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Abstract. In the present paper, we introduce a new class of p-valent functions by making use
of convolution structure and study some of their interesting properties such as coefficient bounds,
inclusion relation, distortion inequalities, extreme points and integral means inequalities.

1 Introduction

Let A, denote the class of functions of the form

oo

)=+ 3 at, (peN={1,23,....}). (1.1)

k=2p+1

which are analytic and p-valent in the open unite disk U = {z : z € C set of all complez numbers and |z| < 1}.
A function f € A, is S-pascue convex of order o if

L [0=er @8 (o )
P (1=8)f () +5f (2)

>« 0<pg<1,0<a<l).

In other words (1 — 3) f (2) + % f (2)isin f € S; the class of p-valent starlike functions.(for
details [6],see also [1],[5]).
Given two functions f, g € A,,where f is given by (1.1) and g is given by

g(z) = 2P + i by, 2 (peN),

k=2p+1
the Hardmard product (or convolution) f * g is defined by

(f*g)(z) =2"+ i arbpz® = (g% f)(2), z€U. (1.2)

k=2p+1

For functions f and g, analytic in U, we say that the function f (z) is subordinate to g (z) in U
written as

[(2)<g(z)  (zeU),

if there exists a Schwarz function w (z), analytic in U with w (0) = 0 and |w ()| < 1 such
that

f(z)=g(w(z)) (zeU).

In particular, if the function ¢ is univalent in U, the above sobordination is equivalent to

f(0)=g(0)and f (U) C g(U).

See also Duren [2].

Salagean [7] introduced the following operator which is popularly known as the Salagean
derivative operator :
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D"f(z) =D (D" 'f(z)) (n€Ny=NU{0}).
We easily find from (1.1) that

D"f(z)=p"zP + Z k"ayz* (feApneNy).
k=2p+1

We denote by T, the subclass of A, consisting of functions of the form
fR)=2"— Y adt, (ax > 0,p € N). (1.3)
k=2p+1

which are p-valent in U.
For a given function g € A, defined by

gz) ="+ > b2t (by >0,p € N). (1.4)
k=2p+1

We introduce here a new class AS} (m,n,p,a, B) of functions belonging to the class T}, which
consists of functions f (z) of the form (1.3) satisfying the following inequality :

1o [=8) D (20) (2) + 2D (£ 29) (2)
o (1= 8) DT (fag) () + 207 (fg) (2)

>a (1.5)

where (0< 8 <1,0<a<1,m,n,pe N).

We note that for m = 1, this class was introduced and studied by Birgul Oner and Sevtap
Sumer Eker [4].

In this paper, we determine the coefficient inequalities, distortion theorem as well as integral
means inequalities for functions in the class AS}(m,n,p, a, 3).

2 Coefficient inequalities and some inclusion relations

We first prove a necessary and sufficient condition for functions to be in the class AS; (m,n,p,a,B)
as following:

Theorem 2.1. A function f (z) given by (1.3) is in AS;(m,n, p,, B) if and only if for 0 < @ <
1’O§/B§1’m7n’p€N7

oo

> l(k—ap)(p—Bp+ BRI E agh, < p (11— a). (2.1)
k=2p+1

The result is sharp.
Proof. Assume that f € AS;‘(m7 n, p, @, 3).Then, in view of (1.3) to (1.5), we have

e [A=8) D™ (£29) (2) + 5D (£ 2 9) (2)
P [(1=B) D=1 (fxg) (2) + EDmm (f  g) ()

oo o0

(1 _ 5) prtmap — Z (1 _ 6) k‘"H”Lakbkzk + ﬁ pn+m+lzp . Z knerJr]akbkzk
1 R k=2p+1 p k=2p+1
= —Re
p oo

(1 _ 6) pn+m—lzp _ Z (1 _ B) kn+m—]akbkzk + é anrmZp _ Z knJr'makbkzk
k=2p+1 p k=2p+1
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prtmap — § (1 - B+ Bk) k" ag by 2R
| k=2p+1 p
= —Re >«

