ON ESTIMATE FOR SECOND AND THIRD COEFFICIENTS FOR A NEW SUBCLASS OF ANALYTIC AND BI-UNIVALENT FUNCTIONS BY USING DIFFERENTIAL OPERATORS

Ahmad Zireh and Saideh Hajiparvaneh

Communicated by H. M. Srivastava

MSC 2010 Classifications: Primary 30C45, Secondary 30C50.
Keywords and phrases: Analytic functions, Bi-univalent functions, Coefficient estimates, Sălăgean's differential operator.
Abstract. In this work, we firstly introduce a new subclass $B_{\Sigma}^{h, p}(n, \lambda)$ of analytic and biunivalent functions. Moreover, we estimate the second and third coefficients for functions in this subclass. Our results presented in this paper improve some recent works.

1 Introduction

We denote \mathcal{A} for a class of functions of the form

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \tag{1.1}
\end{equation*}
$$

which are analytic in the open unit disk $\mathbb{U}=\{z \in \mathbb{C}:|z|<1\}$. Assume that \mathcal{S} be the class of functions $f \in \mathcal{A}$ which are univalent in \mathbb{U}.

From Koebe one-quarter theorem [5], every function $f \in \mathcal{S}$ has an inverse f^{-1}, which is defined by

$$
f^{-1}(f(z))=z \quad(z \in \mathbb{U})
$$

and

$$
f\left(f^{-1}(w)\right)=w \quad\left(|w|<r_{0}(f) ; r_{0}(f) \geq \frac{1}{4}\right)
$$

where

$$
\begin{equation*}
g(w):=f^{-1}(w)=w-a_{2} w^{2}+\left(2 a_{2}^{2}-a_{3}\right) w^{3}-\left(5 a_{2}^{3}-5 a_{2} a_{3}+a_{4}\right) w^{4}+\cdots \tag{1.2}
\end{equation*}
$$

If f and f^{-1} are univalent in \mathbb{U}, then f is bi-univalent. We denote Σ for the class of biunivalent functions in \mathbb{U} given by (1.1).

There interest to study the bi-univalent functions class Σ (see $[6,19,20]$) and derive non-sharp estimates on the first two Taylor-Maclaurin coefficients $\left|a_{2}\right|$ and $\left|a_{3}\right|$. The coefficient estimate problem i.e. bound for $\left|a_{n}\right|(n \in \mathbb{N}-\{2,3\})$ for each $f \in \Sigma$, is still an open problem.
Recently Frasin and Aouf [6] investigated the following two subclasses of the bi-univalent function class Σ and obtained bounds for the first two Taylor-Maclaurin coefficients $\left|a_{2}\right|$ and $\left|a_{3}\right|$ of functions in each of these subclasses.

Definition 1.1. (see [6]) Let $0<\alpha \leq 1$ and $0 \leq \lambda \leq 1$. A function $f(z)$ is said to be in the class $B_{\Sigma}(\alpha, \lambda)$ if the following conditions are satisfied:

$$
f \in \Sigma \quad \text { and } \quad\left|\arg \left[(1-\lambda) \frac{f(z)}{z}+\lambda f^{\prime}(z)\right]\right|<\frac{\alpha \pi}{2} \quad(z \in \mathbb{U})
$$

and

$$
\left|\arg \left[(1-\lambda) \frac{g(w)}{w}+\lambda g^{\prime}(w)\right]\right|<\frac{\alpha \pi}{2} \quad(w \in \mathbb{U})
$$

where the function g is given by (1.2).

