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Abstract. In the present paper, we introduce a new class of p-valent functions by making use
of convolution structure and study some of their interesting properties such as coefficient bounds,
inclusion relation, distortion inequalities, extreme points and integral means inequalities.

1 Introduction

Let Ap denote the class of functions of the form

f(z) = zp +
∞∑

k=2p+1

akz
k, (p ∈ N = {1, 2, 3, ......., }) . (1.1)

which are analytic and p-valent in the open unite disk U = {z : z ∈ C set of all complex numbers and |z| < 1}.
A function f ∈ Ap is β-pascue convex of order α if

1
p

Re

(1 − β) zf
′
(z) + β

p z
(
zf

′
(z)

)′

(1 − β) f (z) + β
p f

′ (z)

 > α (0 ≤ β ≤ 1, 0 ≤ α < 1) .

In other words (1 − β) f (z) + β
p f

′
(z) is in f ∈ S∗

p the class of p-valent starlike functions.(for
details [6],see also [1],[5]).

Given two functions f, g ∈ Ap,where f is given by (1.1) and g is given by

g(z) = zp +
∞∑

k=2p+1

bkz
k (p ∈ N) ,

the Hardmard product (or convolution) f ∗ g is defined by

(f ∗ g) (z) = zp +
∞∑

k=2p+1

akbkz
k = (g ∗ f) (z) , z ∈ U. (1.2)

For functions f and g, analytic in U , we say that the function f (z) is subordinate to g (z) in U
written as

f (z) ≺ g (z) (z ∈ U) ,
if there exists a Schwarz function w (z), analytic in U with w (0) = 0 and |w (z)| < 1 such

that
f (z) = g (w (z)) (z ∈ U) .
In particular, if the function g is univalent in U , the above sobordination is equivalent to
f (0) = g (0) and f (U) ⊂ g (U).
See also Duren [2].
Salagean [7] introduced the following operator which is popularly known as the Salagean

derivative operator :

D0f (z) = f (z)

D1f (z) = Df (z) = zf
′
(z)
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...................................

Dnf (z) = D
(
Dn−1f (z)

)
(n ∈ N0 = N ∪ {0}) .

We easily find from (1.1) that

Dnf (z) = pnzp +
∞∑

k=2p+1

knakz
k (f ∈ Ap;n ∈ N0) .

We denote by Tp the subclass of Ap consisting of functions of the form

f(z) = zp −
∞∑

k=2p+1

akz
k, (ak ≥ 0, p ∈ N) . (1.3)

which are p-valent in U .
For a given function g ∈ Ap defined by

g(z) = zp +
∞∑

k=2p+1

bkz
k, (bk ≥ 0, p ∈ N) . (1.4)

We introduce here a new class AS∗
g (m,n, p, α, β) of functions belonging to the class Tp which

consists of functions f (z) of the form (1.3) satisfying the following inequality :

1
p

Re

[
(1 − β)Dn+m (f ∗ g) (z) + β

pD
n+m+1 (f ∗ g) (z)

(1 − β)Dn+m−1 (f ∗ g) (z) + β
pD

n+m (f ∗ g) (z)

]
> α (1.5)

where (0 ≤ β ≤ 1, 0 ≤ α < 1,m, n, p ∈ N).
We note that for m = 1, this class was introduced and studied by Birgul Oner and Sevtap

Sumer Eker [4].
In this paper, we determine the coefficient inequalities, distortion theorem as well as integral

means inequalities for functions in the class AS∗
g (m,n, p, α, β).

