k-Quotient cordial labeling of graphs

R.Ponraj, M.Sivakumar and Rajpal Singh
Communicated by Ayman Badawi

MSC 2010 Classifications: 05C78.
Keywords and phrases: Path, cycle, comb, bistar, complete graph.

Abstract

In this paper we introduce k-Quotient cordial labeling of graphs. Let G be a (p, q) graph. Let f be a map from $V(G)$ to the set $\{1,2, \ldots, k\}$ where k is an integer $2 \leq k \leq|V(G)|$. For each edge $u v$ assign the label $\left[\frac{f(u)}{f(v)}\right]$ (or) $\left[\frac{f(v)}{f(u)}\right]$ according as $f(u) \geq f(v)$ or $f(v)>$ $f(u) . f$ is called a k-Quotient cordial labeling of G if $\left|v_{f}(i)-v_{f}(j)\right| \leq 1, i, j \in\{1, \ldots, k\}$ where $v_{f}(x)$ denote the number of vertices labeled with x and $\left|e_{f}(0)-e_{f}(1)\right| \leq 1$ where $e_{f}(0)$ and $e_{f}(1)$ respectively denote the number of edges labeled with even integers and number of edges labelled with odd integers. A graph with a k-Quotient cordial labeling is called a $k-$ Quotient cordial graph. We investigate the quotient cordial labeling behavior of path, cycle, wheel, complete graph, star, bistar and some more graphs.

1 Introduction

Graphs considered here are finite and simple. Graph labeling is used in several areas of science and technology like coding theory, astronomy, circuit design etc. For more details refer Gallian [2]. Let G_{1} and G_{2} be two graphs with vertex sets V_{1} and V_{2} and edge sets E_{1} and E_{2} respectively. Then their join $G_{1}+G_{2}$ is the graph whose vertex set is $V_{1} \cup V_{2}$ and edge set is $E_{1} \cup E_{2} \cup\{u v$: $u \in V_{1}$ and $\left.v \in V_{2}\right\}$. The graph $W_{n}=C_{n}+K_{1}$ is called a wheel. In a wheel, a vertex of degree 3 is called a rim vertex. A vertex which is adjacent to all the rim vertices is called the central vertex. The edges with one end incident with the rim and the other incident with the central vertex are called spokes. Let G_{1}, G_{2} respectively be $\left(p_{1}, q_{1}\right),\left(p_{2}, q_{2}\right)$ graphs. The corona of G_{1} with $G_{2}, G_{1} \odot G_{2}$ is the graph obtained by taking one copy of G_{1} and p_{1} copies of G_{2} and joining the $i^{t h}$ vertex of G_{1} with an edge to every vertex in the $i^{t h}$ copy of G_{2}. The bistar $B_{m, n}$ is the graph obtained by making adjacent the two central vertices of $K_{1, m}$ and $K_{1, n}$. The square of a path P_{n}^{2} is obtained from the path P_{n} by adding edges that joins all vertices u and v with $d(u, v)=2$. Cahit [1], introduced the concept of cordial labeling of graphs. Recently Ponraj et al. [4], introduced Quotient cordial labeling of graphs and investigated the Quotient cordial labeling behavior of path, cycle, complete graph, star, bistar. In [5], Ponraj et al. investigate the Quotient cordial labeling behavior of subdivided star $S\left(K_{1, n}\right)$, subdivided bistar $S\left(B_{n, n}\right)$ and union of some star related graphs. Motivated by this labeling we introduce k-Quotient cordial labeling of graphs. Let G be a (p, q) graph. Let f be a map from $V(G)$ to the set $\{1,2, \ldots, k\}$ where k is an integer $2 \leq k \leq|V(G)|$. For each edge $u v$ assign the label $\left[\frac{f(u)}{f(v)}\right]$ (or) $\left[\frac{f(v)}{f(u)}\right]$ according as $f(u) \geq f(v)$ or $f(v)>f(u)$. f is called a k-Quotient cordial labeling of G if $\left|v_{f}(i)-v_{f}(j)\right| \leq 1, i, j \in\{1, \ldots, k\}$ where $v_{f}(x)$ denote the number of vertices labeled with x and $\left|e_{f}(0)-e_{f}(1)\right| \leq 1$ where $e_{f}(0)$ and $e_{f}(1)$ respectively denote the number of edges labeled with even integers and number of edges labeled with odd integers. A graph with a k-Quotient cordial labeling is called a k-Quotient cordial graph. In this paper we investigate the k-Quotient cordial labeling behavior of path, cycle, wheel, complete graph, star, bistar etc. $[x]$ denote the smallest integer less than or equal to x. Terms are not defined here follows from Harary [3].