Theorem 1.2. (see [6]) If $f(z)$ is in the class $B_{\Sigma}(\alpha, \lambda)$, then

$$
\left|a_{2}\right| \leq \frac{2 \alpha}{\sqrt{(\lambda+1)^{2}+\alpha\left(1+2 \lambda-\lambda^{2}\right)}}, \quad\left|a_{3}\right| \leq \frac{4 \alpha^{2}}{(1+\lambda)^{2}}+\frac{2 \alpha}{(1+2 \lambda)}
$$

Definition 1.3. (see [6]) Let $0 \leq \beta<1$ and $0 \leq \lambda \leq 1$. We say that a function $f(z)$ is in the class $B_{\Sigma}(\beta, \lambda)$ if the following conditions are satisfied:

$$
f \in \Sigma \quad \text { and } \mathfrak{R e}\left[(1-\lambda) \frac{f(z)}{z}+\lambda f^{\prime}(z)\right]>\beta \quad(z \in \mathbb{U})
$$

and

$$
\mathfrak{R e}\left[(1-\lambda) \frac{g(w)}{w}+\lambda g^{\prime}(w)\right]>\beta \quad(w \in \mathbb{U})
$$

where the function g is given by (1.2).
Theorem 1.4. (see [6]) If $f(z)$ is in the class $B_{\Sigma}(\beta, \lambda)$, then

$$
\left|a_{2}\right| \leq \sqrt{\frac{2(1-\beta)}{2 \lambda+1}}, \quad\left|a_{3}\right| \leq \frac{4(1-\beta)^{2}}{(1+\lambda)^{2}}+\frac{2(1-\beta)}{(1+2 \lambda)}
$$

In 1983, Salagean [8] defined differential operator $D^{k}: \mathcal{A} \rightarrow \mathcal{A}$ as

$$
\begin{gathered}
D^{0} f(z)=f(z) \\
D^{1} f(z)=D f(z)=z f^{\prime}(z) \\
D^{k} f(z)=D\left(D^{k-1} f(z)\right)=z\left(D^{k-1} f(z)\right)^{\prime}, \quad k \in \mathbb{N}=\{1,2,3, \cdots\}
\end{gathered}
$$

We note that

$$
\begin{equation*}
D^{k} f(z)=z+\sum_{n=2}^{\infty} n^{k} a_{n} z^{n}, \quad k \in \mathbb{N}_{0}=\{0\} \cup \mathbb{N} \tag{1.3}
\end{equation*}
$$

By using Salagean differential operator, Porwal and Darus [7] introduced the following two subclasses of the bi-univalent function.

Definition 1.5. (see [7]) Let $n \in \mathbb{N}_{0}, 0<\alpha \leq 1$ and $\lambda \geq 1$. A function $f(z)$ is called in the class $B_{\Sigma}(n, \alpha, \lambda)$ if the following conditions are satisfied:

$$
f \in \Sigma \text { and }\left|\arg \left[\frac{(1-\lambda) D^{n} f(z)+\lambda D^{n+1} f(z)}{z}\right]\right|<\frac{\alpha \pi}{2} \quad(z \in \mathbb{U})
$$

and

$$
\left|\arg \left[\frac{(1-\lambda) D^{n} g(w)+\lambda D^{n+1} g(w)}{w}\right]\right|<\frac{\alpha \pi}{2} \quad(w \in \mathbb{U})
$$

where the function g is given by (1.2).
Theorem 1.6. (see [7]) If $f(z)$ is in the class $B_{\Sigma}(n, \alpha, \lambda)$, then

$$
\left|a_{2}\right| \leq \frac{2 \alpha}{\sqrt{4^{n}(1+\lambda)^{2}+\alpha\left[2.3^{n}(1+2 \lambda)-4^{n}(1+\lambda)^{2}\right]}}
$$

and

$$
\left|a_{3}\right| \leq \frac{2 \alpha}{\left[(1-\lambda) 3^{n}+\lambda 3^{n+1}\right]}+\frac{4 \alpha^{2}}{\left[(1-\lambda) 2^{n}+\lambda 2^{n+1}\right]^{2}}
$$

