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function f on [0,1) having bounded derivative are obtained by extended Legendre wavelet
method. These new estimators are sharper and best possible in wavelet analysis.

Abstract. In this paper, five new estimates £

1 Introduction

Approximation of function by n'” partial sums of its Fourier series is at common place of
analysis. It is known that wavelet approximation is a new and better tool than that of the Fourier
approximation. The wavelet approximations of certain functions by Haar wavelet method have
been discussed by number of researcher like Devore[4], Debnath[3], Meyer[6], Morlet[2], and
Lal and Kumar[5]. In this paper, an extended Legendre wavelet method is introduced. This
method is a generalization of Legendre wavelet method. But till now no work seems to have
been done to obtain the extended Legendre approximation of a functions having bounded first
and second derivative. i.e 0 < |f (z)| < coand 0 < |f”(z)| < oo. In an attempt to make
advance study in this direction, in this paper, the wavelet approximations of the function f with
0 < |f (x)] < coaswellas 0 < |f (x)| < oo have been established by extended Legendre
Wavelet Method. Our approximations obtain in this paper, are better and sharper in wavelet
analysis to the best of our knowledge. It is observed that the estimate of a function f having
bounded second derivative i.e 0 < |f" ()| < oo is better and sharper than the estimate of the
function f with first bounded derivative 0 < |f (z)| < co.

2 Definitions and Preliminaries :

2.1 Legendre Wavelet and Extended Legendre Wavelet

Wavelets constitute a family of functions generated from translation and dilation of a single

function ¢ € L?(R)called mother wavelet. When the dilation parameter a and translation

parameter b vary continuously, following family of continuous wavelets are obtained.
Yap(r) = |a|"79(Z=2) s a,b € (R) and a # 0.

a

If we can restrict the value of dilation and translation parameter to a = a;, ", b = mboa, ",
ag > 1, by > 0 respectively. We have following family of discrete wavelets.

Vn.m () = |ag| % ¥(afiz — mby).

One dimensional Legendre wavelet over the interval [0, 1) is defined as :

2k 21\,
0, otherwise,

n,m\T) =
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where n = 1,2, ,2""!, i =2n — 1land m = 0,1,2, , k is a positive integer, x is normalized
time and L,, () is the Legendre polynomial of degree m over the interval [-1,1]. which is defined
as follows :

Lo(x) = 1. Li(x) = o, Ly(x) = 25~

and the recurrence formula for Legendre polynomial is given by

Lm+l (Cﬂ) = zgj_llxl/m(l') - mLHLm—l(m);m = 1»27... .

The set {L,,(z) ; m = 1,2,...}in the Hilbert space L?[—1,1] is a complete orthogonal set.
Orthogonality of Legendre polynomial on the interval [-1,1] implies that

‘ 2 _
< Lm(x),Ln(I) >= f Lm(x)L_n(I)dX: 2m+1 for m ) n
-1 0, otherwise.

Furthermore, the set of wavelets 1, ,,, (z) makes an orthonormal basis in L2[0, 1).
ie

1

f w”ff” (‘r)wn' ,m/ (x)dx = 6n,n/ 5m,m/ ’

0

in which § denotes Kronecker delta function defined by

5 ) 1forn= n
] o, otherwise.

The function f € L2[0, 1) is expressed in the Legendre wavelet series as
f(X) = Z Z() Cnmﬂ/}n,m (I)7
n=1m=
where ¢, ,, =< f(), ¥n.m(x) >. The (281, M)*" partial sum of the above series is given by
21 M

(Sae—1 e f)(@) = >0 3 cnm¥nm(z).

n=1 m=0

2.2 Extended Legendre Wavelet

The extended Legendre wavelet over [0, 1), denoted by 1/15{‘ ), is defined by:

0, otherwise.

If we take i = 2 in extended Legendre wavelet then it reduces to standard Legendre wavelet.

