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Abstract. The classical Korovkin theorem states the uniform convergence of positive linear
operators in C[a, b] by providing the convergence only on three test functions {e0, e1, e2} where
ek(x) = xk, k = 0, 1, 2 and this theorem has been extended in several directions with the aim
of finding other subsets of functions, called Korovkin subsets, i.e., satisfying the same property
as {e0, e1, e2}; establishing the same results in abstract Banach spaces. Another direction is to
consider more general type of convergences such as convergence generated by a regular summa-
bility matrix method, statistical and filter convergence. In this paper we introduceA−statistical
Korovkin subset for T and characterize that a subset of C0(X) is anA-statistical Korovkin subset
for T . We also give examples of A− statistical Korovkin subsets for the identity operator.

1 Introduction

Korovkin-type theorems provide simple and useful tools for determining whether a given se-
quence of positive linear operators, acting on some function spaces, converges to the identity
operator. In 1953, Korovkin [8] proved a well known approximation theorem: if {Lj} is a se-
quence of positive linear operators onC[0, 1] such that

∥∥Ljek−ek∥∥→ 0 as j →∞ for k = 0, 1, 2
where ek(x) = xk, then Lj converges strongly to the identity operator. This theory has deep
connections with real analysis, functional analysis and summability theory. Especially classi-
cal Korovkin theory has been generalized using different convergences in summability theory
[5, 11, 14]. Besides this Korovkin-type theorems have also been extended in several directions
with the aim of such as finding other subsets of functions, called Korovkin subsets, satisfy-
ing the same property as {e0, e1, e2} ; establishing the same results in other function spaces or
in abstract Banach spaces; establishing the same results for other classes of linear operators
[1, 3, 6, 9, 12, 13]. In the present paper we define the concept of A−statistical Korovkin subset
and give the characterization for a subset of C0(X) to be an A− statistical Korovkin subset.

Now we pause to collect some notations. Let A = {anj} be a nonnegative regular matrix.
The A− density of K ⊆ N is given by

δA(K) := lim
n

∑
j∈K

anj

provided that the limit exists. A sequence x = (xj) is called A − statistically convergent to a
number L if for every ε > 0,

δA ({j ∈ N : |xj − L| ≥ ε}) = 0. (1.1)

It is not difficult to see that (1.1) is equivalent to

lim
n→∞

∑
j:|xj−L|≥ε

anj = 0, for every ε > 0.

This limit expression is denoted by stA−lim
j
xj = L [7, 10]. It is known that x isA−statistically

convergent to a number L if and only if there exists a subset K of N such that δA(K) = 1
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and lim
j∈K

xj = L. The cases in which A = C1, the Cesàro matrix and A = I, the identity

matrix,A−statistical convergence reduces to statistical convergence and ordinary convergence,
respectively [4].

Definition 1.1. x is said to be A-statistically bounded if there is a number d such that
δA({j : |xj | > d}) = 0.

It is easy to see that every A-statistically convergent sequence is also A-statistically bounded.

Definition 1.2. Let f : E → R be a real function on a topological space E. The set

supp(f) := {x : f(x) 6= 0}

is called the support of f .

Let C(E) be the set of all continuous functions on E. If E is locally compact, we will denote
by Cc(E) the set of all f ∈ C(E) with compact support supp(f). A function f ∈ C(E) lies in
Cc(E) just if there is some compact subset ofE in the complement of which f is identically zero.
We denote by Cb(E) and C0(E) all bounded, continuous real functions on E and the closure of
Cc(E) with respect to the usual sup-norm.

Clearly
Cc(E) ⊂ C0(E) ⊂ Cb(E) ⊂ C(E)

since an f ∈ Cc(E) is bounded on its compact support, hence throughout E.
Recall that positive bounded Radon measure is a positive linear functional on C0(E). The set of
all of positive bounded Radon measures is denoted by M+

b . It is obvious that every µ ∈ M+
b ,

that is, every positive linear functional µ : C0(E) → R is continuous with respect to the norm
given by

‖µ‖ := sup
{
|µ(f)| : f ∈ C0(E), |f | ≤ 1

}
.

The following result is known as Urysohn’s lemma.

Proposition 1.3. Let E be a locally compact space and U be an open neighbourhood of the
compact subset B. Then Cc(E) contains a function ϕ which satisfies

0 ≤ ϕ ≤ 1, ϕ(B) = {1} and supp(ϕ) ⊂ U.

Definition 1.4. Let A = {anj} be a nonnegative regular summability method, also E and F be
Banach lattices and consider a positive linear operator T : E → F . A subset M of E is said to
be an A − statistical Korovkin subset of E for T if for every sequence {Lj} of positive linear
operators from E into F satisfying
(i) there exists a subset K ⊆ N such that δA(K) = 1 and sup

j∈K
‖Lj‖ <∞

(ii) stA − lim
j→∞

‖Lj(g)− T (g)‖ = 0 for every g ∈M,

then
stA − lim

j→∞
‖Lj(f)− T (f)‖ = 0 for every f ∈ E.

