GENERALIZATION OF PASCUE-TYPE p-VALENT FUNCTIONS ASSOCIATED WITH THE CONVOLUTION STRUCTURE

K.K. Dixit, Ankit Dixit and Saurabh Porwal
Communicated by Ayman Badawi

MSC 2010 Classifications: 30C45.
Keywords and phrases: Univalent, multivalent, Analytic functions, Salagean operator.

Abstract

In the present paper, we introduce a new class of p-valent functions by making use of convolution structure and study some of their interesting properties such as coefficient bounds, inclusion relation, distortion inequalities, extreme points and integral means inequalities.

1 Introduction

Let A_{p} denote the class of functions of the form

$$
\begin{equation*}
f(z)=z^{p}+\sum_{k=2 p+1}^{\infty} a_{k} z^{k}, \quad(p \in N=\{1,2,3, \ldots \ldots .,\}) \tag{1.1}
\end{equation*}
$$

which are analytic and p-valent in the open unite disk $U=\{z: z \in C$ set of all complex numbers and $|z|<1\}$. A function $f \in A_{p}$ is β-pascue convex of order α if

$$
\frac{1}{p} \operatorname{Re}\left[\frac{(1-\beta) z f^{\prime}(z)+\frac{\beta}{p} z\left(z f^{\prime}(z)\right)^{\prime}}{(1-\beta) f(z)+\frac{\beta}{p} f^{\prime}(z)}\right]>\alpha \quad(0 \leq \beta \leq 1,0 \leq \alpha<1)
$$

In other words $(1-\beta) f(z)+\frac{\beta}{p} f^{\prime}(z)$ is in $f \in S_{p}^{*}$ the class of p -valent starlike functions.(for details [6],see also [1],[5]).

Given two functions $f, g \in A_{p}$, where f is given by (1.1) and g is given by
$g(z)=z^{p}+\sum_{k=2 p+1}^{\infty} b_{k} z^{k} \quad(p \in N)$,
the Hardmard product (or convolution) $f * g$ is defined by

$$
\begin{equation*}
(f * g)(z)=z^{p}+\sum_{k=2 p+1}^{\infty} a_{k} b_{k} z^{k}=(g * f)(z), \quad z \in U \tag{1.2}
\end{equation*}
$$

For functions f and g, analytic in U, we say that the function $f(z)$ is subordinate to $g(z)$ in U written as
$f(z) \prec g(z) \quad(z \in U)$,
if there exists a Schwarz function $w(z)$, analytic in U with $w(0)=0$ and $|w(z)|<1$ such that

$$
f(z)=g(w(z)) \quad(z \in U)
$$

In particular, if the function g is univalent in U, the above sobordination is equivalent to $f(0)=g(0)$ and $f(U) \subset g(U)$.
See also Duren [2].
Salagean [7] introduced the following operator which is popularly known as the Salagean derivative operator :

$$
\begin{gathered}
D^{0} f(z)=f(z) \\
D^{1} f(z)=D f(z)=z f^{\prime}(z)
\end{gathered}
$$

$$
D^{n} f(z)=D\left(D^{n-1} f(z)\right) \quad\left(n \in N_{0}=N \cup\{0\}\right)
$$

We easily find from (1.1) that

$$
D^{n} f(z)=p^{n} z^{p}+\sum_{k=2 p+1}^{\infty} k^{n} a_{k} z^{k} \quad\left(f \in A_{p} ; n \in N_{0}\right)
$$

We denote by T_{p} the subclass of A_{p} consisting of functions of the form

$$
\begin{equation*}
f(z)=z^{p}-\sum_{k=2 p+1}^{\infty} a_{k} z^{k}, \quad\left(a_{k} \geq 0, p \in N\right) \tag{1.3}
\end{equation*}
$$

which are p-valent in U.
For a given function $g \in A_{p}$ defined by

$$
\begin{equation*}
g(z)=z^{p}+\sum_{k=2 p+1}^{\infty} b_{k} z^{k}, \quad\left(b_{k} \geq 0, p \in N\right) \tag{1.4}
\end{equation*}
$$

