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Abstract. In this study, we introduce a new approach to find a special kind of generalized
evolute and involute curve in Minkowski space-time E4

1 . Necessary and sufficient condition for
the curve possessing generalized evolute as well as involute curve were obtained. Furthermore,
Cartan null curve is also discussed in detail.

1 Introduction

Many mathematicians did work about the general theory of the curves in Euclidean space. Now,
we have much understanding on their local geometry as well as their global geometry. Identi-
fication of a regular curve is one of the important and interesting complication in the theory of
curves in Euclidean space.

Using two different approaches this complication can be solved, the relation between the
frenet vectors of the curve [1], and determining the shape and size of the curve by curvatures κ1
and κ2. In differential geometry an evolute is the envelope of the normals of the specific curve.
An evolute and its involute are defined in mutual pairs. The evolute of any curve is defined as the
locus of the centers of curvatures of the curve. The original curve is then described as the involute
of the evolute. Evolutes and involutes (also known as evolvents) were studied by C. Huygens [2].
Later, in [3] the author explore that if evolute occur then the evolute of parallel arc also occur.
In [4] the author fixed that evolute Frenet apparatus can be establish by involute apparatus in
four dimensional Euclidean space so by this approach another orthonormal of the same space is
acquired. In [5] author resolved that the iteration of involutes create a pair of sequences of curves
with respect to Minkowski metric and its dual. In (1845), Saint Venant [6] suggested a question
either the principle normal of a curve is the principle normal of another on the surface produced
by the principle normal of the specific curve. Bertrand answered this question in [7]. He proved
that a necessary and sufficient condition for the existence of such a second curve is required.
Using this method we define a kind of generalized evolute-involute curve in Minkowski space
time. We acquire the necessary and sufficient conditions for the curves with spacelike (1,3)-
normal plane to be (1,3)-Evolute curves and we also prove its converse by using the condition
of Evolute curve that is spanned by principle normal and the second binormal. In the end we
give some examples for these curves. Evolute curves and their identification were studied by
some researchers in Minkowski space [8], [9], [10], [11], [12], [13], [14], [15], [16] as well as
in Euclidean space. We see that mainly evolute-involute curves have been studied but not so
much research has been carried out to find the mate curves of Cartan null curves. In this paper, a
kind of generalized evolute and involute curve is considered for Cartan null curve in Minkowski
space-time. The necessary and sufficient conditions for a curve possessing generalized evolute
as well as involute mate curves is obtained.

2 Preliminaries

Consider the Minkowski space-time (E4
1 , H) where E4

1 = {z = (z1, z2, z3, z4)|zi ∈ R} and
H = −dz2

1 + dz2
2 + dz2

3 + dz2
4 . For any U = (x1, x2, x3, x4) and V = (y1, y2, y3, y4) ∈ TzE, we
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denote
U · V = H(U, V ) = −x1y1 + x2y2 + x3y3 + x4y4.
Let I be an open interval in R and Γ : I → E4

1 be a regular curve in E4
1 parameterized by arc

length parameter s and {T,N1, N2, N3} be a moving Frenet frame along Γ, consisting of tangent
vector T , principal normal vectorN1, the first binormal vectorN2 and the second binormal vector
N3 respectively, so that T ∧N1 ∧N2 ∧N3 coincides with the standard orientation of E4

1 . From
[17] Frenet seret formula.

T ′

N ′1
N ′2
N ′3

 =


0 ε2κ1 0 0

−ε1κ1 0 ε3κ2 0
0 −ε2κ2 0 −ε1ε2ε3κ3

0 0 −ε3κ3 0



T

N1

N2

N3

 , (2.1)

where

H(T, T ) = ε1, H(N1, N1) = ε2, H(N2, N2) = ε3,

H(N3, N3) = ε4, ε1ε2ε3ε4 = −1,

εi ∈ {1,−1}, i ∈ {1, 2, 3, 4}.

In specific, the succeeding conditions exist:

H(T,N1) = H(T,N2) = H(T,N3) = H(N1, N2) = H(N1, N3) = H(N2, N3) = 0.

A curve Γ(s) in E4
1 can be spacelike, timelike, or null if its velocity vectors Γ′(s) are com-

monly spacelike, timelike, or null [18]. A null curve Γ is parametrized by pseudo-arc s if
H(Γ′′(s),Γ′′(s)) = 1 [19]. Further more nonnull curve Γ, we have this conditionH(Γ′(s),Γ′(s)) =
±1. From [19, 20] if Γ is null Cartan curve, the Cartan Frenet frame is given by

T ′

N ′1
N ′2
N ′3

 =


0 κ1 0 0
κ2 0 −κ1 0
0 −κ2 0 κ3

−κ3 0 0 0



T

N1
N2

N3

 , (2.2)

where κ1(s) = 0 if Γ(s) is a null straight line or κ1(s) = 1 in all other cases. In this case
T · T = N2 ·N2 = 0, N1 ·N1 = N3 ·N3 = 1,
T ·N1 = T ·N3 = N1 ·N2 = N1 ·N3 = N2 ·N3 = 0, T ·N2 = 1.
We established some terminologies in this study. At any point of Γ, the plane spanned by

{T,N2} is called the (0, 2)-tangent plane of Γ. The plane spanned by {N1, N3} is called the
(1, 3)-normal plane of Γ.