Definition 1.7. (see [7]) Let $n \in \mathbb{N}_{0}, 0 \leq \beta<1$ and $\lambda \geq 1$. Under the following conditions, a function $f(z)$ is said to be in the class $B_{\Sigma}(n, \beta, \lambda)$:

$$
f \in \Sigma \quad \text { and } \quad \mathfrak{R e}\left(\frac{(1-\lambda) D^{n} f(z)+\lambda D^{n+1} f(z)}{z}\right)>\beta \quad(z \in \mathbb{U})
$$

and

$$
\mathfrak{R e}\left(\frac{(1-\lambda) D^{n} g(w)+\lambda D^{n+1} g(w)}{w}\right)>\beta \quad(w \in \mathbb{U}),
$$

where the function g is given by (1.2).
Theorem 1.8. (see [7]) If $f(z)$ is in the class $B_{\Sigma}(n, \beta, \lambda)$, then

$$
\left|a_{2}\right| \leq \sqrt{\frac{2(1-\beta)}{\left[(1-\lambda) 3^{n}+\lambda 3^{n+1}\right]}},
$$

and

$$
\left|a_{3}\right| \leq \frac{2(1-\beta)}{\left[(1-\lambda) 3^{n}+\lambda 3^{n+1}\right]}+\frac{4(1-\beta)^{2}}{\left[(1-\lambda) 2^{n}+\lambda 2^{n+1}\right]^{2}}
$$

The aim of this paper is to investigate the bi-univalent function class $B_{\Sigma}^{h, p}(n, \lambda)$ introduced in Definition 2.1 and derive coefficient estimates on the first two Taylor-Maclaurin coefficient $\left|a_{2}\right|$ and $\left|a_{3}\right|$. Our results for the bi-univalent function class $f \in B_{\Sigma}^{h, p}(n, \lambda)$ would generalize and improve some recent works Srivastava [9], Frasin and Aouf [6] and Porwal and Darus [7].

2 The subclass $B_{\Sigma}^{h, p}(n, \lambda)$

In this section, the general subclass $B_{\Sigma}^{h, p}(n, \lambda)$ is introduced and investigated.
Definition 2.1. Assume that the functions $h, p: \mathbb{U} \rightarrow \mathbb{C}$ be so constrained that

$$
\min \{\mathfrak{R e}(h(z)), \mathfrak{R e}(p(z))\}>0 \quad(z \in \mathbb{U}) \quad \text { and } \quad h(0)=p(0)=1 .
$$

Let $n \in \mathbb{N}_{0}$ and $\lambda \geq 1$. We say that a function $f \in \mathcal{A}$ given by (1.1) is in the class $B_{\Sigma}^{h, p}(n, \lambda)$ if the following conditions are satisfied:

$$
\begin{equation*}
f \in \Sigma \quad \text { and } \quad\left(\frac{(1-\lambda) D^{n} f(z)+\lambda D^{n+1} f(z)}{z}\right) \in h(\mathbb{U}) \quad(z \in \mathbb{U}) \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(\frac{(1-\lambda) D^{n} g(w)+\lambda D^{n+1} g(w)}{w}\right) \in p(\mathbb{U}) \quad(w \in \mathbb{U}) \tag{2.2}
\end{equation*}
$$

where the function g is defined by (1.2).
Remark 2.2. There are many selections of h and p which would provide interesting subclasses of class $B_{\Sigma}^{h, p}(n, \lambda)$. For example, if we set

$$
h(z)=p(z)=\left(\frac{1+z}{1-z}\right)^{\alpha} \quad(0<\alpha \leq 1, \lambda \geq 1, z \in \mathbb{U})
$$

it can be easily verified that two functions $h(z)$ and $p(z)$ satisfy the hypotheses of Definition 2.1. If we have $f \in B_{\Sigma}^{h, p}(n, \lambda)$, then

$$
f \in \Sigma \text { and }\left|\arg \left[\frac{(1-\lambda) D^{n} f(z)+\lambda D^{n+1} f(z)}{z}\right]\right|<\frac{\alpha \pi}{2} \quad(z \in \mathbb{U})
$$

and

$$
\left|\arg \left[\frac{(1-\lambda) D^{n} g(w)+\lambda D^{n+1} g(w)}{w}\right]\right|<\frac{\alpha \pi}{2} \quad(w \in \mathbb{U})
$$

where the function g is given by (1.2).
Therefore, in this case the class $B_{\Sigma}^{h, p}(n, \lambda)$ reduce to class in Definition 1.5 and if we take $n=0$, it decrease to class in Definition 1.1.