We introduce here a new class $A S_{g}^{*}(m, n, p, \alpha, \beta)$ of functions belonging to the class T_{p} which consists of functions $f(z)$ of the form (1.3) satisfying the following inequality :

$$
\begin{equation*}
\frac{1}{p} \operatorname{Re}\left[\frac{(1-\beta) D^{n+m}(f * g)(z)+\frac{\beta}{p} D^{n+m+1}(f * g)(z)}{(1-\beta) D^{n+m-1}(f * g)(z)+\frac{\beta}{p} D^{n+m}(f * g)(z)}\right]>\alpha \tag{1.5}
\end{equation*}
$$

where $(0 \leq \beta \leq 1,0 \leq \alpha<1, m, n, p \in N)$.
We note that for $m=1$, this class was introduced and studied by Birgul Oner and Sevtap Sumer Eker [4].

In this paper, we determine the coefficient inequalities, distortion theorem as well as integral means inequalities for functions in the class $A S_{g}^{*}(m, n, p, \alpha, \beta)$.

2 Coefficient inequalities and some inclusion relations

We first prove a necessary and sufficient condition for functions to be in the class $A S_{g}^{*}(m, n, p, \alpha, \beta)$ as following:

Theorem 2.1. A function $f(z)$ given by (1.3) is in $A S_{g}^{*}(m, n, p, \alpha, \beta)$ if and only if for $0 \leq \alpha<$ $1,0 \leq \beta \leq 1, m, n, p \in N$,

$$
\begin{equation*}
\sum_{k=2 p+1}^{\infty}[(k-\alpha p)(p-\beta p+\beta k)] k^{n+m-1} a_{k} b_{k} \leq p^{n+m+1}(1-\alpha) \tag{2.1}
\end{equation*}
$$

The result is sharp.
Proof. Assume that $f \in A S_{g}^{*}(m, n, p, \alpha, \beta)$.Then, in view of (1.3) to (1.5), we have

$$
\begin{array}{r}
\frac{1}{p} \operatorname{Re}\left[\frac{(1-\beta) D^{n+m}(f * g)(z)+\frac{\beta}{p} D^{n+m+1}(f * g)(z)}{(1-\beta) D^{n+m-1}(f * g)(z)+\frac{\beta}{p} D^{n+m}(f * g)(z)}\right] \\
=\frac{1}{p} \operatorname{Re}\left[\frac{(1-\beta) p^{n+m} z^{p}-\sum_{k=2 p+1}^{\infty}(1-\beta) k^{n+m} a_{k} b_{k} z^{k}+\frac{\beta}{p}\left(p^{n+m+1} z^{p}-\sum_{k=2 p+1}^{\infty} k^{n+m+1} a_{k} b_{k} z^{k}\right)}{(1-\beta) p^{n+m-1} z^{p}-\sum_{k=2 p+1}^{\infty}(1-\beta) k^{n+m-1} a_{k} b_{k} z^{k}+\frac{\beta}{p}\left(p^{n+m} z^{p}-\sum_{k=2 p+1}^{\infty} k^{n+m} a_{k} b_{k} z^{k}\right)}\right]
\end{array}
$$

$$
=\frac{1}{p} \operatorname{Re}\left[\frac{p^{n+m} z^{p}-\sum_{k=2 p+1}^{\infty}\left(1-\beta+\frac{\beta}{p} k\right) k^{n+m} a_{k} b_{k} z^{k}}{(1-\beta) p^{n+m-1} z^{p}-\sum_{k=2 p+1}^{\infty}\left(1-\beta+\frac{\beta}{p} k\right) k^{n+m-1} a_{k} b_{k} z^{k}}\right]>\alpha
$$

If we choose z to be real and let $r \rightarrow 1^{-}$, the last inequality leads us to desired to assertion (2.1) of Theorem 2.1 .