2 Coefficient inequalities and some inclusion relations

We first prove a necessary and sufficient condition for functions to be in the class AS∗
g (m,n, p, α, β)

as following:

Theorem 2.1. A function f (z) given by (1.3) is in AS∗
g (m,n, p, α, β) if and only if for 0 ≤ α <

1, 0 ≤ β ≤ 1,m, n, p ∈ N,

∞∑
k=2p+1

[(k − αp) (p− βp+ βk)] kn+m−1akbk ≤ pn+m+1 (1 − α) . (2.1)

The result is sharp.
Proof. Assume that f ∈ AS∗

g (m,n, p, α, β).Then, in view of (1.3) to (1.5), we have

1
p

Re

[
(1 − β)Dn+m (f ∗ g) (z) + β

pD
n+m+1 (f ∗ g) (z)

(1 − β)Dn+m−1 (f ∗ g) (z) + β
pD

n+m (f ∗ g) (z)

]

=
1
p

Re


(1 − β) pn+mzp −

∞∑
k=2p+1

(1 − β) kn+makbkz
k +

β

p

pn+m+1zp −
∞∑

k=2p+1

kn+m+1akbkz
k


(1 − β) pn+m−1zp −

∞∑
k=2p+1

(1 − β) kn+m−1akbkz
k +

β

p

pn+mzp −
∞∑

k=2p+1

kn+makbkz
k
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=
1
p

Re


pn+mzp −

∞∑
k=2p+1

(
1 − β +

β

p
k

)
kn+makbkz

k

(1 − β) pn+m−1zp −
∞∑

k=2p+1

(
1 − β +

β

p
k

)
kn+m−1akbkz

k

 > α

If we choose z to be real and let r → 1−, the last inequality leads us to desired to assertion (2.1)
of Theorem 2.1 .

Conversely, assume that (2.1) holds for f(z) ∈ Ap, let us define the function F(z) by

F (z) =
1
p

(1 − β)Dn+m (f ∗ g) (z) + β
pD

n+m+1 (f ∗ g) (z)
(1 − β)Dn+m−1 (f ∗ g) (z) + β

pD
n+m (f ∗ g) (z)

− α

it suffices to show thats ∣∣∣∣F (z)− 1
F (z) + 1

∣∣∣∣ < 1 (z ∈ U) .

We note that ∣∣∣∣F (z)− 1
F (z) + 1

∣∣∣∣
=

∣∣∣∣∣∣
(1 − β)Dn+m (f ∗ g) (z) + β

pDn+m+1 (f ∗ g) (z) − p (α + 1)
[
(1 − β)Dn+m−1 (f ∗ g) (z) + β

pDn+m (f ∗ g) (z)
]

(1 − β)Dn+m (f ∗ g) (z) + β
pDn+m+1 (f ∗ g) (z) − p (α − 1)

[
(1 − β)Dn+m−1 (f ∗ g) (z) + β

pDn+m (f ∗ g) (z)
]
∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣
−αpn+m−

∞∑
k=2p+1

(k − αp− p)

(
1 − β +

β

p
k

)
kn+m−1akbkz

k−p

(2−α)pn+m−

∞∑
k=2p+1

(k − αp− p)

(
1 − β +

β

p
k

)
kn+m−1akbkz

k−p

∣∣∣∣∣∣∣∣∣∣
The last expression is bounded above by 1, if

αpn+m+1 +
∞∑

k=2p+1

[(k − αp− p) (p− βp+ βk)] kn+m−1akbk

≤ (2 − α) pn+m+1 −
∞∑

k=2p+1

[(k − αp− p) (p− βp+ βk)] kn+m−1akbk

which is equivalent to our condition (2.1). This completes the proof of our theorem.
The result is sharp for the functions
f (z) = zp − pn+m+1(1−α)

[(k−αp)(p−βp+βk)]kn+m−1bk
zk.

Corollary 2.2. Let f(z) given by (1.3). If f ∈ AS∗
g (m,n, p, α, β), then

ak ≤ pn+m+1 (1 − α)

[(k − αp) (p− βp+ βk)] kn+m−1bk

with equality only for functions of the form

fk (z) = zp − pn+m+1 (1 − α)

[(k − αp) (p− βp+ βk)] kn+m−1bk
zk.