If we put

$$
h(z)=p(z)=\frac{1+(1-2 \beta) z}{1-z} \quad(0 \leq \beta<1, \lambda \geq 1, z \in \mathbb{U})
$$

then the conditions of Definition 2.1 are satisfied for both functions $h(z)$ and $p(z)$. If $f \in$ $B_{\Sigma}^{h, p}(n, \lambda)$, then

$$
f \in \Sigma \text { and } \mathfrak{R e}\left(\frac{(1-\lambda) D^{n} f(z)+\lambda D^{n+1} f(z)}{z}\right)>\beta \quad(z \in \mathbb{U})
$$

and

$$
\mathfrak{R e}\left(\frac{(1-\lambda) D^{n} g(w)+\lambda D^{n+1} g(w)}{w}\right)>\beta \quad(w \in \mathbb{U})
$$

where the function g is defined by (1.2).
Therefore, in this case the class $B_{\Sigma}^{h, p}(n, \lambda)$ reduce to class in Definition 1.6 and if we set $n=0$, it decrease to class in Definition 1.3.

2.1 Coefficient Estimates

We are now ready to express the bounds for the coefficients $\left|a_{2}\right|$ and $\left|a_{3}\right|$ for subclass $B_{\Sigma}^{h, p}(n, \lambda)$.
Theorem 2.3. If $f(z)$ be in the class $B_{\Sigma}^{h, p}(n, \lambda)$, then

$$
\begin{equation*}
\left|a_{2}\right| \leq \min \left\{\sqrt{\frac{\left|h^{\prime}(0)\right|^{2}+\left|p^{\prime}(0)\right|^{2}}{2\left[(1-\lambda) 2^{n}+\lambda 2^{n+1}\right]^{2}}}, \sqrt{\frac{\left|h^{\prime \prime}(0)\right|+\left|p^{\prime \prime}(0)\right|}{4\left[(1-\lambda) 3^{3}+\lambda 3^{n+1}\right]}}\right\} \tag{2.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|a_{3}\right| \leq \min \left\{\frac{\left|h^{\prime \prime}(0)\right|+\left|p^{\prime \prime}(0)\right|}{4\left[(1-\lambda) 3^{n}+\lambda 3^{n+1}\right]}+\frac{\left|h^{\prime}(0)\right|^{2}+\left|p^{\prime}(0)\right|^{2}}{2\left[(1-\lambda) 2^{n}+\lambda 2^{n+1}\right]^{2}}, \frac{\left|h^{\prime \prime}(0)\right|}{2\left[(1-\lambda) 3^{n}+\lambda 3^{n+1}\right]}\right\} \tag{2.4}
\end{equation*}
$$

Proof. The main idea of the proof is to get the desired bounds for the coefficient $\left|a_{2}\right|$ and $\left|a_{3}\right|$. Consider relations (2.1) and (2.2). Now, we have:

$$
\begin{equation*}
\left(\frac{(1-\lambda) D^{n} f(z)+\lambda D^{n+1} f(z)}{z}\right)=h(z) \quad(\lambda \geq 1, z \in \mathbb{U}) \tag{2.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(\frac{(1-\lambda) D^{n} g(w)+\lambda D^{n+1} g(w)}{w}\right)=p(w) \quad(\lambda \geq 1, w \in \mathbb{U}) \tag{2.6}
\end{equation*}
$$

where two functions h and p satisfy the conditions of Definition 2.1, respectively. With respect to the following Taylor-Maclaurin series expansions for the functions h and p, we get:

$$
\begin{equation*}
h(z)=1+h_{1} z+h_{2} z^{2}+h_{3} z^{3}+\cdots \tag{2.7}
\end{equation*}
$$

and

$$
\begin{equation*}
p(w)=1+p_{1} w+p_{2} w^{2}+p_{3} w^{3}+\cdots \tag{2.8}
\end{equation*}
$$