Let Γ : I → E4 and Γ∗ : I → E4
1 be two regular curves in E4

1 where s is the arc-length
parameter of Γ. Denote s∗ = f(s) to be the arc-length parameters of Γ∗. For any s ∈ I , if the
(0, 2)-tangent plane of Γ at Γ(s) of coincides with the (1, 3)-normal plane at Γ∗(s) of Γ∗, then
Γ∗ is called the (0, 2)-involute curve of Γ in E4

1 and Γ is called the (1, 3)-evolute curve of Γ∗ in
E4

1 .

2.1 (1,3)-involute curve of a given curve in E4
1

In this section, we proceed to study the existence and expression of the (1, 3)-evolute curve of a
given curve in E4

1 .
Let Γ : I → E4

1 be a regular curve with arc-length parameter s so thatκ1, κ2 and κ3 are not
zero. Let Γ∗ : I → E4

1 be the (1, 3)-evolute curve of Γ. Denote {T ∗, N∗1 , N∗2 , N∗3 } to be the
Frenet frame along Γ∗ and κ∗1 , κ∗2 and κ∗3 to be the curvatures of Γ∗. Then

span{T,N2} = span{N∗1 , N∗3 }, span{N1, N3} = span{T ∗, N∗2 }.
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3 Theorem

Let Γ : I → E4
1 be a regular curve with arc-length parameter s so that κ1, κ2 and κ3 are not zero.

Let Γ∗ : I → E4
1 be the (1, 3)-evolute curve of Γ. Denote {T ∗, N∗1 , N∗2 , N∗3 } to be the Frenet

frame along Γ∗ and κ∗1 , κ∗2 and κ∗3 to be the curvatures of Γ∗ if and only if there there exists scalar
functions Φ, Ψ of arc-length parameter s and real constant numbers α 6= ±1, β satisfying

Φ
′(s) 6= 0,Ψ

′
(s) 6= 0, (3.1)

Φ
′
(s) = αΨ

′
(s), (3.2)

βαk1(s) = αk2(s)− k3(s), (3.3)

[−κ2κ3(α
2 − 1) + α(κ2

3 − κ2
1 − κ2

2)] 6= 0 (3.4)

for all s ∈ I .
Proof. Let Γ : I → E4

1 be a regular curve with arc-length parameter s so that κ1, κ2 and κ3 are
not zero. Let Γ∗ : I → E4

1 be the (1, 3)-evolute curve of Γ. Denote {T ∗, N∗1 , N∗2 , N∗3 } to be the
Frenet frame along Γ∗ and κ∗1 , κ∗2 and κ∗3 to be the curvatures of Γ∗. Then

span{T,N2} = span{N∗1 , N∗3 }, span{N1, N3} = span{T ∗, N∗2 }.

Moreover, we can write the curve Γ∗ as follows

Γ
∗(s∗) = Γ(s) + Φ(s)N1(s) + Ψ(s)N3, (3.5)

for all s∗ ∈ I∗, s ∈ I where Φ(s) and Ψ(s) are C∞ functions on I .
Taking derivative of (3.5), using the equation (2.1), we get

T ∗f ′ = (1−Φε1κ1)T (s) + Φ
′
(s)N1(s) + Ψ

′
(s)N3 + ε3(Φ(s)κ2 −Ψ(s)κ3)N2. (3.6)

{T ∗, N∗2 }⊥{T,N2} so 1− aε1κ1 = 0 and ε3(aκ2 − bκ3) = 0 from these we have Φ = 1
ε1κ1

,Ψ =
ε1κ2
κ1κ3

.
Equation(3.6) gets the form

f
′
T ∗ = Φ

′
(s)N1 + Ψ

′
(s)N3. (3.7)

So (3.6) gets the form

T ∗ =
Φ

′

f ′ N1 +
Ψ

′

f ′ N3. (3.8)

Multiplying (3.7) by itself, we get

ε∗1(f
′
)2 = ε2(Φ

′
)2 + ε4(Ψ

′
)2. (3.9)

If we denote

η =
Φ

′

f ′
, ζ =

Ψ
′

f ′
. (3.10)

Using equation (3.10) in (3.7), we get

T ∗ = ηN1 + ζN3. (3.11)

Taking derivative of equation (3.11) using (2.1), we get

f ′κ∗1N
∗
1 = η′N1 − ε1ηκ1T + ζ ′N3 + ε3(ηκ2 − ζκ3)N2. (3.12)

Taking inner product on both side of (3.12) by N1 and N3 respectively, we get

η′ = 0, ζ ′ = 0. (3.13)
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f ′κ∗1N
∗
1 = −ε1ηκ1T + ε3(ηκ2 − ζκ3)N2. (3.14)

Multiplying (3.14) by itself, we get

(f ′)2(κ∗1)
2 = η2κ2

1 + (ηκ2 − ζκ3)
2. (3.15)

We know that curvatures κ∗1 , κ∗2 , and κ∗3 6= 0 , so we obtained result (3.1)

Φ
′ 6= 0,Ψ

′
6= 0.

From (3.10), we get the result (3.2)
Φ

′
= αΨ

′
. (3.16)

Integrating (3.16), we get Φ = αΨ + η and Ψ = Φ−η
α .