Conversely, assume that (2.1) holds for $f(z) \in A_{p}$, let us define the function $\mathrm{F}(\mathrm{z})$ by

$$
F(z)=\frac{1}{p} \frac{(1-\beta) D^{n+m}(f * g)(z)+\frac{\beta}{p} D^{n+m+1}(f * g)(z)}{(1-\beta) D^{n+m-1}(f * g)(z)+\frac{\beta}{p} D^{n+m}(f * g)(z)}-\alpha
$$

it suffices to show thats

$$
\left|\frac{F(z)-1}{F(z)+1}\right|<1 \quad(z \in U)
$$

We note that

$$
\left|\frac{F(z)-1}{F(z)+1}\right|
$$

$$
=\left|\frac{(1-\beta) D^{n+m}(f * g)(z)+\frac{\beta}{p} D^{n+m+1}(f * g)(z)-p(\alpha+1)\left[(1-\beta) D^{n+m-1}(f * g)(z)+\frac{\beta}{p} D^{n+m}(f * g)(z)\right]}{(1-\beta) D^{n+m}(f * g)(z)+\frac{\beta}{p} D^{n+m+1}(f * g)(z)-p(\alpha-1)\left[(1-\beta) D^{n+m-1}(f * g)(z)+\frac{\beta}{p} D^{n+m}(f * g)(z)\right]}\right|
$$

$$
=\left|\frac{-\alpha p^{n+m}-\sum_{k=2 p+1}^{\infty}(k-\alpha p-p)\left(1-\beta+\frac{\beta}{p} k\right) k^{n+m-1} a_{k} b_{k} z^{k-p}}{(2-\alpha) p^{n+m}-\sum_{k=2 p+1}^{\infty}(k-\alpha p-p)\left(1-\beta+\frac{\beta}{p} k\right) k^{n+m-1} a_{k} b_{k} z^{k-p}}\right|
$$

The last expression is bounded above by 1 , if

$$
\begin{aligned}
& \alpha p^{n+m+1}+\sum_{k=2 p+1}^{\infty}[(k-\alpha p-p)(p-\beta p+\beta k)] k^{n+m-1} a_{k} b_{k} \\
\leq & (2-\alpha) p^{n+m+1}-\sum_{k=2 p+1}^{\infty}[(k-\alpha p-p)(p-\beta p+\beta k)] k^{n+m-1} a_{k} b_{k}
\end{aligned}
$$

which is equivalent to our condition (2.1). This completes the proof of our theorem.
The result is sharp for the functions

$$
f(z)=z^{p}-\frac{p^{n+m+1}(1-\alpha)}{[(k-\alpha p)(p-\beta p+\beta k)] k^{n+m-1} b_{k}} z^{k}
$$

Corollary 2.2. Let $f(z)$ given by (1.3). If $f \in A S_{g}^{*}(m, n, p, \alpha, \beta)$, then

$$
a_{k} \leq \frac{p^{n+m+1}(1-\alpha)}{[(k-\alpha p)(p-\beta p+\beta k)] k^{n+m-1} b_{k}}
$$

with equality only for functions of the form

$$
f_{k}(z)=z^{p}-\frac{p^{n+m+1}(1-\alpha)}{[(k-\alpha p)(p-\beta p+\beta k)] k^{n+m-1} b_{k}} z^{k}
$$