: - g - k
1 _B pn+m—]zp _ (1 —,6+ 2 k,ner arbuz
(1-5) > ” KDk

k=2p+1

If we choose z to be real and let » — 17, the last inequality leads us to desired to assertion (2.1)
of Theorem 2.1 .
Conversely, assume that (2.1) holds for f(z) € A,, let us define the function F(z) by

1 =B) D (Fxg) () + EDM (£ 1) 2)
P (1= 5) D1 (Fxg) () + ED"n (f 4 ) ()

F(z)

—

it suffices to show thats

’?Ei;l”<l (zeU).
We note that . |
e

(1= B) D™ ™ (f % g) () + £D™ ™ (% g) () = p(a+ 1) [(1 = B) D™ (f 5 g) () + £D™™ (f 4 ) (2)]

(1= B) D (f 5 g) (2) + SDmem+1 (f 4 g) (2) = pla = 1) [(1 = B) D=1 (f 5 g) (2) + EDmom (f 5 ) (2)]

704pn+7n7 Z (k: —ap— p) <1 —_ 6 —+ ﬂk) kn+m71akbkzk7p
k=2, p
=2p+1

(2—a)prtm— Z (k—ap—p) (1 - B+ ﬂk) Entm =l b 2R
p

k=2p+1
The last expression is bounded above by 1, if

ap™ ! 4 Z [(k—ap—p)(p—Bp+ BE)E"T Laby,

k=2p+1
< (2 _ a) pn+m+1 _ Z [(k’ —ap _p) (p _ 5p+ Bk)] kn+m—lakbk
k=2p+1

which is equivalent to our condition (2.1). This completes the proof of our theorem.

The result is sharp for the functions
f ( ) - Zp B pn+7n+1(l_a) Zk
z)= [(F—op)(p—Bp T ARk ™10, % *

Corollary 2.2. Let f(z) given by (1.3). If f € AS};(m,n,p,a, (), then

pn+m+l (1 _ O()
[(k — ap) (p — Bp + Bk)] kntm=lby,

with equality only for functions of the form

ap <

pn+7n+l (1 _ Oé) Zk
[(k = ap) (p = Bp + BE)] kv =lbe

Proof. If f € AS}(m,n,p,a, ), then by making use of (2.1), we obtain

fk (Z) =P _

oo

[(k — ap) (p — Bp + BE) k"™ agby, < Z [(k — ap) (p — Bp + BE)] K" Layby,
k=2p+1

< pn+m+1 (1 _ a)
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or
pn,+m+l (1 _ Oé)

[(k — ap) (p — Bp + Bk)| k" +m=1bg

ap <

clearly for
pn+m+1 (1 _ a) Zk
[ —ap) (o~ o+ BRI R T

fr(2) = 2P —

we have
pn+m+l (1 _ Oé)

ap < .
* = [k —ap) (p— Bp + BR) k" Thy
Theorem 2.3. Let 0 < oy < ap < 1,m,n,p € Nand 0 < 3 < 1 then

AS;(m7n7p7 al7ﬂ) 2 AS;(m7n7pa 042»5)-

Proof. Let the function f(z) defined by (1.3) in the class AS}(m,n,p,az, ). Then by the
Theorem 2.1, we have

Y (k=) (p—Bp+ BRI E laghy < p" (1 - an)
k=2p+1
consequently
> (k= oup) (p—Bp+ BE) K™ agb, < Y [(k— aap) (p— Bp + BE) K" agby
k=2p+1 k=2p+1
< pn+m+l (1 _ 012)~

This completes the proof of the Theorem 2.3 with the aid of the Theorem 2.1.
Theorem 2.4. Let 0 < a < 1,m,n,p€ N and 0 < 8 < 1 then
ASy(m,n+1,p,a,8) € AS;(m,n,p, a, B).