Proof. If f ∈ AS∗
g (m,n, p, α, β), then by making use of (2.1), we obtain

[(k − αp) (p− βp+ βk)] kn+m−1akbk ≤
∞∑

k=2p+1

[(k − αp) (p− βp+ βk)] kn+m−1akbk

≤ pn+m+1 (1 − α)
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or

ak ≤ pn+m+1 (1 − α)

[(k − αp) (p− βp+ βk)] kn+m−1bk

clearly for

fk (z) = zp − pn+m+1 (1 − α)

[(k − αp) (p− βp+ βk)] kn+m−1bk
zk,

we have

ak ≤ pn+m+1 (1 − α)

[(k − αp) (p− βp+ βk)] kn+m−1bk
.

Theorem 2.3. Let 0 ≤ α1 ≤ α2 < 1,m, n, p ∈ N and 0 ≤ β ≤ 1 then

AS∗
g (m,n, p, α1, β) ⊇ AS∗

g (m,n, p, α2, β).

Proof. Let the function f(z) defined by (1.3) in the class AS∗
g (m,n, p, α2, β). Then by the

Theorem 2.1, we have

∞∑
k=2p+1

[(k − α2p) (p− βp+ βk)] kn+m−1akbk ≤ pn+m+1 (1 − α2)

consequently

∞∑
k=2p+1

[(k − α1p) (p− βp+ βk)] kn+m−1akbk ≤
∞∑

k=2p+1

[(k − α2p) (p− βp+ βk)] kn+m−1akbk

≤ pn+m+1 (1 − α2) .

This completes the proof of the Theorem 2.3 with the aid of the Theorem 2.1.

Theorem 2.4. Let 0 ≤ α < 1,m, n, p ∈ N and 0 ≤ β ≤ 1 then

AS∗
g (m,n+ 1, p, α, β) ⊆ AS∗

g (m,n, p, α, β).

Proof. Let the function f(z) defined by (1.3) in the class AS∗
g (m,n+1, p, α, β). Then by the Theorem

2.1, we have

∞∑
k=2p+1

[(k − αp) (p− βp+ βk)] kn+makbk ≤ pn+m+2 (1 − α)

consequently

∞∑
k=2p+1

[(k − αp) (p− βp+ βk)] kn+m−1akbk ≤
∞∑

k=2p+1

[(k − αp) (p− βp+ βk)] kn+makbk

≤ pn+m+2 (1 − α) .

This completes the proof of the Theorem 2.4 with the aid of the Theorem 2.1.

3 Disortion Inequalities

In this section, we shall prove distortion theorems for the functions belonging to the class
AS∗

g (m,n, p, α, β).

Theorem 3.1. Let the functions f(z) of the form (1.3) be in the class AS∗
g (m,n, p, α, β). Then

for |z| = r < 1, we have

|f(z)| ≥ rp − pn+m+1 (1 − α)

[(2p+ 1 − αp) (p+ βp+ β)] (2p+ 1)n+m−1
b2p+1

r2p+1 (3.1)



GENERALIZATION OF PASCUE-TYPE . . . 67

and

|f(z)| ≤ rp +
pn+m+1 (1 − α)

[(2p+ 1 − αp) (p+ βp+ β)] (2p+ 1)n+m−1
b2p+1

r2p+1. (3.2)

The inequalities (3.1) and (3.2) are attained for the function f(z) given by

f (z) = zp − pn+m+1 (1 − α)

[(2p+ 1 − αp) (p+ βp+ β)] (2p+ 1)n+m−1
b2p+1

z2p+1.

Proof. Since f (z) ∈ AS∗
g (m,n, p, α, β),we apply Theorem 2.1, we obtain

(2p+ 1 − αp) (p+ βp+ β) (2p+ 1)n+m−1
b2p+1

∞∑
k=2p+1

ak

≤
∞∑

k=2p+1

[(k − αp) (p− βp+ βk)] kn+m−1akbk ≤ pn+m+1 (1 − α) .

