEk,ψ)Uk

= U∗(U∗HφEk,ψU
k). Hence, U∗HφEk,ψU

k is also a compression of a kth-order slant Hankel
operator. Along the lines of arguments applied in Theorem 3.1, we can prove the following.

Theorem 3.3. The product HφEk,ψ of operators Hφ and Ek,ψ on H2 is compression of a kth-
order slant Hankel operator if and only if Hφ is a constant multiple of rank one Hankel operator
Kω̄ ⊗Kω and Ek,ψ is a linear combination of operators Kω̄ ⊗VkKω,Kω̄ ⊗TzVkKω, · · ··,Kω̄ ⊗
Tzk−1VkKω.

Proof. If HφEk,ψ satisfies HφEk,ψU
k = U∗HφEk,ψ then Pφ̃⊗Pψ̄ = HφEk,ψ −U∗HφEk,ψU

k

is a rank one operator satisfying (Pφ̃⊗ Pψ̄)Uk = U∗(Pφ̃⊗ Pψ̄) and is of the form

Pφ̃⊗ Pψ̄ = c0Kω̄ ⊗ VkKω + · · · ·+ck−1Kω̄ ⊗ Tzk−1VkKω

= Kω̄ ⊗ (c0VkKω + c1TzVkKω + · · · ·+ck−1Tzk−1VkKω).

Thus, Pφ̃ = aKω̄ and Pψ̄ = b(c0VkKω + · · · · +ck−1Tzk−1VkKω) for some constants a and b.

Suppose ψ =
∞∑

n=−∞
bnz

n. Then Pψ̄ =
∞∑
n=0

b−nz
n and hence

∞∑
n=0

b−nz
n = b(c0I + c1Tz + · · · ·+ck−1Tzk−1)VkKω

= bc0

∞∑
n=0

ω̄nzkn + · · ·+ bck−1

∞∑
n=0

ω̄nzkn+k−1.
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On comparing the coefficients both sides, we get that for each 0 ≤ i ≤ k − 1, b−kn−i = bciω̄
n

for all n≥ 0. As a consequence

Pψ̄ =
∞∑
n=0

b−nz
−n =

∞∑
n=0

b−knz
−kn + · · ·+

∞∑
n=0

b−kn−k+1z
−kn−k+1

= bc0

∞∑
n=0

ωnz−kn + · · ·+ bck−1

∞∑
n=0

ωnz−kn−k+1

= d0VkK̃ω̄ + · · ·+ dk−1z
k−1VkK̃ω̄.

Thus the co-analytic part of φ is a constant multiple of Kω̄ and co-analytic part of ψ is a linear
combination of vectors VkK̃ω̄, zVkK̃ω̄, · ··, zk−1VkK̃ω̄. This provides the desired structures of
Hφ and Ek,ψ.

Converse part follows with a straight forward computation. 2
It is easy to obtain the following from here.

Corollary 3.4. The product HφLψ is a compression of slant Hankel operator if and only if Hφ

is a constant multiple of rank one Hankel operator Kω̄ ⊗Kω and Lψ is a linear combination of
Kω̄ ⊗ V Kω and Kω̄ ⊗ TzV Kω.

In the next result, we find a necessary condition for the symbol inducing finite rank compres-
sion of a kth-order slant Hankel operator.

Theorem 3.5. Let φ ∈ L∞. A necessary condition for Ek,φ to be of finite rank is that φ ∈
eiθH∞ + R(zk) + 1

zR(z
k) + · · · + 1

zk−1 R(zk), where R is set of rational functions with poles
inside D.

Proof. Let rank ofEk,φ be r. Then each of the set {Ek,φei, Ek,φek+i, Ek,φe2k+i, Ek,φe3k+i, · · ·
· ·, Ek,φekr+i}, 0 ≤ i ≤ k − 1, is linearly dependent. Hence, there exist constants ci0, c

i
1, · · ·, cir,

not all zero, such that

ci0Ek,φei + ci1Ek,φek+i + · · ·+ cirEk,φekr+i = 0.

This provides that for each 0 ≤ i ≤ k − 1,
r∑
j=0

cija−kj−i−kl = 0 for all l≥ 0.

For each 0 ≤ i ≤ k − 1, define ψi(z) = ci0 + ci1z + · · ·+ cirz
r and φi(z) =

a−i

zi + a−k−i

zk+i +
a−2k−i

z2k+i + · · ·. Then, we have

ψi(z
k)φi(z) = (

r∑
j=0

cijz
kj)(

∞∑
n=0

a−kn−iz
−kn−i)

=
r∑
j=0

j∑
n=0

cija−kn−iz
kj−kn−i +

r∑
j=0

∞∑
n=j+1

cija−kn−iz
kj−kn−i

=
r∑
j=0

j∑
n=0

cija−kn−iz
kj−kn−i +

∞∑
l=1

(
r∑
j=0

cija−kj−kl−i))z
−kl−i

=
1
zi

r∑
j=0

j∑
n=0

cija−kn−iz
kj−kn.

Now, if we define γi(z) =
r∑
j=0

j∑
n=0

cija−kn−iz
j−n and δi = γi

ψi
, then we have φi(z) = 1

zi δi(z
k).

It can be seen here that each δi is a rational function with poles inside D. For, if δi has a pole
outside D,then δi(zk) has a pole outside D. Now, we set δ1

i = δi(
1
z ) then clearly δ1

i (z
k) ∈ H2(D)

for each i which is not possible because δi(zk) has a pole outside D. This completes the result

as φ(z) =
∞∑
n=1

anz
n+

0∑
n=−∞

anz
n and

0∑
n=−∞

anz
n = δ0(zk)+

1
z δ1(zk)+ · · ·+ 1

zk−1 δk−1(zk). 2

With this theorem, we can prove the following.
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Corollary 3.6. For φ ∈ L∞, if Lφ is finite rank compression of a slant Hankel operator then
φ ∈ eiθH∞ +R(z2) + 1

zR(z
2), where R is set of rational functions with poles inside D.
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