Proof. Let the function f(z) defined by (1.3) in the class AS%(m,n+1,p,a, 8). Then by the Theorem
2.1, we have

o

> (k—ap)(p—Bp+ BRI " agby < pttT(1—a)
k=2p+1
consequently
> lk—ap) (p—Bp+ BRI K" agb < Y [(k—ap) (p— Bp + BR) K" " agdy
k=2p+1 k=2p+1

S pn+m+2 (1 _ a) .

This completes the proof of the Theorem 2.4 with the aid of the Theorem 2.1.

3 Disortion Inequalities

In this section, we shall prove distortion theorems for the functions belonging to the class
AS:(m,n,p, a, B).

Theorem 3.1. Let the functions f(z) of the form (1.3) be in the class AS};(m,n,p,a, (). Then
for|z| =1 < 1, we have

pn+m+l (1 _ Oé)

[(2p+1—ap) (p+Bp+B)] 2o+ 1) by

|f(2)] =P — s (3.1
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and
pn+m+1 (1 _ a)

[(2p+1—ap)(p+Bp+B)] 2o+ 1) by

The inequalities (3.1) and (3.2) are attained for the function f(z) given by

If(2)| <P+ p2rtl, (3.2)

n+m+1 (1 _

f(z) =27 - P @) ey
[(2p+1—ap) (p+Bp+B8)] 2o+ 1) ™ by

Proof. Since f (2) € AS;(m,n, p, , ),we apply Theorem 2.1, we obtain

2p+1-ap)(p+Bp+8) 2o+ 1) byt Y
k=2p+1

< N [(k—ap) (p—Bp+ BRI K Lagh, < p" (1 - a).
k=2p+1

Thus, we obtain

3 < P (1= a) . (33)
k=2p+1 [2p+1l—ap)(p+Bp+B)](2p+ 1)n+m71 bapt1

From (1.3) and (3.3), we have

e nt+m+1 (1 _
|f(Z)| < |Z‘p+|2‘2p+1 Z ap < Py p (1 a) — T2p+l
f2pt 1 (2p+1—ap) (p+Bp+B)] (2p+1) bop+1
e n+m-+1 _
PG = PP Y ap = AR ) N
k2p 1 (2p+1—ap)(p+Bp+B)] (2p+1) bap+1

This completes the proof of Theorem 3.1.

Theorem 3.2. Let the functions f(z) of the form (1.3) be in the class AS;(m,n,p,a, 3). Then
for|z| =r < 1, we have

F @]z - e Ty
[(2p+1—ap)(p+Bp+B)](2p+1) bap+1
and
n+m-+1 _
£ )] <prv + g (1 a) . (35)

[(2p+1—ap) (p+Bp+ B)] 2p + 1) " by
The inequalities (3.4) and (3.5) are attained for the function f(z) given by

1
ntmil (] @) 2

fz)=2" - .
[(2p+1—ap)(p+pBp+B)](2p+1)

n+m—2
b2p+l

Proof. From Theorem 2.1 and (3.3), we have

e n+m+1 _
Z kak < £ (1 a) n+m—2 :
kp ] (2p+1—ap)(p+Bp+B)] (2p+1) bap+1

and the remaining part of the proof is similar to the proof of the Theorem 3.1 .
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4 Extreme Points
Theorem 4.1. Let f, (2) = 2P and

B pn+m+l (1 _ Oé) i
Je) =2~ o o= B+ AR Ty

by 20,0<8<1,0<a<1,mmnpeN).