2 3-Quotient cordial labeling

Here we investigate the 3-Quotient cordial labeling behavior of some graphs. First we prove the following theorem.

Theorem 2.1. Every graph is a subgraph of a connected 3-Quotient cordial graph.
Proof. Let G be a (p, q) graph. Consider three copies of the complete graph K_{p}. Let $u_{1}^{i}, u_{2}^{i}, \ldots, u_{p}^{i}$, $(1 \leq i \leq 3)$ be the vertices of the $i^{t h}$ copy of K_{p}. Let $m=\binom{p}{2}$. Next consider three copies of the star $K_{1, m}$ with $v_{1}^{i}, v_{2}^{i}, \ldots, v_{m}^{i},(1 \leq i \leq 3)$ is the pendent vertices of the $i^{t h}$ star. The connected super graph G^{*} of G is obtained as follows: Let $V\left(G^{*}\right)=\bigcup_{i=1}^{3}\left\{u_{j}^{i}: 1 \leq j \leq p\right\} \cup\left\{u_{1}^{1} v_{j}^{1}: 1 \leq\right.$ $j \leq m\} \cup\left\{u_{1}^{2} v_{j}^{1}: 1 \leq j \leq m\right\} \cup\left\{u_{1}^{3} v_{j}^{1}: 1 \leq j \leq m\right\} \cup\left\{u_{1}^{1} u_{1}^{2}, u_{1}^{2} u_{1}^{3}\right\}$. Clearly G^{*} has $3 p+3 m$ vertices and $4 m+2$ edges. We now assign the label to the vertices of G^{*}. Assign the label 1 to all the vertices of the first copy of K_{p} and 2 to all the vertices of the second copy and 3 to the thir copy. Next assign the label 2 to the vertices $v_{j}^{1}(1 \leq j \leq m), 3$ to the vertices $v_{j}^{2}(1 \leq j \leq m)$ and 3 to the vertices $v_{j}^{3}(1 \leq j \leq m)$. This vertex labeling f is a 3 -Quotient cordial labeling of G^{*}. Since $v_{f}(1)=v_{f}(2)=v_{f}(3)=p+m$ and $e_{f}(0)=e_{f}(1)=2 m+1$.

Now we investigate the 3-Quotient cordial labeling behavior of K_{n}.
Theorem 2.2. The complete graph K_{n} is 3-Quotient cordial iff $n \leq 4$.
Proof. Suppose f is 3-Quotient cordial labeling of K_{n}. The proof is divided into three cases.
Case 1. $n \equiv 0(\bmod 3)$.
Let $n=3 t, t \in \mathbb{N}$ and $t \geq 2$. Then $v_{f}(1)=v_{f}(2)=v_{f}(3)=t$. This implies $e_{f}(1)=$ $\binom{t}{2}+\binom{t}{2}+\binom{t}{2}+t^{2}+t^{2}$ and $e_{f}(0)=t^{2}$. Therefore $e_{f}(1)-e_{f}(0)=3\binom{t}{2}+t^{2}=\frac{5 t^{2}-3 t}{2} \geq 7$ as $t \geq 2$, a contradiction.
Case 2. $n \equiv 1(\bmod 3)$.
Let $n=3 t+1, t \in \mathbb{N}$ and $t \geq 2$. In this case any one of the following arises.
Type A: $v_{f}(1)=t+1, v_{f}(2)=v_{f}(3)=t$.
Type B: $v_{f}(1)=t, v_{f}(2)=t+1, v_{f}(3)=t$.
Type C: $v_{f}(1)=v_{f}(2)=t, v_{f}(3)=t+1$.
Now we examine the above three types.

