
Palestine Journal of Mathematics

Vol. 8(1)(2019) , 390–396 © Palestine Polytechnic University-PPU 2019

SPECTRAL PROPERTIES of a q-BOUNDARY VALUE
PROBLEM with PIECEWISE-CONTINUOUS COEFFICIENT

F. Ayca Cetinkaya and Ilknur Aydin

Communicated by Martin Bohner

MSC 2010 Classifications: Primary 34B27, 34L05; Secondary 39A13.

Keywords and phrases: q-calculus, boundary value problems, eigenvalues and eigenfunctions.

We are immensely grateful to the anonymous reviewers for their valuable comments.

Abstract. This work aims to examine a boundary value problem which consists a second
order q-differential equation together with a piecewise-continuous function. An inner product
is introduced in a suitable Hilbert space. The orthogonality of the eigenfunctions, realness and
simplicity of the eigenvalues are investigated. The Green’s function is constructed and some of
its properties are given.

1 Introduction

In this paper, we study the boundary value problem

l(y) := −1
q
Dq−1Dqy(x) + v(x)y(x) = λr(x)y(x), (x ∈ [0, π], λ ∈ C), (1.1)

U1(y) := α1y(0) + α2Dq−1y(0) = 0, (1.2)

U2(y) := β1y(π) + β2Dq−1y(π) = 0, (1.3)

where q ∈ (0, 1] is fixed, v(·) is a real valued function which is continuous at zero, the coefficients
in the boundary conditions (1.2), (1.3) are nonzero arbitrary real numbers and the function r(x)
is a piecewise continuous function such as

r(x) =

{
r1, 0 ≤ x < a,

r2, a < x ≤ π.

The Sturm-Liouville theory has been the keystone for the development of spectral methods
and the theory of self-adjoint operators [5]. For many applications, the Sturm-Liouville problems
are studied as boundary value problems [16]. However, to date, mostly classical differential
operators in Sturm-Liouville problems have been used, in [6] (see also [7]) Annaby and Mansour
served a natural departure from the typical Sturm-Liouville problem by replacing the derivative
with Jackson q-derivative and considered the boundary value problem

−1
q
Dq−1Dqy(x) + v(x)y(x) = λy(x), (0 ≤ x < a <∞, λ ∈ C), (1.4)

a11y(0) + a12Dq−1y(0) = 0, (1.5)

a21y(a) + a22Dq−1y(a) = 0, (1.6)

where v(·) is defined on [0, a] and continuous at zero, the coefficients in the boundary conditions
are arbitrary real numbers such as the rank of the matrix (aij) (1 ≤ i, j ≤ 2) is 2.
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In these studies, the authors formulated a self-adjoint q-difference operator in the Hilbert
space L2

q(0, a), discussed some of the properties of the eigenvalues and eigenfunctions, con-
structed the Green’s function and showed that the set of eigenfunctions forms a complete orthog-
onal set in L2

q(0, a). The results of Annaby and Mansour are applied and developed in different
aspects. For instance, in [1, 8], sampling theory associated with q-difference equations of the
Sturm-Liouville type is considered. In [4, 15], a regular q-fractional Sturm-Liouville problem
which includes the left-sided Riemann-Liouville and right-sided Caputo q-fractional derivatives
of the same order is formulated and the properties of eigenvalues and eigenfunctions are investi-
gated.

In [3], a Parseval equality and an expansion formula in eigenfunctions for a singular q-Sturm-
Liouville operator on the whole line are established. In [2], the eigenvalues and the spectral
singularities of non-selfadjoint q-difference equations of second order are investigated. In [9], a
boundary value problem consisting of a second order q-difference equation together with Dirich-
let boundary conditions is reduced to an eigenvalue problem for a second order Euler q-difference
equation by separation of variables and in [10] a q-Sturm-Liouville boundary value problem with
spectral parameter in the boundary condition is considered.