3 Extended Legendre Wavelet Expansion

Any function f(x) defined over [0, 1) can be expanded in terms of the extended Legendre wavelet
as

F@) =Y > enmtl)(2), 3.1)

n=1m=0

where ¢, ., = < f(z), @[151“ ) () >and < .,. > denotes the inner product on L?[0, 1). If the above
infinite series is truncated, then it can be written as

F) = 5 5 enot®(e) = CTW (),

n=1 m=0
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where C and W(z)are 1 = pF (M + 1) columns vector given by

C= [61,0,01,17... 701,M|02,0702,1,... CZ,M‘...|C,u,k,O7C;Lk,17..- 70;4k,M]-

( ) [11[}1()7 1 17 |¢205w§71)a“.a77[}£{}‘> |d) k07 k S0 w(k)]\/j]

4 The Extended Legendre Wavelet Approximation

The extended Legendre wavelet approximation E,,« 5,(f) of a function f € L?[0,1) is given by
E/L’“,M(f) = manf - S;Lk,M(f)||27

u M
where (S,x v f)(x) = 2 > e ) () the (1, M)t partial sum of
n=1m=0
f(x) = Z Z Cn,mwfﬂ)n(l’)
n=1m=0
1 3
and [l = | [1r@)Pdz ) -
0

If B, p(f) = 0ask — oo, M — oo then E,x p(f) is called the best approximation of f of
order (p*, M), Zygmund[1].
S Theorems

In this paper, we prove the following Theorems

Theorem 5.1. Let

0, otherwzse,

n=12___,(uF — pF"); k is a positive integer. If a function f € L?*[0,1) such that its
first derivative is bounded i.e 0 < |f (z)| < oo ¥ x € [0,1) and its extended Legendre wavelet
expansion for m = 0 is written as

Fla) =" cnotly(a). 5.1)

n=1
Then the extended Legendre wavelet approximation of f by (u*,0)!" partial sums

ILk
(Syr0f)(x) = Z] cn’owfff())(x) of the extended Legendre wavelet series (5.1) is given by

B o() = minl|f = S o(£)ll =0 (k)

s

Proof. By defining error between f(x) and its expansion over a subinterval | 251, 241 as:
'

en(z) = cnoy(z) — f(a); z € |:n it Tl)-
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We obtain,

2
llenl]

(cnotliy(a) — £(2))” d

(0721,0 (1/15%

(x))2 + f(z) - ch’owfﬁg)(l')f(l')> dx

w 5 I w
Civo/ (1/)51”())(@) dr + / fz((ﬂ)dx*ZCn’()\/”dlgj())(l')f(m)df
71—]()] '?:L;l 71;]
Atl
uk‘,
Cn,()+ / fz(x)dx_zcgz,o

By Taylor’s expansion,

f(z)

Then, HenHz

Next,

Cn,0

A

n—1

+h> f( p*
oo (O

n—1

-1

-

oo 5

2
+ Gh)) dh —cpo=11 —cly.

1

2
- +9h);0§h<k,0<9<1.
u

(5.2)
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Now,

k
2 _ M 4 o
Cho — 5 Wf
A —
—|—2f<
Lk

, e
en = ho| f (
leal 0/ ( -

IN
o\
>
\S]

IN

Aﬁ/#M+M

21

)

2

/ hdh | ; since f/ bounded

(5.3)

dh

5.4)

(5.5)
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. 2
= [ Xtenrti@ f<x>) dr
n=1
01 uk 2
= / Zen(x)) dx
o \n=1
= / Zei(x)) d:c—i-ZZZ/en(x)eﬁ(:c)dw.
0 n=1 n<f

Now, due to disjointness of the supports of these basis functions we have:

/(ﬂzk ei(m)) dx
5 \n=1

Z llen(2)][3- (5.6)

—
Sl
P
==
=)
—
~
~—
S~—
\S]
I

Substituting (5.5) into (5.6),we obtain:

Z 14M2 1403

2k -

(Bl o) < =3,

n=1

‘/E%
3 pk’

1
Hence, Ele’O(f) = 0 (M)

IN

1
Therefore, Efl‘k),() (f)

Theorem 5.2. If f € L?[0,1), 0 < | (2)| < oo and its extended Legendre wavelet expansion is
flz)=> > cn,mwfff Qn(a:) Then extended Legendre wavelet approximation of f by (u*, M)t"

n=1m=0

partial sums (S,x pf)(z) =

u Mt

Z n ( ) under the norm || ||, satisfies

Effk)’M(f) = min||f — SM7M(f)||2 =0 (W) ; for M > 0.