Using (3.10) in (3.15), we get

(f
′
)2(κ∗1)

2 = (
Ψ

′

f ′ )
2[α2κ2

1 − (ακ2 − κ3)
2] (3.17)

Using (3.16) in (3.9), we acquire

f ′2 = (Ψ
′
)2(α2 + 1). (3.18)

Again writing equation (3.17)

(f ′)2(κ∗1)
2 = (

Ψ
′

f ′
)2[α2κ2

1 − (ακ2 − κ3)
2]. (3.19)

Using (3.18) in (3.19), we acquire

(f ′)2(κ∗1)
2 =

1
α2 + 1

[α2κ2
1 − (ακ2 − κ3)

2]. (3.20)

If we denote

∆1 =
ηκ1

f ′κ∗1
=

Ψ
′
α

f ′2κ∗1
[κ1], (3.21)

∆2 =
ηκ2 − ζκ3

f ′κ∗1
=

Ψ
′

f ′2κ∗1
[ακ2 − κ3]. (3.22)

Dividing (3.22) by (3.21), we get the result (3.3)

βακ1 = ακ2 − κ3.

Putting values of ∆1, ∆2 in equation (3.14), we get

N∗1 = ∆1T + ∆2B1. (3.23)

Taking derivative of equation (3.23) using equation (2.1), we acquire

−ε∗1f ′κ∗1T ∗ + ε∗3f
′κ∗2N

∗
2 = −ε2(∆1κ1 + ∆2κ2)N1 + ε4∆2κ3N3 + ∆

′

1T + ∆
′

2N2. (3.24)

Since {T ∗, N∗2 }⊥{T,N2}, so we acquire

∆
′

1 = 0,∆
′

2 = 0. (3.25)

Using the (3.7), (3.21), (3.22) and (3.25) in (3.24), we obtain

ε∗3f
′κ∗2N

∗
2 = P (s)N1 +Q(s)N3, (3.26)

where

P (s) =
Ψ

′

f ′2(α2 + 1)κ∗1
[−κ2κ3(α

2 − 1) + α(κ2
3 − κ2

1 − κ2
2)], (3.27)
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Q(s) = − αΨ
′

f ′2(α2 + 1)κ∗1
[−κ2κ3(α

2 − 1) + α(κ2
3 − κ2

1 − κ2
2)]. (3.28)

Since
ε∗3f
′κ∗2N

∗
2 6= 0.

So we get the result (3.4)

[−κ2κ3(α
2 − 1) + α(κ2

3 − κ2
1 − κ2

2)] 6= 0

Conversely, we suppose that Γ : I ⊂ R → E4
1 be an evolute curve with arc-length parameter s

so that k1, k2 and k3 are not zero. And the relations (3.1), (3.2), (3.3), (3.4) hold for some scalar
functions Φ, Ψ and constant real numbers α 6= 0, β. Then the curve Γ∗ can be expressed

Γ
∗(s∗) = Γ(s) + Φ(s)N1(s) + Ψ(s)N3. (3.29)

Taking derivative of equation (3.29) using equation (2.1), we acquire

dΓ∗

ds
= Φ

′
(s)N1 + Ψ

′
(s)N3. (3.30)

From (3.30) and (3.2), we get

dΓ∗

ds
= Ψ

′[αN1 +N3]. (3.31)

From this
f ′ =

ds∗

ds
= ||dT

∗

ds
|| = c1(Ψ

′)
√
c2(α2 + 1) > 0, (3.32)

such that c1(Ψ′) > 0 where c1 = ±1 and c2 = ±1 such that ε2c2(α2 + 1) > 0. Again writing the
equation (3.31)

T ∗f ′ = Ψ
′[αN1 +N3]. (3.33)

Using (3.32) in (3.33), we get

T ∗ =
c1√

c2(α2 + 1)
[αN1 +N3], (3.34)

which indicate that H(T ∗, T ∗) = c2 = ε∗1 .
Taking derivative of equation (3.34) using (2.1), we acquire

dT ∗

ds∗
=

c1

f ′
√
c2(α2 + 1)

[−ε1ακ1T + ε3(ακ2 − κ3)N2]. (3.35)

Using (3.35), we have

k∗1 = ||dT
∗

ds
|| =

√
(ακ1)2 − (ακ2 − κ3)2

f ′
√
c2(α2 + 1)

> 0 (3.36)

From equation (2.37) and (2.38), we acquire

N∗1 =
1
κ∗1

dT ∗

ds∗
=

c1√
(ακ1)2 − (ακ2 − κ3)2

[−ε1(ακ1)T + ε3(ακ2 − κ3)N2], (3.37)

which indicate that H(N∗1 , N
∗
1 ) = 1.

Let

∆3 =
−ε1(ακ1)√

(ακ1)2 − (ακ2 − κ3)2
, ∆4 =

ε3(ακ2 − κ3)√
(ακ1)2 − (ακ2 − κ3)2

, (3.38)

we acquire
N∗1 = ∆3T + ∆4N2. (3.39)
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Taking derivative of (3.39) using equation (2.1), we acquire

f ′
dN∗1
ds∗

= ∆
′

3T + ∆
′

4N2 + ε2(∆3κ1 − ∆4κ2)N1 + ε4∆4κ3N3. (3.40)

Taking derivative of (3.3), we acquire

(ακ
′

2 − κ
′

3)ακ1 − (ακ2 − κ3)ακ
′

1 = 0. (3.41)

Taking derivative of equation (3.38) with respect to s using (3.41), we acquire

∆
′

3 = 0, ∆
′

4 = 0. (3.42)

Substituting the values (3.38) and (3.42) in (3.40), we get

dN∗1
ds∗

=
c1(−ακ1)κ1 + (ακ2 − κ3)κ2

f ′
√
(ακ1)2 − (ακ2 − κ3)2

N1 +
−c1(ακ2 − κ3)κ3

f ′
√
(ακ1)2 − (ακ2 − κ3)2

N3. (3.43)