The boundary value problem (1.1)-(1.3) is identical with the boundary value problem (1.4)-
(1.6) in all respects except for the appearance of the piecewise continuous function in (1.1). Our
primary source of inspiration for this work is the Remark 3.2.1 in [7] (pg. 85) which claims
that similar results with the ones obtained in [7] (see also [6]) will occur if the Hilbert space
L2
q(0, a) is replaced by a weighted one. We also refer to the articles [11, 12, 13, 14] in which

Sturm-Liouville problems with piecewise-continuous coefficient were examined.

The paper is organized as follows. In the next section, we begin the discussion of the problem
with some preliminaries. In Section 3, we investigate the properties of eigenvalues and eigen-
functions. Section 4 is devoted to construct the Green’s function and to examine some of its
characteristics. And finally, Section 5 is dedicated to conclude the paper by summarizing the
results.

2 Preliminaries

Let φ1(·, λ) and φ2(·, λ) be the solutions of the equation (1.1) satisfying the initial conditions

φ1(·, λ) = 1, Dqφ1(·, λ) = 0, φ2(·, λ) = 0, Dqφ2(·, λ) = 1. (2.1)

We define
∆(λ) := U1(φ1)U2(φ2)− U1(φ2)U2(φ1). (2.2)

The function ∆(λ) is an entire function of λ and has zeros at the eigenvalues of the boundary
value problem (1.1)-(1.3). Thus, the set of eigenvalues consists countable elements with no fi-
nite limit points.

In the Hilbert space L2
q,r(0, π) let an inner product be defined by

〈f, g〉 :=
∫ π

0
f(x)g(x)r(x)dqx

for f(·), g(·) ∈ L2
q,r(0, π).

The following lemma can be proven similar to [7].

Lemma 2.1. Let y(·), z(·) ∈ L2
q,r(0, π) be defined on [0, q−1π]. Then, for x ∈ [0, π] we have

Dqy(xq
−1) = Dq−1y(x) = Dq,xq−1y(xq−1),

〈Dqy, z〉 = y(π)r(π)z(πq−1)− lim
n→∞

y(πqn)r(πqn)z(πqn−1) +

〈
y,−1

q
Dq−1z

〉
, (2.3)
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〈
−1
q
Dq−1y, z

〉
= lim

n→∞
y(πqn−1)r(πqn−1)z(πqn)− y(πq−1)r(πq−1)z(π) + 〈y,Dqz〉 . (2.4)

Lemma 2.2. For every f(·), g(·) ∈ L2
q,r(0, π), we have the q-Lagrange’s identity

〈lf(x), g(x)〉 − 〈f(x), lg(x)〉 = [f, g](π)− lim
n→∞

[f, g](πqn), (2.5)

where
[f, g](x) := f(x)r(x)Dq−1g(x)−Dq−1f(x)r(x)g(x). (2.6)

Proof. Our aim is to calculate the difference between the inner products 〈lf(x), g(x)〉, 〈f(x), lg(x)〉:

〈lf(x), g(x)〉 − 〈f(x), lg(x)〉 =

∫ π

0

(
−1
q
Dq−1Dqf(x) + v(x)f(x)

)
g(x)r(x)dqx

−
∫ π

0
f(x)

(
−1
q
Dq−1Dqg(x) + v(x)g(x)

)
r(x)dqx

=

∫ π

0

[(
−1
q
Dq−1Dqf(x)

)
g(x)− f(x)

(
−1
q
Dq−1Dqg(x)

)]
r(x)dqx

=

〈
−1
q
Dq−1Dqf(x), g(x)

〉
−
〈
f(x),−1

q
Dq−1Dqg(x)

〉
.

Applying (2.4) with y(x) = Dqf(x), z(x) = g(x) to the term
〈
− 1
qDq−1Dqf(x), g(x)

〉
gives us

〈lf(x), g(x)〉 − 〈f(x), lg(x)〉 = lim
n→∞

Dqf(πq
n−1)g(πqn)r(πqn−1)−Dqf(πq

−1)r(πq−1)g(π)

+ 〈Dqf(x), Dqg(x)〉 −
〈
f(x),−1

q
Dq−1Dqg(x)

〉
.

Applying (2.5) with y(x) = f(x), z(x) = Dqg(x) to the term 〈Dqf(x), Dqg(x)〉 and making
necessary calculations allow us to write

〈lf(x), g(x)〉 − 〈f(x), lg(x)〉 = [f, g](π)− lim
n→∞

[f, g](πqn)

which completes the proof.

