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Abstract The paper deals with the MHD pulsating flow of a micropolar fluid, sandwiched
between two viscous fluid layers inside permeable beds. Flow is considered in three Regions:
Region I and Region III contain the flow of Newtonian fluids while Region II includes the flow
of an electrically conducting micropolar fluid. Flow in Regions, I and III are assumed to be
governed by Navier-stokes equation and in Region II by constitutive equations proposed by
Eringen[16]. Continuity of velocity and shear stress is imposed at the fluid-fluid interface and
B-J slip boundary condition is employed at the fluid porous interface. The governing equations
are solved analytically and the expressions for velocity, mass flux, and shear stress are obtained.
The effects of physical governing parameters on velocity and shear stress on the permeable beds
are investigated.

1 Introduction

Study of multiphase flow has been one of the areas of great current interest due to increasing
applications. Examples of these applications are in the field of agricultural engineering to study
underground water resources[1]; in the petroleum industry to study the movement of natural
gases, oil and water through oil reservoirs; in studies of water in river beds. The term multi-
phase flow refers to the flow of two or more immiscible fluids of different densities/viscosities
in the same channel or through porous media. Blood flow in arteries has been studied by many
researchers considering blood as a two-phase flow[2, 3, 4, 5].

Vajravelu et al.[6] studied the hydromagnetic unsteady flow of two conducting immiscible
fluids between two permeable beds. After that, they analysed the pulsatile flow of a viscous fluid
between two permeable beds[7]. Flow inside permeable beds, under exponentially decaying
pressure gradient is investigated by Prasad and Kumar[8]. Jogie and Bhatt[9] studied the flow
of immiscible fluids in a naturally permeable channel using B-J slip condition. Srinivas and
Murthy[10] studied the flow of two immiscible couple stress fluids between permeable beds and
concluded that presence of the couple stress reduces flow velocity. Three-layer fluid flow over a
small obstruction on the bottom of a channel is studied by S. Panda et.al.[11]. Umavathi et.al.[12]
studied unsteady flow in the porous medium sandwiched between viscous fluids. In the case of
flow past porous medium, Beavers and Joseph[13] have shown that the usual no-slip boundary
condition is no longer valid for porous boundaries and postulated the existence of slip at the
interface of a porous boundary resulting in the condition called B-J slip condition. According to
this condition, the Poiseuille velocity in a channel and Darcy’s velocity in the porous medium
can be coupled through the following equation:

∂uf
∂y

=
α

K
1
2
(uf − um)

Here the clear fluid region occupies the region (y > 0), uf is the fluid velocity and uf and ∂uf

∂y
are evaluated at y = 0+. The Darcy velocity um is evaluated at some small distance below from
y = 0. The Beaver-Joseph constant α is dimensionless constant, depends on the structure of
porous medium and independent of the fluid viscosity.



Micropolar fluid flow between permeable beds. 9

Figure 1

In recent years an enormous research is done on the flow of micro fluids as this class of fluids
represents many important fluids like paints, polymer, suspension and colloid fluids. Blood flow
is modelled as micropolar fluid flow by many authors[14, 15]. The micropolar fluid model,
introduced by Eringen[16, 17] is an extension of classical fluid dynamics. It takes into account
microrotation to the molecules different from the local vorticity of the flow. The occurrence of
microrotation vector which differs from the stream flow vorticity and angular velocity results
into formation of antisymmetric stress and couple stresses. Early studies and application of
micropolar fluid mechanics can be found in the review article by Peddieson and McNitt[18], and
Ariman et al.[19] and in the recent books by Lukaszewicz [20] and Eringen [21].

In past years, a significant research has been done on the flow of micropolar fluids. Ef-
fect of induced magnetic field on a peristaltic flow of micropolar fluid is analysed by Kh. S.
Mekheimer[22]. Bitla and Iyenger[23] studied pulsating flow of an incompressible micropolar
fluid between permeable beds. An analytical solution to the MHD flow of micropolar fluid over
a linearly stretching sheet is obtained by Siddheshwar and Mahabaleshwar[24]. Prathap Kumar
et.al.[25] studied the fully-developed free convective flow of micropolar and viscous fluids in
a vertical channel. Rawat et.al.[26] analysed MHD flow and heat transfer of micropolar fluid
of variable micro inertia density in a porous medium. Flow and heat transfer of two micropo-
lar fluids separated by a viscous fluid layer is investigated by Umavathi et al. [27]. Umavathi
et.al.[28] also analysed flow and heat transfer of a micropolar fluid sandwiched between viscous
fluid layers.

In view of various applications of MHD pulsating flow of micropolar fluids in natural sys-
tems, human systems and in many engineering problems, we analyzed an MHD pulsating flow
of a micropolar fluid, sandwiched between two viscous fluid layers inside permeable beds.The
effects of different flow parameters on velocity are displayed graphically and that on shear stress
at permeable beds are presented numerically through tables.