Theorem 1.5. Let A = {anj} be a nonnegative regular summability method. Let X and Y
be locally compact Hausdorff spaces. Further, assume that X has a countable base and Y is
metrizable. Given a positive linear operator T : C0(X)→ C0(Y ) and a subset M of C0(X), the
following statements are equivalent:
(a) M is an A− statistical Korovkin subset of C0(X) for T .
(b) If µ ∈M+

b (X) and y ∈ Y satisfying µ(g) = T (g)(y) for every g ∈M , then µ(f) = T (f)(y)
for every f ∈ C0(X).

Proof. Assume that µ ∈M+
b (X) and y ∈ Y satisfying µ(g) = T (g)(y) for every g ∈M . Let us

take a decreasing countable base (Uj) of open neighbourhoods of y in Y . From Proposition 1.3
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if we consider the compact set {y}, we choose ϕj ∈ Cc(Y ) such that: 0 ≤ ϕj ≤ 1, ϕj(y) = 1
and also supp(ϕj) ⊂ Uj . Let us define Lj : C0(X)→ C0(Y ) by

Lj(f) := µ(f)ϕj + vjT (f)(1− ϕj) for every f ∈ C0(X)

where the sequence {vj} is nonnegative and A − statistically convergent to 1 but not ordinary
convergent. Observe that {Lj} is a sequence of positive linear operators and also

‖Lj‖ ≤ ‖µ‖+ |vj |‖T‖

so sup
j∈K
‖Lj‖ ≤ H where K ⊂ N such that δA(K) = 1 since the sequence {vj} is also A −

statistically bounded. On the other hand, since T (g) ∈ C0(Y ) for every g ∈ M , for every
ε > 0, there exists m ∈ N such that∣∣T (g)(z)− T (g)(y)∣∣ ≤ ε for every z ∈ Um.
So one can get

|T (g)(y)− vjT (g)(z)| = |T (g)(y)− vjT (g)(z)− T (g)(z) + T (g)(z)|
≤ |T (g)(z)− T (g)(y)|+ |T (g)(z)||vj − 1|
≤ ε+ |T (g)(z)||vj − 1|, for every z ∈ Um.

Moreover for every j ≥ m and for every z ∈ Y , we have∣∣∣Lj(g)(z)− T (g)(z)∣∣∣ = ∣∣∣µ(g)ϕj(z) + vjT (g)(z)− vjT (g)(z)ϕj(z)− T (g)(z)
∣∣∣

≤ ϕj(z)
∣∣µ(g)− vjT (g)(z)∣∣+ |vj − 1||T (g)(z)|

≤ ϕj(z)
∣∣T (g)(y)− vjT (g)(z)∣∣+ |vj − 1||T (g)(z)|

≤
∣∣T (g)(y)− vjT (g)(z)∣∣+ |vj − 1||T (g)(z)|.

Hence using the last inequality we get for j ≥ m,∣∣∣Lj(g)(z)− T (g)(z)∣∣∣ ≤ {|vj − 1||T (g)(z)| , z /∈ Uj
ε+ 2|T (g)(z)||vj − 1| , z ∈ Uj

and since {vj} is A-statistically convergent to 1, we obtain

stA − lim
j

∥∥∥Lj(g)− T (g)∥∥∥ = 0.

Furthermore M is an A − statistical Korovkin subset for T , so it is obtained that for every
f ∈ C0(X), that stA − lim

j

∥∥∥Lj(f) − T (f)∥∥∥ = 0. But for every j ≥ 1, Lj(f)(y) = µ(f), then

we obtain µ(f) = T (f)(y) for every f ∈ C0(X). This completes the proof of (b).
Conversely assume that if µ ∈ M+

b (X) and y ∈ Y satisfy µ(g) = T (g)(y) for every g ∈ M ,
then µ(f) = T (f)(y) for every f ∈ C0(X). Observe that

if µ ∈M+
b (X) and µ(g) = 0 for every g ∈M, then µ = 0. (1.2)

Since X has a countable base, every bounded sequence in M+
b (X) has a vaguely convergent

subsequence (See [2]). Consider now a sequence {Lj} of positive linear operators from C0(X)
into C0(Y ) satisfying properties (i) and (ii) of Definition 1.4 and suppose that for some f0 ∈
C0(X) stA − lim

j
‖Lj(f0) − T (f0)‖ 6= 0, i.e., there exists K ⊂ N such that δA(K) 6= 0 and

‖Lj(f0)− T (f0)‖j∈K does not converge to 0. So there exist ε0 > 0 and {yj} ⊂ Y such that
δA({n(j) ∈ K : j = 1, 2, 3, ...}) 6= 0 and∣∣∣Ln(j)(f0)(yj)− T (f0)(yj)

∣∣∣ ≥ ε0. (1.3)
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We have two cases: (yj) is converging to the point at infinity of Y or not. In the first case, since
(yj) converges to the point at infinity of Y we get lim

j→∞
h(yj) = 0 for every h ∈ C0(Y ). For

every j ≥ 1, define µj ∈M+
b (X) by

µj(f) := Ln(j)(f)(yj) (f ∈ C0(X)).