We define the operator A
A : DA → L2

q,r(0, π)

by Ay = ly for all y ∈ DA, where DA is the subspace of L2
q,r(0, π) consisting of those complex

valued functions y that satisfy the boundary conditions (1.2), (1.3) such that Dqy(·) is q-regular
at zero and D2

qy(·) lies in L2
q,r(0, π). Thus, A is the q-difference operator generated by the

q-difference equation (1.1) and the boundary conditions (1.2), (1.3).

Theorem 2.3. The operator A is symmetric.

Proof. We are supposed to show that the right hand side of equality (2.5) vanishes. Let the
functions f(·) and g(·) ∈ C2

q(0) satisfy the boundary conditions (1.2), (1.3):

α1f(0) + α2Dq−1f(0) = 0, α1g(0) + α2Dq−1g(0) = 0.

The continuity of f(·) and g(·) at zero implies that lim
n→∞

[f, g](πqn) = [f, g](0). Then, equation
(2.5) will have the form

〈lf(x), g(x)〉 − 〈f(x), lg(x)〉 = [f, g](π)− [f, g](0).

With the help of boundary conditions (1.2), (1.3) and relation (2.6), we have [f, g](0) = 0 and
[f, g](π) = 0. This completes the proof.
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3 Properties of eigenvalues and eigenfunctions

Definition 3.1. A complex number λ∗ is said to be an eigenvalue of the boundary value problem
(1.1)-(1.3) if there is a non-trivial solution φ∗(·) which satisfies the problem at this λ∗. In this
case the solution φ∗(·) is called an eigenfunction of the boundary value problem (1.1)-(1.3).

Lemma 3.2. The eigenvalues of the boundary value problem (1.1)-(1.3) are real.

Proof. Let λ0 be an eigenvalue and f0(·) be the corresponding eigenfunction, then from Theorem
2.3, we have

〈lf0(x), f0(x)〉 = 〈f0(x), lf0(x)〉 .

Since lf0 = λ0rf0 then

〈lf0(x), f0(x)〉 − 〈f0(x), lf0(x)〉 = (λ0 − λ0)

∫ π

0
r(x) |f0(x)|

2
dqx = 0

holds. Since f0(·) is an eigenfunction of the boundary value problem (1.1)-(1.3) we have λ0 =
λ0. This completes the proof.

Lemma 3.3. Eigenfunctions that belong to different eigenvalues are orthogonal.

Proof. Let λ 6= µ be two eigenvalues of the boundary value problem (1.1)-(1.3) corresponding
to the eigenfunctions f(·) and g(·) , respectively. Then, from the previous lemma, it can be easily
seen that the equation below holds:

(λ− µ)
∫ π

0
f(x)g(x)r(x)dqx = 0.

Since λ 6= µ, we have 〈f, g〉 = 0 and this completes the proof.

Before presenting the following lemma, it will be useful to keep in mind that the multiplicity
of an eigenvalue is defined to be the number of linearly independent solutions corresponding to
this eigenvalue.

Lemma 3.4. All eigenvalues of the boundary value problem (1.1)-(1.3) are simple.

Proof. Let λ0 be an eigenvalue of the boundary value problem (1.1)-(1.3) and f1(·) and f2(·) be
the corresponding eigenfunctions. It can be easily seen that the q-Wronskian of the functions
f1(·) and f2(·) equals zero. Indeed,

Wq(f1, f2)(0) = f1(0)Dqf2(0)− f2(0)Dqf1(0)

= f1(0)Dq−1f2(0)− f2(0)Dq−1f1(0) = [f1, f2](0) = 0.

From Corollary 2.15 in [7] pg. 65, the above equation gives us the fact that the functions f1(·)
and f2(·) are linearly dependent. Thus, we have a contradiction and this completes the proof.

We have just proved in Lemma 3.4 that all eigenvalues of the boundary value problem (1.1)-
(1.3) are simple from the geometric point of view. Now, in the following theorem, we will try to
show that the eigenvalues are also algebraically simple.