Type A and Type B:

In this type $e_{f}(1)-e_{f}(0)=3\binom{t+1}{2}+t^{2}+2\binom{t}{2}=\frac{5 t^{2}-t}{2} \geq 9$ as $t \geq 2$, a contradiction.

Type C:

In this type $e_{f}(1)-e_{f}(0)=2\binom{t}{2}+\binom{t+1}{2}+t^{2}+2 t=\frac{5 t^{2}+3 t}{2} \geq 13$ as $t \geq 2$, a contradiction.
Case 3. $n \equiv 2(\bmod 3)$.
Let $n=3 t+2, t \in \mathbb{N}$ and $t \geq 1$. In this case any one of the following type arises.
Type A: $v_{f}(1)=t, v_{f}(2)=v_{f}(3)=t+1$.
Type B: $v_{f}(1)=v_{f}(3)=t+1, v_{f}(2)=t$.
Type C: $v_{f}(1)=v_{f}(2)=t+1, v_{f}(3)=t$.
Now we examine the above three types.

Type A and Type B:

In this type $e_{f}(1)-e_{f}(0)=\binom{t}{2}+\binom{t+1}{2}+\binom{t+1}{2}+t(t+1)+(t+1)^{2}-t(t+1)=\frac{5 t^{2}+5 t+2}{2} \geq 6$ as $t \geq 1$, a contradiction.

Type C:

In this type $e_{f}(1)-e_{f}(0)=\binom{t+1}{2}+\binom{t+1}{2}+\binom{t}{2}+2 t(t+1)-(t+1)^{2}=\frac{5 t^{2}+t-2}{2} \geq 2$ as $t \geq 1$, a contradiction.
Thus K_{n} is not 3-Quotient cordial for all $n \geq 5$ and 3-Quotient cordial labeling of K_{1}, K_{2}, K_{3} and K_{4} are given in Figure 1.

Figure 1.

The next investigation is about the $3-$ Quotient cordiality of paths and cycles.
Theorem 2.3. Any path P_{n} is 3-Quotient cordial.
Proof. Let P_{n} be the path $u_{1} u_{2} \ldots u_{n}$.
Case 1. n is even.
Assign the label 1 to the vertices $u_{1}, u_{3}, u_{5}, \ldots, u_{\frac{n}{2}-1}$ and 2 to the vertices $u_{2}, u_{4}, u_{6}, \ldots, u_{\frac{n}{2}}$. Next assign the label 3 to the vertex $u_{\frac{n}{2}+1}$. Then assign the label 1 to the vertices $u_{\frac{n}{2}+2}, u_{\frac{n}{2}+3}, \ldots, u_{\frac{n}{2}+t+1}$ where $t=\left\lceil\frac{n}{3}\right\rceil-\left\lceil\frac{n}{4}\right\rceil$. Next we move to the other pendent vertex u_{n}. Assign the label 2 to the vertices $u_{n}, u_{n-1}, \ldots, u_{n-t}$. Finally assign the label 3 to the non labeled vertices.
Case 2. n is odd.
Assign the label to the vertices of the path $P_{n-1}: u_{1} u_{2} \ldots u_{n-1}$ as in case 1 . Next assign 1 to the vertex u_{n}. Finally relabel the vertex $u_{\frac{n+3}{2}}$ by 3 . Clearly this vertex labeling is $3-$ Quotient cordial labeling.

Corollary 2.4. All cycles are 3-Quotient cordial.
Proof. The 3-Quotient cordial labeling of path P_{n} given in Theorem 2.3 is also a 3-Quotient cordial labeling of cycle C_{n}.

In the next theorem we give a necessary and sufficient condition for a wheel which admits a 3-Quotient cordial labeling.