Proof. If $f \in A S_{g}^{*}(m, n, p, \alpha, \beta)$, then by making use of (2.1), we obtain

$$
\begin{gathered}
{[(k-\alpha p)(p-\beta p+\beta k)] k^{n+m-1} a_{k} b_{k} \leq \sum_{k=2 p+1}^{\infty}[(k-\alpha p)(p-\beta p+\beta k)] k^{n+m-1} a_{k} b_{k}} \\
\leq p^{n+m+1}(1-\alpha)
\end{gathered}
$$

or

$$
a_{k} \leq \frac{p^{n+m+1}(1-\alpha)}{[(k-\alpha p)(p-\beta p+\beta k)] k^{n+m-1} b_{k}}
$$

clearly for

$$
f_{k}(z)=z^{p}-\frac{p^{n+m+1}(1-\alpha)}{[(k-\alpha p)(p-\beta p+\beta k)] k^{n+m-1} b_{k}} z^{k}
$$

we have

$$
a_{k} \leq \frac{p^{n+m+1}(1-\alpha)}{[(k-\alpha p)(p-\beta p+\beta k)] k^{n+m-1} b_{k}}
$$

Theorem 2.3. Let $0 \leq \alpha_{1} \leq \alpha_{2}<1, m, n, p \in N$ and $0 \leq \beta \leq 1$ then

$$
A S_{g}^{*}\left(m, n, p, \alpha_{1}, \beta\right) \supseteq A S_{g}^{*}\left(m, n, p, \alpha_{2}, \beta\right)
$$

Proof. Let the function $f(z)$ defined by (1.3) in the class $A S_{g}^{*}\left(m, n, p, \alpha_{2}, \beta\right)$. Then by the Theorem 2.1, we have

$$
\sum_{k=2 p+1}^{\infty}\left[\left(k-\alpha_{2} p\right)(p-\beta p+\beta k)\right] k^{n+m-1} a_{k} b_{k} \quad \leq p^{n+m+1}\left(1-\alpha_{2}\right)
$$

consequently

$$
\begin{gathered}
\sum_{k=2 p+1}^{\infty}\left[\left(k-\alpha_{1} p\right)(p-\beta p+\beta k)\right] k^{n+m-1} a_{k} b_{k} \leq \sum_{k=2 p+1}^{\infty}\left[\left(k-\alpha_{2} p\right)(p-\beta p+\beta k)\right] k^{n+m-1} a_{k} b_{k} \\
\leq p^{n+m+1}\left(1-\alpha_{2}\right)
\end{gathered}
$$

This completes the proof of the Theorem 2.3 with the aid of the Theorem 2.1.
Theorem 2.4. Let $0 \leq \alpha<1, m, n, p \in N$ and $0 \leq \beta \leq 1$ then

$$
A S_{g}^{*}(m, n+1, p, \alpha, \beta) \subseteq A S_{g}^{*}(m, n, p, \alpha, \beta)
$$

Proof. Let the function $f(z)$ defined by (1.3) in the class $A S_{g}^{*}(m, n+1, p, \alpha, \beta)$. Then by the Theorem 2.1, we have

$$
\sum_{k=2 p+1}^{\infty}[(k-\alpha p)(p-\beta p+\beta k)] k^{n+m} a_{k} b_{k} \leq p^{n+m+2}(1-\alpha)
$$

consequently

$$
\begin{gathered}
\sum_{k=2 p+1}^{\infty}[(k-\alpha p)(p-\beta p+\beta k)] k^{n+m-1} a_{k} b_{k} \leq \sum_{k=2 p+1}^{\infty}[(k-\alpha p)(p-\beta p+\beta k)] k^{n+m} a_{k} b_{k} \\
\leq p^{n+m+2}(1-\alpha)
\end{gathered}
$$

This completes the proof of the Theorem 2.4 with the aid of the Theorem 2.1.

3 Disortion Inequalities

In this section, we shall prove distortion theorems for the functions belonging to the class $A S_{g}^{*}(m, n, p, \alpha, \beta)$.