Substituting relations (2.7) and (2.8) into (2.5) and (2.6), respectively, yield

$$
\begin{align*}
& {\left[(1-\lambda) 2^{n}+\lambda 2^{n+1}\right] a_{2}=h_{1}} \tag{2.9}\\
& {\left[(1-\lambda) 3^{n}+\lambda 3^{n+1}\right] a_{3}=h_{2}} \tag{2.10}\\
& -\left[(1-\lambda) 2^{n}+\lambda 2^{n+1}\right] a_{2}=p_{1} \tag{2.11}
\end{align*}
$$

and

$$
\begin{equation*}
\left[(1-\lambda) 3^{n}+\lambda 3^{n+1}\right]\left(2 a_{2}^{2}-a_{3}\right)=p_{2} \tag{2.12}
\end{equation*}
$$

Comparing the coefficients (2.9) and (2.11), we obtain

$$
\begin{equation*}
h_{1}=-p_{1} \tag{2.13}
\end{equation*}
$$

and

$$
\begin{equation*}
2\left[(1-\lambda) 2^{n}+\lambda 2^{n+1}\right]^{2} a_{2}^{2}=h_{1}^{2}+p_{1}^{2} \tag{2.14}
\end{equation*}
$$

Adding (2.10) and (2.12) give us the following relation:

$$
\begin{equation*}
2\left[(1-\lambda) 3^{n}+\lambda 3^{n+1}\right] a_{2}^{2}=p_{2}+h_{2} \tag{2.15}
\end{equation*}
$$

Therefore, considering relations (2.14) and (2.15), we have:

$$
\begin{equation*}
a_{2}^{2}=\frac{h_{1}^{2}+p_{1}^{2}}{2\left[(1-\lambda) 2^{n}+\lambda 2^{n+1}\right]^{2}} \tag{2.16}
\end{equation*}
$$

and

$$
\begin{equation*}
a_{2}^{2}=\frac{p_{2}+h_{2}}{2\left[(1-\lambda) 3^{n}+\lambda 3^{n+1}\right]} \tag{2.17}
\end{equation*}
$$

respectively. So, we find from the equations (2.16) and (2.17), that

$$
\left|a_{2}\right|^{2} \leq \frac{\left|h^{\prime}(0)\right|^{2}+\left|p^{\prime}(0)\right|^{2}}{2\left[(1-\lambda) 2^{n}+\lambda 2^{n+1}\right]^{2}}
$$

and

$$
\left|a_{2}\right|^{2} \leq \frac{\left|h^{\prime \prime}(0)\right|+\left|p^{\prime \prime}(0)\right|}{4\left[(1-\lambda) 3^{n}+\lambda 3^{n+1}\right]}
$$

respectively. Hence, we derive the desired bound on the coefficient $\left|a_{2}\right|$ as asserted in (2.3).
The proof is completed by finding the bound for the coefficient $\left|a_{3}\right|$. Subtracting (2.12) from (2.10) yields

$$
\begin{equation*}
2\left[(1-\lambda) 3^{n}+\lambda 3^{n+1}\right] a_{3}-2\left[(1-\lambda) 3^{n}+\lambda 3^{n+1}\right] a_{2}^{2}=h_{2}-p_{2} \tag{2.18}
\end{equation*}
$$

Put the value of a_{2}^{2} from (2.16) into (2.18). So, it follows that

$$
a_{3}=\frac{h_{1}^{2}+p_{1}^{2}}{2\left[(1-\lambda) 2^{n}+\lambda 2^{n+1}\right]^{2}}+\frac{h_{2}-p_{2}}{2\left[(1-\lambda) 3^{n}+\lambda 3^{n+1}\right]}
$$