From hypothesis, we have sup
j
‖µj‖ ≤ sup

j
‖Ln(j)‖ ≤ H . Since (µj) is bounded, we may assume

that there exists µ ∈M+
b (X) such that µj → µ vaguely (If necessary the sequence µj is replaced

with a suitable subsequence). On the other hand if g ∈M , then

|µj(g)| ≤
∣∣∣Ln(j)(g)(yj)− T (g)(yj)∣∣∣+ ∣∣T (g)(yj)∣∣

≤
∥∥∥Ln(j)(g)− T (g)∥∥∥+ ∣∣T (g)(yj)∣∣

which implies µ(g) = lim
j
µj(g) = 0. From (1.2) we obtain µ(f0) = 0 as well and hence

∣∣∣Ln(j)(f0)(yj)− T (f0)(yj)
∣∣∣ = ∣∣µj(f0)− T (f0)(yj)

∣∣→ 0.

This contradicts (1.3). In the second case the sequence (yj) does not converge to the point at
infinity of Y . By replacing it with a suitable subsequence, we may assume that it converges to
some y ∈ Y . Let us consider

µj(f) := Ln(j)(f)(yj) (f ∈ C0(X)).

As in the first case the same reasoning we may assume that there exists µ ∈ M+
b (X) such that

µj → µ vaguely. Moreover since for every g ∈M ,∣∣∣µj(g)− T (g)(yj)∣∣∣ = ∣∣Ln(j)(g)(yj)− T (g)(yj)∣∣ ≤ ∥∥Ln(j)(g)− T (g)∥∥→ 0,

we have µ(g) = T (g)(y). So (b) implies µ(f0) = T (f0)(yj), i.e.,

lim
j→∞

[
Ln(j)(f0)(yj)− T (f0)(yj)

]
= 0

which contradicts (1.3).

If we replace T : X → Y with the identity operator IX : X → X , one can immediately get
the following

Theorem 1.6. A = {anj} be a nonnegative regular summability method. Let X be a locally
compact Hausdorff space with a countable base, which is then metrizable as well. Given a
subset M of C0(X), the following statements are equivalent:
(i) M is an A− statistical Korovkin subset of C0(X) for identity operator IX .
(ii) If µ ∈ M+

b (X) and x ∈ X satisfy µ(g) = g(x) for every g ∈ M , then µ(f) = f(x) every
f ∈ C0(X) i.e. µ = IX .

Corollary 1.7. Under the assumptions of Theorem 1.5, the following statements are equivalent:
(i) M is a Korovkin subset of C0(X) for T.
(ii) M is an A− statistical Korovkin subset of C0(X) for T.

By using Corollary 1.7 we obtain all results given in Chapter 6 of [2] for A − statistical
Korovkin subset.
We first recall that a mapping ϕ : Y → X is said to be proper if for every compact subsetK ∈ X ,
the inverse image ϕ−1(K) := {y ∈ Y : ϕ(y) ∈ K} is compact in Y where X and Y are locally
compact Hausdorff spaces. In this case, foϕ ∈ C0(Y ) for every f ∈ C0(X).

Now we provide an application of our main theorem.
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Corollary 1.8. Let Y be metrizable locally compact Hausdorff space. If M is an A− statistical
Korovkin subset of C0(X) for IX , then M is an A− statistical Korovkin subset for any positive
linear operator T : C0(X)→ C0(Y ) of the form

T (f) := λ(foϕ), (f ∈ C0(X))

where λ ∈ Cb(Y ), λ ≥ 0 and ϕ : Y → X is a proper mapping.

Now we can give these examples of A − statistical Korovkin subsets for identity operator
under the light of our Corollary 1.7 and Corollary 6.7 and Proposition 6.8 of [2].

Given λ1, λ2, λ3 ∈ R, 0 < λ1 < λ2 < λ3 then

• {eλ1 , eλ2 , eλ3} is an A − statistical Korovkin subset of C0(X) where eλk
(x) := xλk for

every x ∈ X := (0, 1] and k = 1, 2, 3.

• {e−λ1 , e−λ2 , e−λ3} is an A−statistical Korovkin subset of C0(X) where e−λk
(x) := x−λk

for every x ∈ X := [1,+∞) and k = 1, 2, 3.

• {fλ1 , fλ2 , fλ3} is anA−statistical Korovkin subset of C0(X) where fλk
(x) := exp(−λkx)

for every x ∈ X := [0,+∞) and k = 1, 2, 3.
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