Theorem 2.5. The wheel W_{n} is 3-Quotient cordial iff $n \equiv 1(\bmod 3)$.
Proof. Let $W_{n}=C_{n}+K_{1}$ where C_{n} is the cycle $u_{1} u_{2} \ldots u_{n} u_{1}$ and $V\left(K_{1}\right)=\{u\}$. Suppose f is a 3-Quotient cordial labeling of W_{n}.
Case 1. $n \equiv 2(\bmod 3)$.
Subcase 1a. $f(u)=3$.
Clearly all the n spokes received the label 1. Also atleast $\left\lfloor\frac{n}{3}\right\rfloor-1$ rims get the label 1. This forces $e_{f}(1) \geq n+\left\lfloor\frac{n}{3}\right\rfloor-1$, a contradiction.
Subcase 1b. $f(u)=2$.
$n=3 t+2$. Minimum possible rims with label 1 is $t+1+1$. That is $t+2$. Also possible spokes with label 1 is $2 t+1$. Thus $e_{f}(1) \geq 3 t+3$, a contradiction.
Subcase 1c. $f(u)=1$.
Similar to subcase 1a, we get a contradiction.
Case 2. $n \equiv 0(\bmod 3)$.
Let $n=3 t$.
Subcase 2a. $f(u)=3$.
Similar to subcase 1a.
Subcase 2b. $f(u)=2$.
In this case $e_{f}(1) \geq 3 t+2$, a contradiction.
Subcase 2c. $f(u)=1$.
Similar to subcase 2 b .
Case 3. $n \equiv 1(\bmod 3)$.
Let $n=3 t+1$. We assign the label to the vertices as follows: Assign the label 2 to the central vertex. Next assign the labels 3 to the t vertices $u_{1}, u_{2}, \ldots, u_{t}$. Finally assign the labels 1 and

2 alternatively to the non labeled vertices. It is easy to verify that this vertex labeling is a $3-$ Quotient cordial labeling of W_{n}.

The following theorem establish that all combs are 3-Quotient cordial.
Theorem 2.6. The comb $P_{n} \odot K_{1}$ is 3-Quotient cordial.
Proof. Let P_{n} be the path $u_{1} u_{2} \ldots u_{n}$. and v_{i} be the vertices adjacent to $u_{i}(1 \leq i \leq n)$. Clearly $P_{n} \odot K_{1}$ has $2 n$ vertices and $2 n-1$ edges.
Case 1. $n \equiv 0(\bmod 3)$.
Let $n=3 t$. Assign the label 1,2 alternatively to the vertices $u_{1}, u_{2}, \ldots, u_{n-1}$. Note that in this process the last vertex u_{n} of the path is received the label 1 or 2 according as $n \equiv 3(\bmod 6)$ or $n \equiv 0(\bmod 6)$.
Subcase 1a. $n \equiv 0(\bmod 6)$.
Assign the label 3 to the vertices $v_{1}, v_{2}, \ldots, v_{2 t}$. Next assign the labels 1,2 alternatively to the remaining t vertices $v_{2 t+1}, v_{2 t+2}, \ldots, v_{3 t}$. Clearly in this pattern the last vertex v_{n} received the label 2.
Subcase 1b. $n \equiv 3(\bmod 6)$.
In this case assign the label 3 to the vertices $v_{1}, v_{2}, \ldots, v_{2 t-1}$ and assign the labels 2 and 3 respectively to the vertices $v_{2 t}$ and $v_{3 t}$. Finally assign the labels 1,2 alternatively to the remaining pendent vertices $v_{2 t+1}, v_{2 t+2}, \ldots, v_{3 t-1}$.
Case 2. $n \equiv 1(\bmod 3)$.
As in case 1 , assign the label to the vertices $u_{i}, v_{i}(1 \leq i \leq n-1)$. Then assign the labels 1 and 3 respectively to the vertices u_{n} and v_{n}.
Case 3. $n \equiv 2(\bmod 3)$.
Assign the label to the vertices $u_{i}, v_{i}(1 \leq i \leq n-1)$ as in case 2 . Then assign the labels 2 and 3 to the vertices u_{n} and v_{n} respectively.