Therefore, we conclude the following bound:

$$
\begin{equation*}
\left|a_{3}\right| \leq \frac{\left|h^{\prime}(0)\right|^{2}+\left|p^{\prime}(0)\right|^{2}}{2\left[(1-\lambda) 2^{n}+\lambda 2^{n+1}\right]^{2}}+\frac{\left|h^{\prime \prime}(0)\right|+\left|p^{\prime \prime}(0)\right|}{4\left[(1-\lambda) 3^{n}+\lambda 3^{n+1}\right]} \tag{2.19}
\end{equation*}
$$

By taking the value of a_{2}^{2} from (2.17) into (2.18), it follows that

$$
a_{3}=\frac{\left(p_{2}+h_{2}\right)}{2\left[(1-\lambda) 3^{n}+\lambda 3^{n+1}\right]}+\frac{\left(h_{2}-p_{2}\right)}{2\left[(1-\lambda) 3^{n}+\lambda 3^{n+1}\right]}=\frac{h_{2}}{\left[(1-\lambda) 3^{n}+\lambda 3^{n+1}\right]}
$$

Hence, we get:

$$
\begin{equation*}
\left|a_{3}\right| \leq \frac{\left|h^{\prime \prime}(0)\right|}{2\left[(1-\lambda) 3^{n}+\lambda 3^{n+1}\right]} \tag{2.20}
\end{equation*}
$$

Now, we obtain from (2.19) and (2.20) the desired estimate for the coefficient $\left|a_{3}\right|$ as asserted in (2.4) and the proof is completed.

3 Conclusions

If we set

$$
h(z)=p(z)=\left(\frac{1+z}{1-z}\right)^{\alpha} \quad(0<\alpha \leq 1, z \in \mathbb{U})
$$

in Theorem 2.3, then Corollary 3.1 can be obtained.
Corollary 3.1. Let the function $f(z)$ given by (1.1) be in the class $B_{\Sigma}(n, \alpha, \lambda)$. Then

$$
\left|a_{2}\right| \leq \min \left\{\frac{2 \alpha}{\left[(1-\lambda) 2^{n}+\lambda 2^{n+1}\right]}, \sqrt{\frac{2}{\left[(1-\lambda) 3^{n}+\lambda 3^{n+1}\right]}} \alpha\right\}
$$

and

$$
\left|a_{3}\right| \leq \frac{2 \alpha^{2}}{\left[(1-\lambda) 3^{n}+\lambda 3^{n+1}\right]}
$$

Remark 3.2. For the coefficient $\left|a_{3}\right|$, it is easily seen that

$$
\frac{2 \alpha^{2}}{\left[(1-\lambda) 3^{n}+\lambda 3^{n+1}\right]} \leq \frac{2 \alpha}{\left[(1-\lambda) 3^{n}+\lambda 3^{n+1}\right]}+\frac{4 \alpha^{2}}{\left[(1-\lambda) 2^{n}+\lambda 2^{n+1}\right]^{2}}
$$

So, it is clear that Corollary 3.1 is an improvement of Theorem 1.6.
Set $n=0$ in Corollary 3.1. So, we have the following corollary.
Corollary 3.3. Let the function $f(z)$ given by (1.1) be in the class $B_{\Sigma}(\alpha, \lambda)$. Then

$$
\left|a_{2}\right| \leq \begin{cases}\sqrt{\frac{2}{2 \lambda+1}} \alpha, & 1 \leq \lambda<1+\sqrt{2} \\ \frac{2 \alpha}{\lambda+1}, & \lambda \geq 1+\sqrt{2}\end{cases}
$$

and

$$
\left|a_{3}\right| \leq \frac{2 \alpha^{2}}{2 \lambda+1}
$$

Remark 3.4. Corollary 3.3 improves Theorem 1.2.
If we take $\lambda=1$ in Corollary 3.3, then we get the following corollary.