1
Proof. ¢,,, = /f w;’fm dz
0

+1
Mk

= / f(2) 2m2+ 12 Ly (plF 2 — 2n + 1)dz, taking t = p*z —2n +1

[NES

1

)
m

1
t+2n—1\ 2m+1 o di
- /f< i )\/ 7 P Lm0
2
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l ! ’
2m + 1 t+ 2n —1 . an+1(t) - LnL—l(t)
= 1/W/f <Mk) L, (t)dt, since Ly, (t) = 1 ,m2> 1
—1

G ) ALyt () = L1 ()t

(4

N 2(2m+ [(Hzn ) m“(t)_Lm“(t))T_l

/ t + Zn 1
2m +1 [/1f ) E(Lmﬂ(t) - Lm—l(t))dt] ,

integrating by parts

- = G o= () o -]

/1 P () (- LM@)W]
1

22m + 1) M
1
Then, |cpm| <
22m+1)p
s (t+2n—1 r(t+2n—1
(,uk)‘|(Lm+1(t)—Lm1(t))|dt,0< f <M’“)‘ < M,

1

M

—l/|Lm+1(t)—Lm,1(t)|dt
2(2m + 1) 3k

\/W (/ Zdt) ( |Lm+l(t)_mel(t)‘2 dt)

, by Holders inequality

W (V/ m+] + Lm ]( ) - 2Lm+l(t)Lm—1 (t)>dt)

2

IN

1
1 1 2
(/ 2 ()t + / L2 ()t -2 / Lm+1(t)Lm_](t)dt) .
\/2 2m+

—1 —1

By orthogonal property of Legendre polynomials,

lenm| <

V2 M, ( 2 N 2 )
2(2m + 1) pk 2m+3  2m—1
V2M, < 2 2 )5
+
2(2m 4+ 1)p*

2m — 1 2m — 1
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()

2(2m + 1)k \2m — 1
B 2V2 M,
 V22m+ D) (2m - 1)
22 M,
T V202m - 1)2m — 1)k
B 2M,;
2m—1)p*’
Thus, |chm|* < m, m > 1. (5.7)
0o oo w M
F@) = (Speah)@) = D cnmtiln(@) =D D comdif (@)
n=1m= n=1m=0

Cam®®) (x), by definition of /"), (x)

n,m

(@) = (S (@)’ = ( > cn,mw%(x))

+ Z Cn,mcﬁ,mwgﬂ)n (1)1/)%%7)n($)

Z Z Cnmcnmwnm( )w ( )

1
XYY cuntnn [ (B0
0

n=1 M+1<m #m<oo

Y Yy Cw%’”/ (vl @) do
0

1<n# a<puk m=M+1
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1
+ Z Z Z Z Cn,mcﬁ,m/<¢£ﬁzn($)1/)£{j7)ﬁ($)) dz.
0

1<n+# a<pk M+1<m #m<oo

Since [[¢//,]|2 = 1 and other terms vanish by orthogonality of /),

(BSL ) = (F@) = (S arf) (@)
uF oo M :
- Z Cn,mwgﬂ)n(x) - Z Z Cn m'lp?(«ﬁr)n(x)
n=1m=0 n=1m=0
. 2

m %)
n=1m=M+1

[T

IES L DIP = 30 3 Jenml (5.8)
n=1m=M+1

From equation (5.7) and (5.8) we have,

m o) 2
) ) 4M;
HEﬂk,JVI(f)”Z Z ((2771—1)2,[1379)

n=1m=M+1

IN

oo

_ #1<4]\34]€12) Z (mel)_z

m=M+1

IES (Dl

IN

) _ 1 :
Hence, ||E;u<M(f)|| = O <uk( ), for M > 0.