Using equation (3.36) and (3.34), we acquire

ε∗1κ
∗
1T
∗ =

c1
√
(ακ1)2 − (ακ2 − κ3)2

f ′(α2 + 1)
[αN1 +N3]. (3.44)

From (3.43) and (3.44), we acquire

dN∗1
ds∗

+ ε∗1κ
∗
1T
∗ =

c1(α2 − 1)κ2κ3 + α(κ2
2 − κ2

1 − κ2
3)

f ′(α2 + 1)
√
(ακ1)2 − (ακ2 − κ3)2

[N1 − αN3], (3.45)

From (3.45), we have

k∗2 =
|(α2 − 1)κ2κ3 + α(κ2

2 − κ2
1 − κ2

3)|
f(α2 + 1)

√
(ακ1)2 − (ακ2 − κ3)2

> 0. (3.46)

Consider (3.45) and (3.46) together, we acquire

N∗2 =
ε∗3
κ∗2

[
dN∗1
ds∗

+ ε∗1κ
∗
1T
∗] =

c2ε
∗
3

α2 + 1
[N1 + αN3], (3.47)

where c2 =
|(α2−1)κ2κ3+α(κ

2
2−κ

2
1−κ

2
3)|

|(α2−1)κ2κ3+α(κ2
2−κ

2
1−κ

2
3)|

= ±1 and ε∗3 = ±1.
From (3.47), we acquire H(N∗2 , N

∗
2 ) = c1 = ε∗3 = −ε∗1 , also unit vector N∗3 can be expressed

like this N∗3 = −∆4T + ∆3N2; that is,

N∗3 =
c1ε3√

(ακ1)2 − (ακ2 − κ3)2
[(ακ2 − κ3)T − ακ1N2] (3.48)

which indicates that H(N∗3 , N
∗
3 ) = 1. In the end we find κ∗3

κ∗3 = H(
dN∗2
ds∗

, N∗3 ) =
c1c2κ1ε

∗
3(α

2 + 1)κ3

f ′
√
c3(α2 + 1)

√
(ακ1)2 − (ακ2 − κ3)2

6= 0.

So we find that Γ∗ is (1,3)-Evolute curve of the curve Γ.
Since span{T,N2} = span{N∗1 , N∗3 }, span{N1, N3} = span{T ∗, N∗2 }.

Case 2 Γ is a Cartan null curve with arc-length parameter s so thatκ1, κ2 and κ3 are not
zero and space like vectors N1 and N3 and Γ∗ is a spacelike or timelike curve with arc-length
parameter s∗ so that curvature functions κ∗1 , κ∗2 and κ∗3 are not equal to zero. For this we have
succeeding theorem.
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4 Theorem

Let Γ : I → E4
1 be a Cartan null curve with arc-length parameter s so that κ1 = 1, and κ2 and κ3

are not zero. Then the curve α is a (1, 3)-Evolute curve and its Evolute mate curve is a spacelike
or timelike curve with non zero curvatures if and only if there exists scalar functions Φ, Ψ of
arc-length parameter s and constant real numbers β α 6= ±1, satisfying

Φ
′(s) = αΨ

′(s), (4.1)

βα = ακ2(s)− κ3(s), (4.2)

α3κ2(s)− 2α2κ3(s)− κ3(s) 6= 0, (4.3)

for all s ∈ I .
Proof We can prove this theorem in same way as we proved theorem 6.

Case 3 Let Γ is spacelike or timelike curve with nonzero curvatures κ1, κ2 and κ3 and space
like vectors T and N2 and Γ∗ is also spacelike or timelike curve with κ∗1 , κ∗2 and κ∗3 not equal to
zero and vectors T ∗ and N∗2 are spacelike. For this we have succeeding theorem.

5 Theorem

Let Γ : I → E4
1 be a regular curve with arc-length parameter s so thatκ1, κ2 and κ3 are not zero.

Let Γ∗ : I → E4
1 be the (0, 2)-evolute curve of Γ. Denote {T ∗, N∗1 , N∗2 , N∗3 } to be the Frenet

frame along Γ∗ and κ∗1 , κ∗2 and κ∗3 to be the curvatures of Γ∗ if and only if there exist constant
numbers Φ, Ψ, α 6= ±1, β satisfying

Φ(s) 6= 0,Ψ(s) 6= 0, (5.1)

ε2(Φ(s)κ1(s)−Ψ(s)κ2(s)) = αε4Ψ(s)κ3(s), (5.2)

βακ1(s) = ακ2(s)− κ3(s), (5.3)

−κ2(s)κ3(s)(α
2 + 1) + α[κ2

1(s) + κ2
2(s) + κ2

3(s)] 6= 0, (5.4)

for all s ∈ I .
Proof. Let Γ : I → E4

1 be a regular curve with arc-length parameter s so thatκ1, κ2 and κ3
are not zero. Let Γ∗ : I → E4

1 be the (0, 2)-evolute curve of Γ. Denote {T ∗, N∗1 , N∗2 , N∗3 } to be
the Frenet frame along Γ∗ and κ∗1 , κ∗2 and κ∗3 to be the curvatures of Γ∗. Then

span{T,N2} = span{N∗1 , N∗3 }, span{N1, N3} = span{T ∗, N∗2 }.