Thus, we obtain

∞∑
k=2p+1

ak ≤ pn+m+1 (1 − α)

[(2p+ 1 − αp) (p+ βp+ β)] (2p+ 1)n+m−1
b2p+1

. (3.3)

From (1.3) and (3.3), we have

|f(z)| ≤ |z|p+|z|2p+1
∞∑

k=2p+1

ak ≤ rp+
pn+m+1 (1 − α)

[(2p+ 1 − αp) (p+ βp+ β)] (2p+ 1)n+m−1
b2p+1

r2p+1

|f(z)| ≥ |z|p−|z|2p+1
∞∑

k=2p+1

ak ≥ rp− pn+m+1 (1 − α)

[(2p+ 1 − αp) (p+ βp+ β)] (2p+ 1)n+m−1
b2p+1

r2p+1.

This completes the proof of Theorem 3.1.

Theorem 3.2. Let the functions f(z) of the form (1.3) be in the class AS∗
g (m,n, p, α, β). Then

for |z| = r < 1, we have

∣∣∣f ′
(z)

∣∣∣ ≥ prp−1 − pn+m+1 (1 − α)

[(2p+ 1 − αp) (p+ βp+ β)] (2p+ 1)n+m−2
b2p+1

r2p (3.4)

and ∣∣∣f ′
(z)

∣∣∣ ≤ prp +
pn+m+1 (1 − α)

[(2p+ 1 − αp) (p+ βp+ β)] (2p+ 1)n+m−2
b2p+1

r2p. (3.5)

The inequalities (3.4) and (3.5) are attained for the function f(z) given by

f (z) = zp−1 − pn+m+1 (1 − α)

[(2p+ 1 − αp) (p+ βp+ β)] (2p+ 1)n+m−2
b2p+1

z2p.

Proof. From Theorem 2.1 and (3.3), we have

∞∑
k=2p+1

kak ≤ pn+m+1 (1 − α)

[(2p+ 1 − αp) (p+ βp+ β)] (2p+ 1)n+m−2
b2p+1

.

and the remaining part of the proof is similar to the proof of the Theorem 3.1 .
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4 Extreme Points

Theorem 4.1. Let fp (z) = zp and

fk (z) = zp − pn+m+1 (1 − α)

[(k − αp) (p− βp+ βk)] kn+m−1bk
zk

(bk ≥ 0, 0 ≤ β ≤ 1, 0 ≤ α < 1,m, n, p ∈ N) .

Then f(z) ∈ AS∗
g (m,n, p, α, β) if and only if it can be expressed in the following form

f(z) = λpz
p +

∞∑
k=2p+1

λkfk(z),

where λp ≥ 0, λk ≥ 0 and λp +
∞∑

k=2p+1

λk = 1.

Proof. Suppose that

f(z) = λpz
p +

∞∑
k=2p+1

λkfk(z) = zp −
∞∑

k=2p+1

λk
pn+m+1 (1 − α)

[(k − αp) (p− βp+ βk)] kn+m−1bk
zk.

Then from Theorem 2.1, we have

∞∑
k=2p+1

[(k − αp) (p− βp+ βk)] kn+m−1λk
pn+m+1 (1 − α)

[(k − αp) (p− βp+ βk)] kn+m−1bk
zk

=
∞∑

k=2p+1

λkp
n+m+1 (1 − α) ≤ pn+m+1 (1 − α) (1 − λp) ≤ pn+m+1 (1 − α) .

Thus , in view of Theorem 2.1, we find that f(z) ∈ AS∗
g (m,n, p, α, β).

Conversely, suppose that f(z) ∈ AS∗
g (m,n, p, α, β). Then, since

ak ≤ pn+m+1 (1 − α)

[(k − αp) (p− βp+ βk)] kn+m−1bk
(p ∈ N) ,

we may set

λk =
[(k − αp) (p− βp+ βk)] kn+m−1bk

pn+m+1 (1 − α)
ak (p ∈ N)

and

λp = 1 −
∞∑

k=2p+1

λk.

Thus, clearly, we have

f(z) = λpz
p +

∞∑
k=2p+1

λkfk(z).

This completes the proof of theorem.