Theorem 3.5. The eigenvalues of the boundary value problem (1.1)-(1.3) are the simple zeros of
the function ∆(λ).

Proof. Let θ1(·, λ) and θ2(·, λ) be the functions defined as{
θ1(x, λ) := U1(φ2)φ1(x, λ)− U1(φ1)φ2(x, λ),

θ2(x, λ) := U2(φ2)φ1(x, λ)− U2(φ1)φ2(x, λ).
(3.1)

It can be easily seen that the functions θ1(·, λ) and θ2(·, λ) are the solutions of the equation
(1.1) satisfying the boundary conditions (1.2), (1.3):

θ1(0, λ) = α2, Dq−1θ1(0, λ) = −α1; θ2(π, λ) = β2, Dq−1θ2(π, λ) = −β1. (3.2)
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With the help of (2.1), (2.2) and (3.1), we have

Wq(θ1(·, λ), θ2(·, λ))(x) = ∆(λ)Wq(φ1(·, λ), φ2(·, λ))(x) = ∆(λ). (3.3)

Now, let λ0 be an eigenvalue of the boundary value problem (1.1)-(1.3). From (3.3), we have
the conclusion that the functions θ1(x, λ0) and θ2(x, λ0) are linearly dependent eigenfunctions of
the boundary value problem (1.1)-(1.3). Thus, the existence of a non-zero constant k0 such that

θ1(x, λ0) = k0θ2(x, λ0)

is valid. (3.2) and (3.3) gives us the opportunity to write

θ1(π, λ0) = k0β2 = k0θ2(π, λ), Dq−1θ1(π, λ0) = k0Dq−1θ2(π, λ) = −k0β1.

Taking f(x) = θ1(x, λ) and g(x) = θ1(x, λ0) in (2.5) implies

(λ− λ0)

∫ π

0
θ1(x, λ)θ1(x, λ0)r(x)dqx = [θ1(·, λ), θ1(·, λ0)](π)

= k0[θ1(·, λ), θ2(·, λ0)] = k0Wq(θ1(·, λ), θ2(·, λ))(q−1π)

= k0∆(λ).

Since ∆(λ) is an entire function of λ, we have

d

dλ
∆(λ) := lim

λ→λ0

∆(λ)

λ− λ0
=

1
k0

∫ π

0
θ2

1(x, λ0)r(x)dqx 6= 0

and hence λ0 is a simple zero of the function ∆(λ).

4 Green’s Function

Let us consider the boundary value problem

−1
q
Dq−1Dqy(x) + v(x)y(x) = λr(x)y(x) + f(x)r(x), (x ∈ [0, π], λ ∈ C), (4.1)

α1y(0) + α2Dq−1y(0) = 0, (4.2)

β1y(π) + β2Dq−1y(π) = 0, (4.3)

where f(·) ∈ L2
q,r(0, π) is a given function.

If λ is not an eigenvalue of the non-homogeneous problem (4.1)-(4.3), then it has a unique
solution. Indeed, it is obvious that the difference of two solutions of the non-homogeneous prob-
lem is an eigenfunction of the homogeneous problem and, by assumption, it must be identically
zero.

Theorem 4.1. Assume that λ is not an eigenvalue of the boundary value problem (4.1)-(4.3).
Then, the solution of the boundary value problem (4.1)-(4.3) has the following form

φ(x, λ) =

∫ π

0
G(x, t;λ)f(t)r(t)dqt (4.4)

where G(x, t;λ) is the Green’s function defined as

G(x, t;λ) :=
1

∆(λ)

{
θ2(x, λ)θ1(t, λ), t ≤ x,
θ1(x, λ)θ2(t, λ), x ≤ t.