Moreover, we can write the curve Γ∗ as follows

Γ
∗(s∗) = Γ(s) + Φ(s)T (s) + Ψ(s)N2, (5.5)

for all s∗ ∈ I∗, s ∈ I where Φ(s) and Ψ(s) are C∞ functions on I .
Taking derivative of equation (5.5) using equation (2.1), we acquire;

T ∗f ′ = T (s) + Φ
′(s)T (s) + Ψ

′(s)N2 + ε2(Φκ1 −Ψκ2)N1 + ε4Ψκ3N3. (5.6)

Taking inner product on both-sides of (5.6) with T and N2 respectively, we get 1 + Φ′ = 0 and
Ψ′ = 0, which implies that Ψ is constant and Φ = Φ0 − s, where Φ0 is the integration constant.
So (5.6) turns into

T ∗f ′ = ε2(Φκ1 −Ψκ2)N + ε4Ψκ3B2. (5.7)
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Multiplying (5.7) by itself, we get

ε∗1(f
′)2 = ε2(Φκ1 −Ψκ2)

2 + ε4Ψ
2κ

2
3 . (5.8)

If we denote

η =
ε2(Φκ1 −Ψκ2)

f ′
andζ =

ε4Ψκ3

f ′
. (5.9)

So (5.7) gets the form
T ∗ = ηN1 + ζN3. (5.10)

Differentiating equation (5.10) using equation (2.1) , we acquire

ε∗1f
′κ∗1N

∗
1 = η′N1 − ε1ηκ1T + ζ ′N3 + ε3(ηκ2 − ζκ3)N2. (5.11)

Multiplying (5.11) by N1 and N3 respectively, we get

η′ = 0, ζ ′ = 0. (5.12)

Using (5.12) in (5.11), we get

ε∗1f
′κ∗1N

∗
1 = −ε1ηκ1T + ε3(ηκ2 − ζκ3)N2. (5.13)

Multiplying (5.13) by itself, we get

ε∗2(f
′)2(κ∗1)

2 = ε1η
2κ2

1 + ε3(ηκ2 − ζκ3)
2. (5.14)

Substituting (5.9) in (5.14), we find

(f ′)2(κ∗1)
2 = (

Ψκ3

f ′
)2[α2κ2

1 + (ακ2 − κ3)
2]. (5.15)

Since κ1, κ2, κ3 6= 0, so from (5.9), we get the result (5.1)

Φ 6= 0,Ψ 6= 0.

From (5.9), we get
ε2(Φκ1 −Ψκ2)ζ = ηε4(Ψκ3). (5.16)

From this we get the result (5.2)

ε2(Φκ1 −Ψκ2) = αε4Ψκ3. (5.17)

Using (5.17) in (5.7), we get
f ′2 = ε∗1ε4(Ψκ3)

2(α2 + 1). (5.18)

Substituting (5.18) in (5.15), we get

(f ′)2(κ∗1)
2 =

ε∗1ε4

α2 + 1
[α2κ2

1 − (ακ2 − κ3)
2]. (5.19)

If we denote
∆2 =

ηκ2 − ζκ3

f ′κ∗1
=
ε4Ψκ3

f ′2κ∗1
[(ακ2 − κ3)]. (5.20)

∆1 =
ηκ1

f ′κ∗1
=
ε4Ψκ3

f ′2κ∗1
ακ1. (5.21)

Dividing (5.20) by (5.21) we get result (5.3)

βακ1 = ακ2 − κ3.

Putting values of ∆1, ∆2 in equation (5.13), we get

N∗1 = ∆1T + ∆2N2. (5.22)
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Taking derivative of the equation (5.22) using equation (2.1), we acquire

−ε∗1f ′κ∗1T ∗ + ε∗3f
′κ∗2N

∗
2 = ε2(∆1κ1 − ∆2κ2)N1 + ε4∆2κ3N3 + ∆

′

2N2 + ∆
′

1T. (5.23)

Multiplying equation (5.23) by T and N2 respectively, we get

∆
′

1 = 0,∆
′

2 = 0. (5.24)

Using (5.7) and (5.24) in (5.23), we obtain

ε∗3f
′k∗2N

∗
2 = P (s)N1 +Q(s)N3, (5.25)

where
P (s) =

ε2ε4Ψκ3

f ′2(α2 + 1)κ∗1
[α(κ2

2 − κ2
1 − κ2

3)− κ2κ3(α
2 + 1)], (5.26)

Q(s) =
ε2ε4αΨκ3

f ′2(α2 + 1)κ∗1
[α(κ2

2 − κ2
1 − κ2

3)− κ2κ3(α
2 + 1)]. (5.27)

Since
ε∗3f
′k∗2N

∗
2 6= 0.

So we get the result (5.4)

[α(κ2
2 − κ2

1 − κ2
3)− κ2κ3(α

2 + 1)] 6= 0. (5.28)

Conversely, let Γ : I ⊂ R→ E4
1 be an evolute curve with arc-length parameter s with κ1, κ2, κ3

are not equal to zero and the relations (5.1), (5.2), (5.3), (5.4) exist for constant numbers Φ, Ψ,
α 6= 0, β. then we can define curve Γ∗ like this

Γ
∗(s∗) = Γ(s) + Φ(s)T (s) + Ψ(s)N2. (5.29)

Differentiating (5.29) with respect to s using frenet formula (2.1), we get

dΓ∗

ds
= ε2(Φκ1 −Ψκ2)N1 + ε4(Ψκ3)N3. (5.30)

From (5.2), we get
dΓ∗

ds
= (ε4αΨκ3)N1 + ε4(Ψκ3)N3.

dΓ∗

ds
= ε4Ψκ3[αN1 +N3]. (5.31)

From (5.31), we get

f ′ =
ds∗

ds
= ||dT

∗

ds
|| = c1(Ψκ3)