Theorem 3.1. Let the functions $f(z)$ of the form (1.3) be in the class $A S_{g}^{*}(m, n, p, \alpha, \beta)$. Then for $|z|=r<1$, we have

$$
\begin{equation*}
|f(z)| \geq r^{p}-\frac{p^{n+m+1}(1-\alpha)}{[(2 p+1-\alpha p)(p+\beta p+\beta)](2 p+1)^{n+m-1} b_{2 p+1}} r^{2 p+1} \tag{3.1}
\end{equation*}
$$

and

$$
\begin{equation*}
|f(z)| \leq r^{p}+\frac{p^{n+m+1}(1-\alpha)}{[(2 p+1-\alpha p)(p+\beta p+\beta)](2 p+1)^{n+m-1} b_{2 p+1}} r^{2 p+1} \tag{3.2}
\end{equation*}
$$

The inequalities (3.1) and (3.2) are attained for the function $f(z)$ given by

$$
f(z)=z^{p}-\frac{p^{n+m+1}(1-\alpha)}{[(2 p+1-\alpha p)(p+\beta p+\beta)](2 p+1)^{n+m-1} b_{2 p+1}} z^{2 p+1} .
$$

Proof. Since $f(z) \in A S_{g}^{*}(m, n, p, \alpha, \beta)$, we apply Theorem 2.1, we obtain

$$
\begin{aligned}
& (2 p+1-\alpha p)(p+\beta p+\beta)(2 p+1)^{n+m-1} b_{2 p+1} \sum_{k=2 p+1}^{\infty} a_{k} \\
\leq & \sum_{k=2 p+1}^{\infty}[(k-\alpha p)(p-\beta p+\beta k)] k^{n+m-1} a_{k} b_{k} \leq p^{n+m+1}(1-\alpha)
\end{aligned}
$$

Thus, we obtain

$$
\begin{equation*}
\sum_{k=2 p+1}^{\infty} a_{k} \leq \frac{p^{n+m+1}(1-\alpha)}{[(2 p+1-\alpha p)(p+\beta p+\beta)](2 p+1)^{n+m-1} b_{2 p+1}} \tag{3.3}
\end{equation*}
$$

From (1.3) and (3.3), we have

$$
\begin{aligned}
& |f(z)| \leq|z|^{p}+|z|^{2 p+1} \sum_{k=2 p+1}^{\infty} a_{k} \leq r^{p}+\frac{p^{n+m+1}(1-\alpha)}{[(2 p+1-\alpha p)(p+\beta p+\beta)](2 p+1)^{n+m-1} b_{2 p+1}} r^{2 p+1} \\
& |f(z)| \geq|z|^{p}-|z|^{2 p+1} \sum_{k=2 p+1}^{\infty} a_{k} \geq r^{p}-\frac{p^{n+m+1}(1-\alpha)}{[(2 p+1-\alpha p)(p+\beta p+\beta)](2 p+1)^{n+m-1} b_{2 p+1}} r^{2 p+1} .
\end{aligned}
$$

This completes the proof of Theorem 3.1.
Theorem 3.2. Let the functions $f(z)$ of the form (1.3) be in the class $A S_{g}^{*}(m, n, p, \alpha, \beta)$. Then for $|z|=r<1$, we have

$$
\begin{equation*}
\left|f^{\prime}(z)\right| \geq p r^{p-1}-\frac{p^{n+m+1}(1-\alpha)}{[(2 p+1-\alpha p)(p+\beta p+\beta)](2 p+1)^{n+m-2} b_{2 p+1}} r^{2 p} \tag{3.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|f^{\prime}(z)\right| \leq p r^{p}+\frac{p^{n+m+1}(1-\alpha)}{[(2 p+1-\alpha p)(p+\beta p+\beta)](2 p+1)^{n+m-2} b_{2 p+1}} r^{2 p} \tag{3.5}
\end{equation*}
$$

The inequalities (3.4) and (3.5) are attained for the function $f(z)$ given by

$$
f(z)=z^{p-1}-\frac{p^{n+m+1}(1-\alpha)}{[(2 p+1-\alpha p)(p+\beta p+\beta)](2 p+1)^{n+m-2} b_{2 p+1}} z^{2 p}
$$

Proof. From Theorem 2.1 and (3.3), we have

$$
\sum_{k=2 p+1}^{\infty} k a_{k} \leq \frac{p^{n+m+1}(1-\alpha)}{[(2 p+1-\alpha p)(p+\beta p+\beta)](2 p+1)^{n+m-2} b_{2 p+1}}
$$

and the remaining part of the proof is similar to the proof of the Theorem 3.1.