Conversely, the function φ(x, λ) defined in (4.4) satisfies (4.1) and (4.2), (4.3). If f(x) is q-
regular at zero, then (4.4) holds for all x ∈ [0, π].
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Proof. By applying the q-analogue of the method of variation of constants, we seek the solution
of the boundary value problem (4.1)-(4.3) in the following form

φ(x, λ) = c1(x)θ1(x, λ) + c2(x)θ2(x, λ),

where c1(x), c2(x) are solutions of the q-difference equations{
Dq,xc1(x) = − q

∆(λ)θ2(qx, λ)f(qx)r(qx),

Dq,xc2(x) =
q

∆(λ)θ1(qx, λ)f(qx)r(qx).
(4.5)

If the functions Dq,xc1(x) and Dq,xc2(x) are q-integrable functions on, [0, t] then

lim
n→∞

tqnθi(tq
n+1, λ)f(tqn+1) = 0

(i = 1, 2) holds. Since f ∈ L2
q,r(0, π), the set

Sf :=
{
x ∈ [0, π] : lim

n→∞
xqnr(xqn) |f(xqn)|2 = 0

}
becomes a q-geometric set which includes {πqm,m ∈ N0}. Thus, the functions Dqc1(x) and
Dqc2(x) are q-integrable functions on [0, x] for all x ∈ Sf and the solutions of (4.5) are

c1(x) = c̃1 +
q

∆(λ)

∫ x

0
θ2(qt, λ)f(qt)r(qt)dqt,

c2(x) = c̃2 +
q

∆(λ)

∫ π

x

θ1(qt, λ)f(qt)r(qt)dqt

as x ∈ Sf and c̃1,c̃2 are arbitrary real numbers. Hence the general solution of (4.1) can be written
by

φ(x, λ) = c̃1θ1(x, λ) + c̃2θ2(x, λ) +
q

∆(λ)
θ1(x, λ)

∫ x

0
θ2(qt, λ)f(qt)r(qt)dqt

+
q

∆(λ)
θ2(x, λ)

∫ π

x

θ1(qt, λ)f(qt)r(qt)dqt (4.6)

where x ∈ Sf . c̃1 and c̃2 can be determined with the help of the boundary conditions (4.2), (4.3).
Indeed,

φ(0, λ) = c̃1θ1(0, λ) +
(
c̃2 +

q

∆(λ)

∫ π

x

θ1(qt, λ)f(qt)r(qt)dqt

)
θ2(0, λ),

Dq−1φ(0, λ) = c̃1Dq−1θ1(0, λ) +
(
c̃2 +

q

∆(λ)

∫ π

x

θ1(qt, λ)f(qt)r(qt)dqt

)
Dq−1θ2(0, λ)

hold. From (4.2), we have

c̃2 = −
q

∆(λ)

∫ π

0
θ1(qt, λ)f(qt)r(qt)dqt.

Similarly, by using (4.3) to obtain c̃1, we have

c̃1 = −
q

∆(λ)

∫ π

0
θ2(qt, λ)f(qt)r(qt)dqt.

Substituting these values into (4.6), we reach (4.4). Conversely, if (4.4) is given then it can easily
be seen that it is a solution of the boundary value problem (4.1)-(4.3). If f(x) is q-regular at zero,
then Sf ≡ [0, π] and (4.4) becomes valid for all x ∈ [0, π].

The theorem which is given below lists a number of properties of the Green’s function.

Theorem 4.2. Green’s function has the following properties:

(i) G(x, t, λ) is continuous at the point (0, 0).

(ii) G(x, t, λ) = G(t, x, λ).

(iii) For each fixed t ∈ (0, qπ], G(x, t, λ) satisfies the q-difference equation (4.1) in the intervals
[0, t), (t, π] and it also satisfies the boundary conditions (4.2)-(4.3).

Proof. The proof can easily be obtained by using a similar procedure to [7].
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5 Conclusion

The main goal of the paper is to develop an alternative approach to the problem that Annaby
and Mansour discussed in their paper [6] (see also [7]). This approach is based on the piecewise-
continuous coefficient in the differential equation (1.1). We present a Hilbert space with a suit-
able inner product and we study some of the spectral properties of the boundary value problem
(1.1)-(1.3). We also construct the Green’s function and mention some of its properties. In our fu-
ture research, we will try to extend our results to the case of q- boundary value problems consist-
ing differential equations with piecewise-continuous coefficients and eigenparameter-dependent
boundary conditions. It is our hope that this paper will initiate new research in the area of the
boundary value problems with Jackson q-derivative.
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