Then f(z) € AS;(m,n,p,a, B) if and only if it can be expressed in the following form

PO =2t S Ao,

k=2p+1
where A, > 0,\; > 0and Ay + Y M =1.
k=2p+1
Proof. Suppose that
© > pn+m+l (1 _ Oz)
f(z) = A2 + Z Aefe(z) = 2P — Z Ak p—

Then from Theorem 2.1, we have

= _ n+m+1 1— a)
k — _ k kn+m 1)\ p (
ZZ [(k = ap) (p — Bp+ Bk)] M an) =B+ BRI
= Z )\kpn+m+1 (1 — a) < pn+m+1 (] — a) (1 — )\p) < pn+m+1 (1 . a).
k=2p+1

Thus , in view of Theorem 2.1, we find that f(z) € AS};(m,n,p, a, B).
Conversely, suppose that f(z) € AS;(m,n, p,, ). Then, since
n+m-+1 (1

p —a)

WS [ ap) (0 Bpt B ey, PEN)
we may set
_ _ n+m—1
el e gl
and

Ay =1— i A

k=2p+1

Thus, clearly, we have

f(2) = M\p2P + i A fr(2).

k=2p+1

This completes the proof of theorem.

Corollary 4.2. The extreme points of the class AS};(m,n,p,«, (3) are given by
fo(2) =27

and

pn+m+1 (1 _ a) Zk
[(k _ ap) (p _ Bp + Bk)] kn+m—]bk ’

Theorem 4.3. The class AS;(m,n,p,, B) is a convex set .

fr (2) = 2P —

(k>2p+1,peN).

k

A.1)
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Proof. Suppose that each of the functions f;(z), (i = 1,2) given by

Z ari2", (ak,: > 0)
k=2p+1
is in the class AS} (m,n,p, o, §). It is sufficient to show that the function g(z) defined by
9(2) = nfi(z) + (1 —n) f2(2), (O<n<l)

is also in the class AS;‘(m, n,p, a, (). Since

oo
g(z)=n|2* - Z aklz +(1—n) |- Z ak,zzk

k=2p+1 k=2p+1
o0
=22 = Y [naka + (1 —n)axo] 2
k=2p+1

with the aid of Theorem 2.1, we have

o

>7 [tk =ap) (0= Bp+ B K™ Inags + (1= m) ara] be
k=2p+1

oo o

=n > lk—ap)(p—Bp+ Bk K" ™ lap b+ (1 —n) D> [(k—ap)(p—Bp+ Bk K" ap bk
k=2p+1 k=2p+1

< npn+m+1 (1 o a) 4 (1 o n)pn+m+1 (1 o a) — pn+m+1 (1 o a).

5 Integral Means Inequalities
In 1925, Littelewood prove the following subordination lemma.

Lemma 5.1. ( Littlewood [3]) If f and g are analytic in U with f < g, then for n > 0 and

z=re? (0<r<1)
2 27
/If(z)l“dé) S/lg(z)|“d9.
0 0

We will make use of Lemma 5.1 to prove the following theorem.

Theorem 5.2. Let f(z2) € AS;(m,n,p,a,B) and fi.(2) is defined by (4.1). If there exist an
analytic function w(z) given by

bep _ Lk —0ap) (p—Bp+ BRI K" b o~ 4y
(=) = D

k=2p+1
then for z = re®® (0 <r < 1)
27 27
/ Frd®)[" o < / lg(re®)[" do. (1> 0).
0 0

Proof. We must show that

2
o n+m+l (1 . a) I
1— § azH do </‘1— k7P| qp.
0/ g k—ap (p Bp + Bk)] kntm=1b,

k=2p+1
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By

By

we

applying Littlewood’s subordination lemma, it would suffice to show that

k=2p+1 [(k —ap) (p — Bp + BE)] kntm—1by
setting
> n+m-+1 (1 o a) .
= apz" P =1~ b w(z p’
g,;ﬂ ' [ —ap) (o — Fp + Bk)] Forv=Tpy ()
find that

—« _ n+m—1 X > 3
i) = =D B2 ARt PO D 5 st

k=2p+1

which readily yields w(0) = 0.

Thi

Furthermore, using(2.1) we obtain

-, k— — k)] Ertm=lp, & .

|w(2)|k P = [( ap)212+m3+]17(‘|15()j) : Z apzFP
k=2p+1

k— — k) ke, O

< MEenlp B PE T S el

k=2p+1
< JzFP < 1.

s completes the proof of the theorem.
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