√
ε2c2(α2 + 1) > 0, (5.32)

such that c1(Ψk3) > 0 where c1 = ±1 and c2 = ±1 such that ε2c2(α2 + 1) > 0. Again writing
equation (5.31)

T ∗f ′ = ε4Ψκ3[αN1 +N3]. (5.33)

Substituting (5.32) in (5.33), we get

T ∗ =
ε4c1√

ε2c2(α2 + 1)
[αN1 +N3], (5.34)

which indicates that H(T ∗, T ∗) = C2 = ε∗1 .
Taking derivative of equation (5.34) using equation (2.1), we acquire

dT ∗

ds∗
=

ε4c1

f ′
√
ε2c2(α2 + 1)

[(ακ2 − κ3)T − ακ1N2]. (5.35)
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Using (5.35), we have

k∗1 = ||dT
∗

ds
|| =

√
2ακ1(ακ2 − κ3)

f ′
√
ε2c2(α2 + 1)

> 0 (5.36)

From (5.35) and (5.36), we get

N∗1 =
1
κ∗1

dT ∗

ds∗
=

ε4c1√
2ακ1(ακ2 − κ3)

[(ακ2 − κ3)T − ακ1N2], (5.37)

which leads to H(N∗1 , N
∗
1 ) = 1.

If we denote

∆3 =
ε4c1(ακ2 − κ3)√
2ακ1(ακ2 − κ3)

, ∆4 = −
ε4αc1κ1√

2ακ1(ακ2 − κ3)
, (5.38)

Using (5.38) in (5.37), we get
N∗1 = ∆3T + ∆4N2. (5.39)

Taking derivative of equation (5.39) using equation (2.1), we acquire

f ′
dN∗1
ds∗

= ∆
′

3T + ∆
′

4N2 + ε2(∆3κ1 − ∆4κ2)N1 + ε4∆4κ3N3. (5.40)

Differentiating (5.3), we acquire

(ακ
′

2 − κ
′

3)ακ1 − (ακ2 − κ3)ακ
′

1 = 0. (5.41)

Taking derivative (5.38) with respect to s using equation (5.41), we acquire

∆
′

3 = 0, ∆
′

4 = 0. (5.42)

Substituting the values (5.42) and (5.38) in (5.40), we get

dN∗1
ds∗

=
c1(2ακ1κ2 − κ1κ3)

f ′
√

2ακ1(ακ2 − κ3)
N1 +

c1(ακ1κ3)

f ′
√

2ακ1(ακ2 − κ3)
N3. (5.43)

From (5.34) and (5.36), we get

ε∗1κ
∗
1T
∗ =

ε4c1
√

2ακ1(ακ2 − κ3)

f ′(α2 + 1)
[αN1 +N3]. (5.44)

From (5.43) and (5.44), we get

dN∗1
ds∗

+ ε∗1κ
∗
1T
∗ =

c1(2ακ2 + α2κ3 − κ3)

f ′(α2 + 1)
√
−2α2κ2 + 2ακ3

[N1 +
1
α
N3], (5.45)

From (5.45), we have

k∗2 =
|2ακ1κ2 + α2κ1κ3 − κ1κ3|

f
√
|α|(α2 + 1)

√
2ακ1(ακ2 − κ3)

> 0. (5.46)

Consider(5.45) and (5.46) together, we obtain

N∗2 =
ε∗3
κ∗2

[
dN∗1
ds∗

+ ε∗1κ
∗
1T
∗] =

c2c3ε
∗
3

√
|α|

2
[N1 +

1
α
N3], (5.47)

where c3 =
|2ακ1κ2+α

2κ1κ3−κ1κ3|
|2ακ1κ2+α2κ1κ3−κ1κ3|

= ±1 and ε∗3 = ±.
From (5.47), we acquire H(N∗2 , N

∗
2 ) = c1 = ε∗3 = −ε∗1 , also unit vector N∗3 can be expressed

like this N∗3 = −∆4T + ∆3N2; that is,

N∗3 =
c2(2ακ1κ2 − κ1κ3)√

2ακ1(ακ2 − κ3)
T +

c2ακ1κ3√
2ακ1(ακ2 − κ3)

N2, (5.48)
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which indicates that H(N∗3 , N
∗
3 ) = 1. In the end we find κ∗3 as,

κ∗3 = H(
dN∗2
ds∗

, N∗3 ) =
c3ε
∗
3(2

√
|α|κ3

f ′
√

2ακ1(ακ2 − κ3)
.

So we find that Γ∗ is (0,2)-Evolute curve of the curve Γ since
span{T,N2} = span{N∗1 , N∗3 }, span{N1, N3} = span{T ∗, N∗2 }.

Case 4 Γ is a cartan null curve with κ1 = 1, κ2, κ3 are not equal to zero and Γ∗ is a spacelike
or time like curve with κ∗1 , κ∗2 and κ∗3 are not equal to zero and T ∗ and N∗2 are spacelike vectors.
Then we have this theorem

6 Theorem

Let Γ : I → E4
1 be a Cartan null curve with arc-length parameter s so that κ1 = 1, κ2 and κ3 are

not zero. Then the curve Γ is a (0, 2)-Evolute curve and its Evolute mate curve is a spacelike or
timelike curve with curvatures not equal to zero if and only if there exists constant real numbers
Φ, Ψ, α 6= ±1, β satisfying

(Φ(s)κ1(s)−Ψ(s)κ2(s)) = αΨ(s)κ3(s), (6.1)

−βα = ακ2(s)− κ3(s), (6.2)

κ3(s)(α
2 − 1) + 2αk2(s) 6= 0, (6.3)

for all s ∈ I .
Proof. Let Γ : I → E4

1 be a Cartan null curve with arc-length parameter s so thatκ1, κ2 and
κ3 are not zero. Let Γ∗ : I → E4

1 be the (0, 2)-evolute curve of Γ. Denote {T ∗, N∗1 , N∗2 , N∗3 } to
be the Frenet frame along Γ∗ and κ∗1 , κ∗2 and κ∗3 to be the curvatures of Γ∗. Then

span{T,N2} = span{N∗1 , N∗3 }, span{N1, N3} = span{T ∗, N∗2 }.