Corollary 3.5. Let the function $f(z)$ given by (1.1) be in the class $H_{\Sigma}^{\alpha}(0<\alpha \leq 1)$. Then

$$
\left|a_{2}\right| \leq \sqrt{\frac{2}{3}} \alpha
$$

and

$$
\left|a_{3}\right| \leq \frac{2 \alpha^{2}}{3}
$$

Remark 3.6. Corollary 3.5 provides a refinement of a result which obtained by Srivastava [9, Theorem 1].

Put

$$
h(z)=p(z)=\frac{1+(1-2 \beta) z}{1-z} \quad(0 \leq \beta<1, z \in \mathbb{U})
$$

in Theorem 2.3. Then, Corollary 3.7 can be easily concluded.
Corollary 3.7. Let the function $f(z)$ given by (1.1) be in the class $B_{\Sigma}(n, \beta, \lambda)$. Then

$$
\left|a_{2}\right| \leq \min \left\{\frac{2(1-\beta)}{\left[(1-\lambda) 2^{n}+\lambda 2^{n+1}\right]}, \sqrt{\frac{2(1-\beta)}{\left[(1-\lambda) 3^{n}+\lambda 3^{n+1}\right]}}\right\}
$$

and

$$
\left|a_{3}\right| \leq \frac{2(1-\beta)}{\left[(1-\lambda) 3^{n}+\lambda 3^{n+1}\right]}
$$

Remark 3.8. For the coefficient $\left|a_{3}\right|$, it can be easily seen that

$$
\begin{equation*}
\frac{2(1-\beta)}{\left[(1-\lambda) 3^{n}+\lambda 3^{n+1}\right]} \leq \frac{2(1-\beta)}{\left[(1-\lambda) 3^{n}+\lambda 3^{n+1}\right]}+\frac{4(1-\beta)^{2}}{\left[(1-\lambda) 2^{n}+\lambda 2^{n+1}\right]^{2}} \tag{3.1}
\end{equation*}
$$

Hence, Corollary 3.7 improves Theorem 1.8 with regard to relation (3.1).
By setting $n=0$ in Corollary 3.7, we get:
Corollary 3.9. Let the function $f(z)$ given by (1.1) be in the class $B_{\Sigma}(\beta, \lambda)$ where $\lambda \geq 1$. Then

$$
\left|a_{2}\right| \leq \min \left\{\frac{2(1-\beta)}{\lambda+1}, \sqrt{\frac{2(1-\beta)}{2 \lambda+1}}\right\}
$$

and

$$
\left|a_{3}\right| \leq \frac{2(1-\beta)}{2 \lambda+1}
$$

Remark 3.10. Theorem 1.4 is improved by Corollary 3.9.
If we put $\lambda=1$ in Corollary 3.9, the following corollary can be obtained.
Corollary 3.11. Let the function $f(z)$ given by (1.1) be in the class $H_{\Sigma}(\beta)(0 \leq \beta<1)$. Then

$$
\left|a_{2}\right| \leq \begin{cases}\sqrt{\frac{2(1-\beta)}{3}}, & 0 \leq \beta \leq \frac{1}{3} \\ (1-\beta), & \frac{1}{3} \leq \beta<1\end{cases}
$$

and

$$
\left|a_{3}\right| \leq \frac{2(1-\beta)}{3}
$$

Remark 3.12. The bounds on $\left|a_{2}\right|$ and $\left|a_{3}\right|$ given in Corollary 3.11 are better than those given by Srivastava [9, Theorem 2].