4 Extreme Points

Theorem 4.1. Let $f_{p}(z)=z^{p}$ and

$$
\begin{gathered}
f_{k}(z)=z^{p}-\frac{p^{n+m+1}(1-\alpha)}{[(k-\alpha p)(p-\beta p+\beta k)] k^{n+m-1} b_{k}} z^{k} \\
\left(b_{k} \geq 0,0 \leq \beta \leq 1,0 \leq \alpha<1, m, n, p \in N\right) .
\end{gathered}
$$

Then $f(z) \in A S_{g}^{*}(m, n, p, \alpha, \beta)$ if and only if it can be expressed in the following form

$$
f(z)=\lambda_{p} z^{p}+\sum_{k=2 p+1}^{\infty} \lambda_{k} f_{k}(z),
$$

where $\lambda_{p} \geq 0, \lambda_{k} \geq 0$ and $\lambda_{p}+\sum_{k=2 p+1}^{\infty} \lambda_{k}=1$.
Proof. Suppose that

$$
f(z)=\lambda_{p} z^{p}+\sum_{k=2 p+1}^{\infty} \lambda_{k} f_{k}(z)=z^{p}-\sum_{k=2 p+1}^{\infty} \lambda_{k} \frac{p^{n+m+1}(1-\alpha)}{[(k-\alpha p)(p-\beta p+\beta k)] k^{n+m-1} b_{k}} z^{k} .
$$

Then from Theorem 2.1, we have

$$
\begin{aligned}
& \sum_{k=2 p+1}^{\infty}[(k-\alpha p)(p-\beta p+\beta k)] k^{n+m-1} \lambda_{k} \frac{p^{n+m+1}(1-\alpha)}{[(k-\alpha p)(p-\beta p+\beta k)] k^{n+m-1} b_{k}} z^{k} \\
& \quad=\sum_{k=2 p+1}^{\infty} \lambda_{k} p^{n+m+1}(1-\alpha) \leq p^{n+m+1}(1-\alpha)\left(1-\lambda_{p}\right) \leq p^{n+m+1}(1-\alpha) .
\end{aligned}
$$

Thus, in view of Theorem 2.1, we find that $f(z) \in A S_{g}^{*}(m, n, p, \alpha, \beta)$.
Conversely, suppose that $f(z) \in A S_{g}^{*}(m, n, p, \alpha, \beta)$. Then, since

$$
a_{k} \leq \frac{p^{n+m+1}(1-\alpha)}{[(k-\alpha p)(p-\beta p+\beta k)] k^{n+m-1} b_{k}} \quad(p \in N)
$$

we may set

$$
\lambda_{k}=\frac{[(k-\alpha p)(p-\beta p+\beta k)] k^{n+m-1} b_{k}}{p^{n+m+1}(1-\alpha)} a_{k} \quad(p \in N)
$$

and

$$
\lambda_{p}=1-\sum_{k=2 p+1}^{\infty} \lambda_{k} .
$$

Thus, clearly, we have

$$
f(z)=\lambda_{p} z^{p}+\sum_{k=2 p+1}^{\infty} \lambda_{k} f_{k}(z) .
$$

This completes the proof of theorem.
Corollary 4.2. The extreme points of the class $A S_{g}^{*}(m, n, p, \alpha, \beta)$ are given by

$$
f_{p}(z)=z^{p}
$$

and

$$
\begin{equation*}
f_{k}(z)=z^{p}-\frac{p^{n+m+1}(1-\alpha)}{[(k-\alpha p)(p-\beta p+\beta k)] k^{n+m-1} b_{k}} z^{k}, \quad(k \geq 2 p+1, p \in N) . \tag{4.1}
\end{equation*}
$$

Theorem 4.3. The class $A S_{g}^{*}(m, n, p, \alpha, \beta)$ is a convex set .