Corollary 4.2. The extreme points of the class AS∗
g (m,n, p, α, β) are given by

fp(z) = zp

and

fk (z) = zp − pn+m+1 (1 − α)

[(k − αp) (p− βp+ βk)] kn+m−1bk
zk, (k ≥ 2p+ 1, p ∈ N) . (4.1)

Theorem 4.3. The class AS∗
g (m,n, p, α, β) is a convex set .
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Proof. Suppose that each of the functions fi(z), (i = 1, 2) given by

fi(z) = zp −
∞∑

k=2p+1

ak,iz
k, (ak,i ≥ 0)

is in the class AS∗
g (m,n, p, α, β). It is sufficient to show that the function g(z) defined by

g(z) = ηf1(z) + (1 − η) f2(z), (0 ≤ η < 1)

is also in the class AS∗
g (m,n, p, α, β). Since

g(z) = η

zp −
∞∑

k=2p+1

ak,1z
k

+ (1 − η)

zp −
∞∑

k=2p+1

ak,2z
k


= zp −

∞∑
k=2p+1

[ηak,1 + (1 − η) ak,2] z
k

with the aid of Theorem 2.1, we have

∞∑
k=2p+1

[(k − αp) (p− βp+ βk)] kn+m−1 [ηak,1 + (1 − η) ak,2] bk

= η

∞∑
k=2p+1

[(k − αp) (p − βp + βk)] k
n+m−1

ak,1bk + (1 − η)

∞∑
k=2p+1

[(k − αp) (p − βp + βk)] k
n+m−1

ak,2bk

≤ ηpn+m+1 (1 − α) + (1 − η) pn+m+1 (1 − α) = pn+m+1 (1 − α) .

5 Integral Means Inequalities

In 1925, Littelewood prove the following subordination lemma.

Lemma 5.1. ( Littlewood [3]) If f and g are analytic in U with f ≺ g, then for µ > 0 and
z = reiθ (0 < r < 1)

2π∫
0

|f(z)|µ dθ ≤
2π∫

0

|g(z)|µ dθ.

We will make use of Lemma 5.1 to prove the following theorem.

Theorem 5.2. Let f(z) ∈ AS∗
g (m,n, p, α, β) and fk(z) is defined by (4.1). If there exist an

analytic function w(z) given by

[w(z)]k−p =
[(k − αp) (p− βp+ βk)] kn+m−1bk

pn+m+1 (1 − α)

∞∑
k=2p+1

akz
k−p,

then for z = reiθ (0 < r < 1)

2π∫
0

∣∣f(reiθ)∣∣µ dθ ≤
2π∫

0

∣∣g(reiθ)∣∣µ dθ. (µ > 0).

Proof. We must show that

2π∫
0

∣∣∣∣∣∣1 −
∞∑

k=2p+1

akz
k−p

∣∣∣∣∣∣
µ

dθ ≤
2π∫

0

∣∣∣∣1 − pn+m+1 (1 − α)

[(k − αp) (p− βp+ βk)] kn+m−1bk
zk−p

∣∣∣∣µ dθ.
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By applying Littlewood’s subordination lemma, it would suffice to show that

1 −
∞∑

k=2p+1

akz
k−p ≺ 1 − pn+m+1 (1 − α)

[(k − αp) (p− βp+ βk)] kn+m−1bk
zk−p.

By setting

1 −
∞∑

k=2p+1

akz
k−p = 1 − pn+m+1 (1 − α)

[(k − αp) (p− βp+ βk)] kn+m−1bk
[w(z)]

k−p
,

we find that

[w(z)]
k−p

=
[(k − αp) (p− βp+ βk)] kn+m−1bk

pn+m+1 (1 − α)

∞∑
k=2p+1

akz
k−p

which readily yields w(0) = 0.
Furthermore, using(2.1) we obtain

|w(z)|k−p
=

∣∣∣∣∣∣ [(k − αp) (p− βp+ βk)] kn+m−1bk
pn+m+1 (1 − α)

∞∑
k=2p+1

akz
k−p

∣∣∣∣∣∣
≤ [(k − αp) (p− βp+ βk)] kn+m−1bk

pn+m+1 (1 − α)

∞∑
k=2p+1

ak|z|k−p

≤ |z|k−p < 1.

This completes the proof of the theorem.
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