Finally we investigate the 3-Quotient cordial behavior of star, bistar and square of a path.
Theorem 2.7. The star $K_{1, n}$ is 3 -Quotient cordial iff $n \in\{1,2,3,4,5,6,7,9\}$.
Proof. Let u be the centre of the star and $u_{i}(1 \leq i \leq n)$ be the vertices adjacent to u. The 3 -Quotient cordial labeling of the star $n \in\{1,2,3,4,5,6,7,9\}$ is given in Table 1.

n	u	u_{1}	u_{2}	u_{3}	u_{4}	u_{5}	u_{6}	u_{7}	u_{8}	u_{9}
1	1	2								
2	1	2	3							
3	1	2	2	3						
4	1	2	2	3	3					
5	1	2	2	3	3	1				
6	1	2	2	2	3	3	1			
7	1	2	2	2	3	3	3	1		
9	1	2	2	2	2	3	3	3	1	1

Table 1.
Assume $n \notin\{1,2,3,4,5,6,7,9\}$. Suppose f is a $3-$ Quotient cordial labeling.
Case 1. $n \equiv 0(\bmod 3)$.
Let $n=3 t$. The any one of the following types occur.
Type 1: $v_{f}(1)=t+1, v_{f}(2)=t, v_{f}(3)=t$.
Type 2: $v_{f}(1)=t, v_{f}(2)=t+1, v_{f}(3)=t$.
Type 3: $v_{f}(1)=t, v_{f}(2)=t, v_{f}(3)=t+1$.
Subcase 1a. $f(u)=1$ or 2 .
In this case $e_{f}(0) \leq t+1$, a contradiction.
Subcase 1b. $f(u)=3$.
In this case $e_{f}(0)=0$ and $e_{f}(1)=3 t$, again a contradiction.

Case 2. $n \equiv 1(\bmod 3)$.
Let $n=3 t+1$.
Subcase 2a. $f(u)=1$ or 2 .
As in subcase 1a, $e_{f}(0) \leq t+1$, a contradiction.
Subcase 2b. $f(u)=3$.
In this case $e_{f}(0)=0$, a contradiction.
Case 3. $n \equiv 2(\bmod 3)$.
Let $n=3 t+2$. As in case $2, e_{f}(0) \leq t+1$ or $e_{f}(0)=0$ according as $f(u) \in\{1,2\}$ or 3 .
Thus f is not a 3 -Quotient cordial labeling for all $n \notin\{1,2,3,4,5,6,7,9\}$.
Theorem 2.8. The bistar $B_{n, n}$ is $3-Q u o t i e n t ~ c o r d i a l . ~$
Proof. Let $V\left(B_{n, n}\right)=\left\{u, v, u_{i}, v_{i}: 1 \leq i \leq n\right\}$ and $E\left(B_{n, n}\right)=\left\{u v, u u_{i}, v v_{i}: 1 \leq i \leq n\right\}$. Assign the label 2 and 1 respectively to the vertices u, v.
Case 1. $n \equiv 0(\bmod 3)$.
Let $n=3 t$. Assign the labels 1 to $u_{1}, u_{2}, \ldots, u_{2 t}$ and 3 to the vertices $v_{1}, v_{2}, \ldots, v_{2 t}$. Finally assign the labels 2 to the remaining non labeled vertices $u_{2 t+1}, u_{2 t+2}, \ldots, u_{3 t}, v_{2 t+1}, v_{2 t+2}, \ldots, v_{3 t}$. Case 2. $n \equiv 1(\bmod 3)$.
As in case 1 , assign the label to the vertices $u_{i}, v_{i}(1 \leq i \leq n-1)$. Then assign the labels 1,3 to the vertices u_{n} and v_{n} respectively.
Case 3. $n \equiv 2(\bmod 3)$.
Assign the label to the vertices $u_{i}, v_{i}(1 \leq i \leq n-1)$ as in case 2 . Finally assign the labels 3,2 respectively to the vertices u_{n} and v_{n}. This vertex labeling is a 3-Quotient cordial labeling follows from Table 2.