Proof. Suppose that each of the functions $f_{i}(z), \quad(i=1,2)$ given by

$$
f_{i}(z)=z^{p}-\sum_{k=2 p+1}^{\infty} a_{k, i} z^{k}, \quad\left(a_{k, i} \geq 0\right)
$$

is in the class $A S_{g}^{*}(m, n, p, \alpha, \beta)$. It is sufficient to show that the function $g(z)$ defined by

$$
g(z)=\eta f_{1}(z)+(1-\eta) f_{2}(z), \quad(0 \leq \eta<1)
$$

is also in the class $A S_{g}^{*}(m, n, p, \alpha, \beta)$. Since

$$
\begin{gathered}
g(z)=\eta\left(z^{p}-\sum_{k=2 p+1}^{\infty} a_{k, 1} z^{k}\right)+(1-\eta)\left(z^{p}-\sum_{k=2 p+1}^{\infty} a_{k, 2} z^{k}\right) \\
=z^{p}-\sum_{k=2 p+1}^{\infty}\left[\eta a_{k, 1}+(1-\eta) a_{k, 2}\right] z^{k}
\end{gathered}
$$

with the aid of Theorem 2.1, we have

$$
\begin{gathered}
\sum_{k=2 p+1}^{\infty}[(k-\alpha p)(p-\beta p+\beta k)] k^{n+m-1}\left[\eta a_{k, 1}+(1-\eta) a_{k, 2}\right] b_{k} \\
=\eta \sum_{k=2 p+1}^{\infty}[(k-\alpha p)(p-\beta p+\beta k)] k^{n+m-1} a_{k, 1} b_{k}+(1-\eta) \sum_{k=2 p+1}^{\infty}[(k-\alpha p)(p-\beta p+\beta k)] k^{n+m-1} a_{k, 2} b_{k} \\
\leq \eta p^{n+m+1}(1-\alpha)+(1-\eta) p^{n+m+1}(1-\alpha)=p^{n+m+1}(1-\alpha) .
\end{gathered}
$$

5 Integral Means Inequalities

In 1925, Littelewood prove the following subordination lemma.
Lemma 5.1. (Littlewood [3]) If f and g are analytic in U with $f \prec g$, then for $\mu>0$ and $z=r e^{i \theta}(0<r<1)$

$$
\int_{0}^{2 \pi}|f(z)|^{\mu} d \theta \leq \int_{0}^{2 \pi}|g(z)|^{\mu} d \theta
$$

We will make use of Lemma 5.1 to prove the following theorem.
Theorem 5.2. Let $f(z) \in A S_{g}^{*}(m, n, p, \alpha, \beta)$ and $f_{k}(z)$ is defined by (4.1). If there exist an analytic function $w(z)$ given by

$$
[w(z)]^{k-p}=\frac{[(k-\alpha p)(p-\beta p+\beta k)] k^{n+m-1} b_{k}}{p^{n+m+1}(1-\alpha)} \sum_{k=2 p+1}^{\infty} a_{k} z^{k-p}
$$

then for $z=r e^{i \theta}(0<r<1)$

$$
\int_{0}^{2 \pi}\left|f\left(r e^{i \theta}\right)\right|^{\mu} d \theta \leq \int_{0}^{2 \pi}\left|g\left(r e^{i \theta}\right)\right|^{\mu} d \theta
$$

Proof. We must show that

$$
\int_{0}^{2 \pi}\left|1-\sum_{k=2 p+1}^{\infty} a_{k} z^{k-p}\right|^{\mu} d \theta \leq \int_{0}^{2 \pi}\left|1-\frac{p^{n+m+1}(1-\alpha)}{[(k-\alpha p)(p-\beta p+\beta k)] k^{n+m-1} b_{k}} z^{k-p}\right|^{\mu} d \theta
$$