Moreover, we can write the curve Γ∗ as follows

Γ
∗(s∗) = Γ(s) + Φ(s)T (s) + Ψ(s)N2 (6.4)

for all s∗ ∈ I∗, s ∈ I where Φ(s) and Ψ(s) are C∞ functions on I .
Taking derivative (6.4) using equation (2.1), we acquire

T ∗f ′ = T (s) + Φ
′(s)T (s) + Ψ

′(s)N2 + (Φκ1 −Ψκ2)N1 + Ψκ3N3 (6.5)

Taking inner product on both-sides of (6.5) with T and N2 respectively, we get 1 + Φ′ = 0 and
Ψ′ = 0, which implies that Ψ is constant and Φ = Φ0 − s, where Φ0 is the integration constant.
So (6.5) turns into

T ∗f ′ = (Φκ1 −Ψκ2)N1 + Ψκ3N3. (6.6)

Multiplying (6.6) by itself, we get

ε∗1(f
′)2 = (Φκ1 −Ψκ2)

2 + Ψ
2κ

2
3 . (6.7)

If we denote

η =
(Φκ1 −Ψκ2)

f ′
andζ =

Ψκ3

f ′
. (6.8)

So (6.6) gets the form
T ∗ = ηN1 + ζN3. (6.9)

Taking derivative of equation (6.9) using equation (2.1) , we acquire

ε∗1f
′κ∗1N

∗
1 = η′N1 + ζ ′N3 + (ηκ2 − ζκ3)T − ηκ1N2. (6.10)
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Multiplying (6.10) by N1 and N3 respectively, we acquire

η′ = 0, ζ ′ = 0. (6.11)

Using (6.11) in (6.10), we get

ε∗2f
′κ∗1N

∗
1 = (ηκ2 − ζκ3)T − ηκ1N2. (6.12)

Multiplying (6.12) by itself, we acquire

ε∗2(f
′)2(κ∗1)

2 = −2α(
Ψκ3

f ′
)2[ακ2 − κ3]. (6.13)

From (6.8), we acquire
(Φκ1 −Ψκ2)ζ = η(Ψκ3). (6.14)

From this we acquire the result (6.1)

(Φκ1 −Ψκ2) = αΨκ3. (6.15)

Using (6.15) in (6.7), we acquire

f ′2 = ε∗1(Ψκ3)
2(α2 + 1). (6.16)

Substituting (6.16) in (6.13), we get

(f ′)2(κ∗1)
2 =
−2αε∗1ε

∗
2

α2 + 1
[(ακ2 − κ3)]. (6.17)

If we denote
∆1 =

ηκ2 − ζκ3

f ′κ∗1
=

Ψκ3

f ′2κ∗1
[(ακ2 − κ3)]. (6.18)

∆2 = −
η

f ′κ∗1
= − Ψκ3

f ′2κ∗1
α. (6.19)

Dividing (6.18) by (6.19), we acquire the result (6.2)

−βα = ακ2 − κ3.

Using (6.18) and (6.19) in (6.12), we get

N∗1 = ∆1T + ∆2N2. (6.20)

Taking derivative of (6.20) using equation (2.1), we acquire

−ε∗1f ′κ∗1T ∗ + ε∗3f
′κ∗2N

∗
2 = (∆1κ1 − ∆2κ2)N1 + ∆2κ3N3 + ∆

′

2N2 + ∆
′

1T. (6.21)

Multiplying equation (6.21) by T and N2 respectively, we acquire

∆
′

1 = 0,∆
′

2 = 0. (6.22)

Using the (6.18), (6.19) and (6.22) in (6.21), we obtain

ε∗3f
′k∗2N

∗
2 = P (s)N1 +Q(s)N3, (6.23)

where
P (s) =

Ψκ3

f ′2(α2 + 1)κ∗1
[κ3(α

2 − 1) + 2αk2], (6.24)

Q(s) =
αΨκ3

f ′2(α2 + 1)κ∗1
[κ3(α

2 − 1) + 2αk2]. (6.25)

Since
ε∗3f
′k∗2N

∗
2 6= 0.
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So we get the result (6.3)
κ3(α

2 − 1) + 2αk2 6= 0. (6.26)

Conversely, we suppose that Γ : I ⊂ R → E4
1 be a Cartan null curve with arc-length parameter

s and κ1, κ2, κ3 not equal to zero and the relations (6.1), (6.2) and (6.3) hold for constant real
numbers Φ, Ψ, α 6= 0 and β. Then we can define curve Γ∗ like this

Γ
∗(s∗) = Γ(s) + Φ(s)T (s) + Ψ(s)N2. (6.27)

Taking derivative of equation (6.27) using equation (2.1), we acquire

dΓ∗

ds
= (Φ−Ψκ2)N1 + (Ψκ3)N3. (6.28)