Theorem 5.3. Let R be the set of all real number. If f : [0,1) — R is a real - valued function
such that 0 < |f" (z)| < co and f(z) = 3 cn,owi%(x),for m=0. Then the extended Legendre
n=1 ’

u*
wavelet approximation E;(S’“) o(f) of £ by (u*,0)™" partial sums (S« of)(z) = 3 Cn,owi%(%) is
: = ,

estimated as

ES o) = minllf = S, 0(Dll =0 (1 + 7)) -

Proof. Following the proof of Theorem 5.1, we have
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lealf = [ Plade- . (5.9)
fokl
Cno = < f(m)a 1/)5%(33) >

h—1 1 . /a-1 n(f—1
" {f( pk )Jru"’f <an ﬂ /hzf <an +0h> ah 610
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Using equation (5.9), (5.10) and (5.11),we have

2
el = 5 (

?r""

7 A_l y 2 1" A_l
+f (” . >/<h3—hk>f (” _ +9h>dh
W) [ I

M2 32ME  64M2

4 8
< MM, | — — ——
= 33k 2045k 72’u5k+ 1 QL% 3M4k}

2 56 M?  2M; M,
= Z_(MFPy=Z
3u3k( 1+15'u2k+ Lk )
<

2 ( ,  4ME 4M1M2>

33k 1 2k L

2 20\
= g (04 72)

Next, (E),(£)" = Y llea@)P.

k

IA
=
/N
(9%)
AL
ol
VRS
=
+
[\®)
|2
N———
N

IA
9N
[}
o
=
_|_
\S)
5
e
7N
—
_|_
7 N
B
SN—
SN—
()

3) _ 1 1
Hence, Euk,o(f) = O <Mk (1 + //“)) :

Theorem 5.4. If the second derivative of f is bounded i.e 0 < |f" (z)| < oo and

1

flz) = 21 Zo cn,mwﬁﬁ ,)n(:v), then extended Legendre wavelet approximation EE:QJ of f by
et

(pF, 1) partial sums (S, 1 f)(z) = > > cmmzbﬁff%@(:r) is obtained as

n=1m=0

ES () = minllf = Sw (£l =0 ().

B W

Proof. By defining error between f(x) and its expansion over any subinterval as:

n—1 n+1
enl®) = enot®)(@) + ent¥)(e) - f(a); xe[ L )

We obtain,
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leal} = / & (x)dx

£

a3
i

+ 2 00n / P (@) (2)da
f—1

k

=

Therefore,
Lk
" 2
L n—1 s (=1 B (A1
lenllz = O/(f( " >+hf (u’“ )+ 5 f I +60nh) ) dh
*Cn,o*ci,l
_ ©)
Cp,1 = <f($)7wn,1($)>

(5.12)
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/ f(z)\/gugl)](,ukx —2n+ 1)dx

ot (o (o) =) (1 () e ()
—u? +h)—2n+1 +h dh
\EM (u p / p / pk
Lk 2
3 5 o (h—1 2 (-1
2
3 . . -1 C (=1 B2 . (-1
2“2/(Mh_1)<f< pk >+hf < pk >+2f ( ik +9h>>dh
0
2
3 % kp2 -1 kp3 B2\ /A —1\]#*
() (O )+ (5 -3) ()]
iz 3 2 z 0

+i,€f' (ﬁ_kl>/(ukh3—h2) 1 ("N_kl +0h> dh, (5.13)
0
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IN

32 64  3uk [ 4 8 17
M? iy R S
<20N5k LT [/P’“ 3u3’“} )

IA

L[]
5
%

1
Hence, E;(:‘k),l(ﬁ = O<M2k>

Theorem 5.5. If0 < | (z)| < oo ¥z € [0.1), f(z) = 3 5" cnmtbPh(x) and

n=1m=0

b M
(S m f)(x) = 21 Zo cn,mzbf{f m (), then extended Legendre wavelet approximation E! k) ()