References

[1] S. Bulut, Coefficient estimates for a class of analytic and bi-univalent functions, Novi Sad J. Math. 43(2), 59-65 (2013).
[2] S. Bulut, Coefficient Estimates for New Subclasses of Analytic and Bi-Univalent Functions Defined by Al-Oboudi Differential Operator, J. Funct. Spaces Appl., Article ID 181932, 7 pages (2013).
[3] M. Caglar, H. Orhan and N. Yagmur, Coefficient bounds for new subclasses of bi-univalent functions, Filomat 27(7), 1165-1171 (2013).
[4] M. Caglar, E. Deniz and H. M. Srivastava, Second Hankel determinant for certain subclasses of biunivalent functions, Turkish J. Math. 41, 694-706 (2017).
[5] P. L. Duren, Univalent Functions, Grundlehren der Mathematischen Wissenschaften, Band 259, SpringerVerlag, New York, Berlin, Heidelberg and Tokyo, 1983.
[6] B. A. Frasin and M. K. Aouf, New subclasses of bi-univalent functions, Appl. Math. Lett. 24, 1569-1573 (2011).
[7] S. Porwal and M. Darus, On a new subclass of bi-univalent functions, J. Egyptian Math. Soc. 21, 190-193 (2013).
[8] G. S. Sălăgean, Subclasses of univalent functions, in Complex Analysis Fifth Romanian Finish Seminar, Part 1 (Bucharest, 1981) 1013 of Lecture Notes in Mathematics, Springer, Berlin, Germany, 362-372 (1983).
[9] H. M. Srivastava, A. K. Mishra and P. Gochhayat, Certain subclasses of analytic and bi-univalent functions, Appl. Math. Lett. 23, 1188-1192 (2010).
[10] H. M. Srivastava, S. Bulut, M. Caglar and N. Yagmur, Coefficient estimates for a general subclass of analytic and bi-univalent functions, Filomat 27(5), 831-842 (2013).
[11] H. M. Srivastava, S. Gaboury and F. Ghanim, Coefficient estimates for some general subclasses of analytic and bi-univalent functions, Afr. Mat. 28, 693-706 (2017).
[12] H. M. Srivastava, S. Gaboury and F. Ghanim, Initial coefficient estimates for some subclasses of m-fold symmetric bi-univalent functions, Acta Math. Sci. Ser. B Engl. Ed. 36, 863-871 (2016).
[13] H. M. Srivastava, B. S. Joshi, S. Joshi and H. Pawar, Coefficient estimates for certain subclasses of meromorphically bi-univalent functions, Palest. J. Math. 5, Special Issue, 250-258 (2016).
[14] H. M. Srivastava, S. Sumer Eker and M. Rosihan Ali, Coefficient bounds for a certain class of analytic and bi-univalent functions, Filomat 29, 1839-1845 (2015).
[15] H. M. Srivastava and D. Bansal, Coefficient estimates for a subclass of analytic and bi-univalent functions, J. Egyptian Math. Soc. 23, 242-246 (2015).
[16] H. M. Srivastava, S. Gaboury and F. Ghanim, Coefficient estimates for some subclasses of M-fold symmetric bi-univalent functions, Acta Univ. Apulensis Math. Inform. 23, 153-164 (2015).
[17] H. M. Srivastava, S. Sivasubramanian and R. Sivakumar, Initial coefficient bounds for a subclass of m-fold symmetric bi-univalent functions, Tbilisi Math. J. 7, 1-10 (2014).
[18] Huo Tang, H. M. Srivastava, S. Sivasubramanian and P. Gurusamy, The Fekete-Szego functional problems for some subclasses of m-fold symmetric bi-univalent functions, J. Math. Inequal. 10, 1063-1092 (2016).
[19] Q.- H. Xu, Y.- C. Gui and H. M. Srivastava, Coefficient estimates for a Certain subclass of analytic and bi-univalent functions, Appl. Math. Lett. 25, 990-994 (2012).
[20] Q. -H. Xu, H. -G. Xiao and H. M. Srivastava, A certain general subclass of analytic and bi-univalent functions and associated coefficient estimate problems, Appl. Math. Comput. 218(23), 11461-11465 (2012).

Author information

Ahmad Zireh and Saideh Hajiparvaneh, Faculty of Mathematicsal Sciences, Shahrood University of Technology, Iran.
E-mail: azireh@shahroodut.ac.ir
Received: June 7, 2017.
Accepted: September 21, 2017