By applying Littlewood's subordination lemma, it would suffice to show that

$$
1-\sum_{k=2 p+1}^{\infty} a_{k} z^{k-p} \prec 1-\frac{p^{n+m+1}(1-\alpha)}{[(k-\alpha p)(p-\beta p+\beta k)] k^{n+m-1} b_{k}} z^{k-p} .
$$

By setting

$$
1-\sum_{k=2 p+1}^{\infty} a_{k} z^{k-p}=1-\frac{p^{n+m+1}(1-\alpha)}{[(k-\alpha p)(p-\beta p+\beta k)] k^{n+m-1} b_{k}}[w(z)]^{k-p}
$$

we find that

$$
[w(z)]^{k-p}=\frac{[(k-\alpha p)(p-\beta p+\beta k)] k^{n+m-1} b_{k}}{p^{n+m+1}(1-\alpha)} \sum_{k=2 p+1}^{\infty} a_{k} z^{k-p}
$$

which readily yields $w(0)=0$.
Furthermore, using(2.1) we obtain

$$
\begin{aligned}
& |w(z)|^{k-p}=\left|\frac{[(k-\alpha p)(p-\beta p+\beta k)] k^{n+m-1} b_{k}}{p^{n+m+1}(1-\alpha)} \sum_{k=2 p+1}^{\infty} a_{k} z^{k-p}\right| \\
& \leq \frac{[(k-\alpha p)(p-\beta p+\beta k)] k^{n+m-1} b_{k}}{p^{n+m+1}(1-\alpha)} \sum_{k=2 p+1}^{\infty} a_{k}|z|^{k-p} \\
& \quad \leq|z|^{k-p}<1
\end{aligned}
$$

This completes the proof of the theorem.

References

[1] R.M.Ali, M.H.Khan, V.Ravichandran and K.G.Subramanian, A class of multivalent functions with negative coefficients defined by convolution, Bull. Korean Math. Soc., 43 (1), 179-188 (2006).
[2] P.L.Duren, Univalent functions, Springer-Verlag, New York, (1983).
[3] J.E.Littlewood, On inequalities in the theory of functions, Proc. London Math. Soc., 23, 481-519 (1925).
[4] Birgul Oner and Sevtap Sumer eker, Pascue-Type p-valent functions associated with the convolution structure, Studia Univ. Babes-Balyai Math., 60 (3), 403-411 (2015).
[5] H.Ozlem Guney and Grigore Stefan Salagean, Further Properties of beta-Pascu Convex Function of order alpha, Int. J. Math. Math. Sci., Vol. 2007, Article ID 34017.
[6] N.N.Pascu and V.Podharu, On the radius of alpha-starlikeness for starlike functions of order beta, Lecture Notes in Math., 1013,pp. 335-349, Springer-Verlag, (1983).
[7] G.S. Salagean, Subclasses of univalent functions, in Complex Analysis-Fifth Romanian Finish Seminar, Bucharest, 1, 362-372 (1983).

Author information

K.K. Dixit, Department of Mathematics, Janta College, Bakewar, Etawah-206124 (U.P.), INDIA.

E-mail: kk.dixit@rediffmail.com
Ankit Dixit, Department of Mathematics, Mahatma Gandhi Chitrakoot Gramodaya Vishwavidyalaya Chitrakoot, Satna (M.P.) - 485780, INDIA.
E-mail: ankitdixit.aur@gmail.com
Saurabh Porwal, Lecturer Mathematics, Sri Radhey Lal Arya Inter College, Aihan, Hathras-204101, (U.P.), INDIA.
E-mail: saurabhjcb@rediffmail.com
Received: August 29, 2017.
Accepted: December 27, 2017