of [ by (S,x af)(x) is calculated as

B () =il = Sy =0 by Ysforar 21

Proof. Following the proof of Theorem 5.2, we have

(t) = Lip—1(t))dt, m > 1

t-I—Zn—l
Cnom = \/W/f( )(m-H

-1
2(2m + 1) 13k

t+2n*1 Ly, (t) = L, (t) L, (t) = L, _,(t)
/f< )(( 2m+3 )( 2m = 1 ))dt’f"’"mzz

-
(2m+3)(2m — 1)\/2(2m + 1)’k

[ /1 7 <t+i’;‘l> ((2m 1)L, () —22m+ 1)L, (t) + (2m + 3)L;H(t>) dt} ,

1
(2m +3)(2m — 1)\/2(2m + 1)uk

X




EXTENDED LEGENDRE WAVELET APPROXIMATION 387

« [/ 7 (t*ikl> ((2m — D) Lpea(t) — 2(2m 4+ 1)L () + (2m + 3) Lon_o(t)) dt

integrating by parts.
1
(2m +3)(2m — 1)\/2(2m + 1)pk

1
X/
1

Then, |Cn,m|

IN

f’(t+iﬁf_l>’(%n—-ULm+Aﬂ-—2@"l+I)Lm@)+(%”*ﬁLmﬂﬂ|m

M,
(2m+3)(2m — 1)y/2(2m + 1)p*

IN

y / 1(2m = 1) Lonsa(t) — 22m + 1)L (£) + (2m + 3) Lon o (t)| dt

M,
(2m+3)(2m — 1)\/2(2m + 1)k

X (] (1)%) (/ (2m = 1) Lonsa(t) — 2(2m + DLy (t) + (2m + 3)Lm_2(ﬁ))2dt)
M,

(2m+3)(2m — 1)\/2(2m + 1)k

IN

1
xV?2 (/ ((2m —1)2L7, ,(t) + 42m + 1)°L2 (t) + (2m + 3)2 L7, _, (1)) dt)
1

M,
2m +3)(@m — 1)y/20m +

+4(2m+1)?

2m+5 2m+1

by orthogonality property

><\f2((2m—1)2 T—

+ (2m + 3)? 2 )

M,
(2m+3)(2m — 1)y/2(2m + 1)p*

IN

=

xV2 ((2m+3)2 +4(2m + 3)? + (2m+3)22m2_ 3>

M (2m +3) %
(2m +3)(2m — 1)4/2(2m + 1)* (2m —3)
V12M,
(2m —3)2p
12M2
13k (2m — 3)4

k

2m —3 2m —3

BI—

IN

lcnml? < m>2.

=

o0

5
(ES () = |Cn,m |
1 m=M+1

3
Il
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p ) 2
12M
< Z —_—
= 5k LY
n=1 m:]ﬂ+l'u (2m 3)
2M7 & 4
= 2m —3
M4k m:ZMJrl( )
12M2 [
= M4k2 / (2m —3)"*dm
M+1
Y
- pA*(2M — 1)3
E(SQM(f) < V2M, —; for M >1
' p(2M —1)2
(5) _ 1
B = orM > 1
wlf) (;ﬂk(zM— 1)%) /

Following corollary is deduced from our Theorems (5.1)

Corollary 5.6. Let

ﬁ n+1
Yno(x) = { ; for L <r<

otherwzse,
n=1,2,___,2%=; kis a positive integer. If a function f € L*[0,1) such that its first

derivative is bounded i.e 0 < |f (x)| < 0o V x € [0,1) and its the Legendre wavelet expansion
for m = 0 is written as

= cnothno(z). (5.14)

Then the Legendre wavelet approximation of f by (2%,0)" partial sums

(Saw0f) (@ Z n,0¥n,0

of the Legendre wavelet series (5.14)) is given by
By o(f) = min||f — Sax o(f)|l2 = O (5¢) -
Proof. Proof of corollary 5.6 can be developed on the same line of proofs of the Theorem (5.1)
by taking p = 2.
6 Conclusions
(1) The estimates of Theorem (5.1), (5.5), (5.3), (5.4) and (5.5) are obtained as:
1
R = 0().

I

@ 1 for M
EY = O|———|:for M >0,
) <M(2M+ 1)z>
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1 1
O(w(“w))’
1
- o (57r)

=
©
—
~
S~—
|

S
=~
=2
:‘\
~
~—
Il

(5) _ 1 :
Ey = O == |ifor M>1.
e (F) <u2k(2M— 1)3)
SinlCe 2 3 4 5
EN (1) = 0,.ES (£) = 0,E% () > 0ED () =0 and ES) |,(f) = 0as

k — oo. Therefore these estimates are best approximation in wavelet analysis.Zygmund[1].
(2) Itis observed that estimates of f having higher order derivatives are more sharper than those
function f having less derivatives.
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