From (6.1), we gacquire
dΓ∗

ds
= (αΨκ3)N1 + (Ψκ3)N3.

dΓ∗

ds
= Ψκ3[αN1 +N3]. (6.29)

From this
f ′ =

ds∗

ds
= ||dΓ∗

ds
|| = c1(Ψκ3)

√
c2(α2 + 1) > 0, (6.30)

such that c1(Ψk3) > 0 where c1 = ±1 and c2 = ±1 such that c2(α2 − 1) > 0. Again writing the
equation (6.29)

T ∗f ′ = Ψκ3[αN1 +N3]. (6.31)

Substituting (6.30) in (6.31), we get

T ∗ =
c1√

c2(α2 + 1)
[αN1 +N3], (6.32)

which indicates that H(T ∗, T ∗) = c2 = ε∗1 .
Taking derivative of the equation (6.32) s using equation (2.1), we acquire

dT ∗

ds∗
=

c1

f ′
√
c2(α2 + 1)

[(ακ2 − κ3)T − αN2]. (6.33)

Using (6.33), we get

k∗1 = ||dT
∗

ds
|| =

√
−2(α2κ2 − ακ3)

f ′
√
c2(α2 + 1)

> 0 (6.34)

From (6.33) and (6.34), we have

N∗1 =
1
κ∗1

dT ∗

ds∗
=

c1√
−2(α2κ2 − ακ3)

[(ακ2 − κ3)T − αN2], (6.35)

which indicates that H(N∗1 , N
∗
1 ) = 1.

If we denote

∆3 =
c1(ακ2 − κ3)√
−2(α2κ2 − ακ3)

, ∆4 = −
c1α√

−2(α2κ2 − ακ3)
. (6.36)

Using (6.36) in (6.35), we get
N∗1 = ∆3T + ∆4N2. (6.37)

Taking derivative of (6.37) using equation (2.1), we acquire

f ′
dN∗1
ds∗

= ∆
′

3T + ∆
′

4N2 + (∆3 − ∆4κ2)N1 + ∆4κ3N3. (6.38)

Differentiating (6.2), we get
(ακ

′

2 − κ
′

3) = 0. (6.39)
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Taking derivative of equation (6.36) with respect to s using (6.39), we acquire

∆
′

3 = 0, ∆
′

4 = 0. (6.40)

Substituting (6.40) and (6.36) in (6.38), we get

dN∗1
ds∗

=
c1(2ακ2 − κ3)

f ′
√
−2(α2κ2 − ακ3)

N +
c1ακ3

f ′
√
−2(α2κ2 − ακ3)

N3. (6.41)

From (6.32) and (6.34), we get

ε∗1κ
∗
1T
∗ =

c1
√
−2(α2κ2 − ακ3)

f ′(α2 + 1)
[αN1 +N3]. (6.42)

From (6.41) and (6.42), we get

dN∗1
ds∗

+ ε∗1κ
∗
1T
∗ =

c1(2ακ2 + α2κ3 − κ3)

f ′(α2 + 1)
√
−2α2κ2 + 2ακ3

[N1 +
1
α
N3], (6.43)

From (6.43), we have

k∗2 =
|2ακ2 + α2κ3 − κ3|

f
√
|α|(α2 + 1)

√
−2α2κ2 + 2ακ3

> 0. (6.44)

Considering (6.43) and (6.44) together, we obtain

N∗2 =
ε∗3
κ∗2

[
dN∗1
ds∗

+ ε∗1κ
∗
1T
∗] =

c2c3ε
∗
3

√
|α|

2
[N1 +

1
α
N3], (6.45)

where c3 = |2ακ2+α
2κ3−κ3|

|2ακ2+α2κ3−κ3|
= ±1 and ε∗3 = ±. From (2.52) H(N∗2 , N

∗
2 ) = c1 = ε∗3 = −ε∗1 , also

unit vector N∗3 can be expressed like this N∗3 = −∆4T + ∆3N2; that is,

N∗3 =
c2(ακ2 − κ3)√
−2(α2κ2 − ακ3)

T +
c2α√

−2(α2κ2 − ακ3)
N2, (6.46)

which indicates that H(N∗3 , N
∗
3 ) = 1. In the end we find κ∗3 as,

κ∗3 = H(
dN∗2
ds∗

, N∗3 ) =
c3ε
∗
3(2

√
|α|κ3

f ′
√
−2(α2κ2 − ακ3)

6= 0.

So we find that Γ∗ is spacelike or timelike curve and a (0,2)-Evolute curve of the curve Γ

considering span{T,N2} = span{N∗1 , N∗3 }, span{N1, N3} = span{T ∗, N∗2 }.

Conclusion: In present study, we established a new kind of generalized evolutes and invo-
lutes curve in 4-Dimensional Minkowski space. We obtain necessary and sufficient condition for
the curve possessing generalized Evolute as well as an Involute curve. Many researchers have
developed extensive significant research contribution in the field of general theory of the curves
in Euclidean space as well as in Minkowski space. However the special characters of the curve
are not considered which is a research gap in this technique. In this article, we described a new
type of (1,3)-Evolute curve in 4-Dimensional Minkowski space. We introduced several theorems
with necessary and sufficient conditions and obtained interesting results. The understanding of
Evolute curves with this type of Evolute and Involute curve, researchers will do more research in
4-dimensional Minkowski space. Evolute curves are used in mathematics and different branches
of engineering this work maybe help full for researchers for future studies. In the future, we plan
to improve our proposed framework for involutes of order K of a null Cartan curve in Minkowski
spaces.
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