Nature of n	$v_{f}(1)$	$v_{f}(2)$	$v_{f}(3)$	$e_{f}(0)$	$e_{f}(1)$
$n=3 t$	$2 t+1$	$2 t+1$	$2 t$	$3 t+1$	$3 t$
$n=3 t+1$	$2 t+2$	$2 t+1$	$2 t+1$	$3 t+1$	$3 t$
$n=3 t+2$	$2 t+2$	$2 t+2$	$2 t+2$	$3 t+1$	$3 t$

Table 2.

Theorem 2.9. The square of a path, P_{n}^{2} is $3-Q u o t i e n t ~ c o r d i a l ~ i f ~ a n d ~ o n l y ~ i f ~ n ~=1,2(\bmod 3)$ and $n=3,6$.

Proof. Let P_{n} be the path $u_{1} u_{2} \ldots u_{n}$.
Case 1. $n \equiv 1(\bmod 3)$.
Let $n=3 t+1$. Assign the label 3 to the first consecutive vertices $u_{1}, u_{2}, \ldots, u_{t}$. Next assign the labels 1 and 2 alternatively to the remaining nonlabeled vertices $u_{t+1}, \ldots, u_{3 t-2}$. Finally assign the labels 2,2 and 1 respectively to the vertices $u_{3 t-1}, u_{3 t}$, and $u_{3 t+1}$.
Case 2. $n \equiv 2(\bmod 3)$.
Let $n=3 t+2$. As in case 1 , assign the label 3 to the vertices $u_{1}, u_{2}, \ldots, u_{t}$ and assign the labels 1 and 2 alternatively to the vertices $u_{t+1}, \ldots, u_{3 t-1}$. Next assign the labels $2,2,1$ to the remaining nonlabeled vertices $u_{3 t}, u_{3 t+1}$, and $u_{3 t+2}$ respectively.
Case 3. $n \equiv 0(\bmod 3), n \neq 3,6$.
The maximum possible edges with label 2 occur only when 1 and 2 should be labeled alternatively to the vertices. But in this case $e_{f}(0) \leq e_{f}(1)-2$, a contradiction.
The table 3 establish that, the labeling in case 1,2 is 3-quotient cordial labeling.

Nature of n	$v_{f}(1)$	$v_{f}(2)$	$v_{f}(3)$	$e_{f}(0)$	$e_{f}(1)$
$n=3 t+1$	$t+1$	$t+1$	t	$3 t-1$	$3 t$
$n=3 t+2$	$t+1$	$t+1$	t	$3 t$	$3 t+1$

Table 3.

Figure 2.

References

[1] I.Cahit, Cordial Graphs: A weaker version of Graceful and Harmonious graphs, Ars combin., 23 (1987), 201-207.
[2] J.A.Gallian, A Dynamic survey of graph labeling, The Electronic Journal of Combinatorics, 19 (2012) \#Ds6.
[3] F.Harary, Graph theory, Addision wesley, New Delhi (1969).
[4] R.Ponraj, M.Maria Adaickalam and R.Kala, Quotient cordial labeling of graphs, International Journal of Mathematical Combinatorics, 1(2016), 101-108.
[5] R.Ponraj and M.Maria Adaickalam, Quotient cordial labeling of some star related graphs, The Journal of the Indian Academy of Mathematics, 37(2)(2015), 313-324.

Author information

R.Ponraj, Department of Mathematics, Sri Paramakalyani College, Alwarkurichi-627412, India.

E-mail: ponrajmaths@gmail.com
M.Sivakumar, Department of Mathematics, Thiruvalluvar University College of Arts and Science, Tittagudi, India.
E-mail: sivamaths.vani_r@yahoo.com
Rajpal Singh, Research Scholar, Department of Mathematics, Manonmaniam Sundaranar University, Tirunelveli-627012, India.
E-mail: rajpalsingh@outlook.com
Received: February 2, 2017.
Accepted: August 9, 2017.