2 Mathematical Formulation

The geometry under consideration is illustrated in Fig. 1, consists of a region inside the perme-
able beds. The region 0 ≤ y ≤ h is occupied by a micropolar fluid of density ρ2, viscosity µ2
and vortex viscosity k, the region −h ≤ y ≤ 0 is filled with a viscous fluid of density ρ1 and
viscosity µ1. Region h ≤ y ≤ 2h is also filled by a viscous fluid of density ρ3 and viscosity µ3.
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The field equations describing a micropolar fluid[16] are given by

∂ρ

∂t
= div(ρ~V ) (2.1)

ρ
d~V

dt
= ρ~f − gradp+ kcurl~v − (µ+ k)curl(curl~V ) (2.2)

+(λ+ 2µ+ k)grad(div~V )

ρj
d~v

dt
= ρ~l − 2k~v +Kcurl~V − γcurl(curl~v) + (α′ + β + γ)grad(div~v) (2.3)

where ~V and ~v are velocity and microrotation vectors, respectively. ~f , ~l are the body force per
unit mass, body couple per unit mass respectively, and p is the pressure at any point. ρ and j are
the density of the fluid and microinertia density respectively, and are assumed to be constant. The
material quantities (λ, µ, k) are viscosity coefficients and (α′, β, γ) are gyroviscosity coefficients
satisfying the constraints

k ≥ 0, (2µ+ k) ≥ 0, (3λ+ 2µ+ k) ≥ 0, γ ≥ 0, β ≥ 0, (3α′ + β + γ) ≥ 0

Equations (2.1) − (2.3) represent the conservation of mass, conservation of linear momentum
and conservation of micro-inertia respectively. In the absence of ~l, ~f and k = α′ = β = γ = 0,
microrotation (gyration) vector becomes zero and the governing equations reduce to Navier-
Stokes equations.

We consider the fluids to be incompressible and immiscible and the flow is unsteady, laminar
and fully developed and driven only by a pulsatile pressure gradient

∂p

∂x
=

(
∂p

∂x

)
s

+

(
∂p

∂x

)
o

eiwt

where
(
∂p
∂x

)
s

and
(
∂p
∂x

)
o

are amplitudes of steady and oscillatory pulsations respectively and
w is the frequency. It is noted that the viscous fluids and micropolar fluid are immiscible (that
is there exist no mixing between the fluids) and the constitutive equations for viscous fluids and
micropolar fluid are different. For instance, Synovial fluid which is a clear thixotropic lubrication
fluid is a good example of micropolar fluids and water is a good example for viscous fluids and
it is well known that a synovial fluid and water can not mixed. Since our model is general, One
can choose any different fluids which are immiscible.

Assuming that non-zero component of velocity is X-component and in the absence of body
forces and body couple, the governing equations of fluid flow are

Region-I

ρ1
∂u1

∂t
= −∂p

∂x
+ µ1

∂2u1

∂y2 (2.4)

Region-II

ρ2
∂u2

∂t
= −∂p

∂x
+ (µ2 + k)

∂2u2

∂y2 + k
∂c

∂y
− σB2

ou2 (2.5)

ρ2j
∂c

∂t
= −2kc− k∂u2

∂y
+ γ

∂2c

∂y2 (2.6)

Region-III

ρ3
∂u3

∂t
= −∂p

∂x
+ µ3

∂2u3

∂y2 (2.7)

Here k, γ and j are vortex viscosity, spin gradient viscosity and microinertia density. σ is elec-
trical conductivity of micropolar fluid and Bo is strength of applied magnetic field, in direction
normal to the flow.

Herein the velocities u1(y, t), u2(y, t), u3(y, t) and microrotation velocity c(y, t) is to satisfy
the conditions
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∂u1

∂y
=

α√
K1

(u′1 −Q1) at y = −h (2.8)

u′1 = u1 at y = −h (2.9)

µ1
∂u1

∂y
= (µ2 + k)

∂u2

∂y
+ kc at y = 0 (2.10)

c = 0 at y = 0 (2.11)

u1 = u2 at y = 0 (2.12)

µ3
∂u3

∂y
= (µ2 + k)

∂u2

∂y
+ kc at y = h (2.13)

c = 0 at y = h (2.14)

u2 = u3 at y = h (2.15)
∂u3

∂y
= − α√

K2
(u′3 −Q2) at y = 2h (2.16)

u′3 = u3 at y = 2h (2.17)

Where Q1 = −K1
µ1

∂p
∂x and Q2 = −K2

µ3

∂p
∂x are Darcy’s velocities in the upper and lower per-

meable beds. Equations (2.8&2.16) represent the B-J slip boundary conditions respectively, at
the interfaces of upper and lower permeable beds. Equations (2.11&2.14) stipulates that the
microrotation velocity vanishes at the interfaces of the viscous fluids. In view of the pulsating
pressure gradient, let us assume that the velocities and microrotation velocity are in the form

ui = ui1 + ui2e
iwt , i = 1, 2, 3

c = cs + coe
iwt

where ui1 and cs represent steady parts and ui2 and co represent the oscillatory parts of the
velocity and microrotation respectively.

3 Non-dimensionalization of flow quantities

We introduce following non dimensional quantities to make the governing equations and the
boundary conditions dimensionless:

x∗ =
x

h
, y∗ =

y

h
, u∗i =

ui
u
, u∗i1 =

ui1
u
,

u∗i2 =
ui2
u
, c∗ =

c

h
, c∗s =

cs
h
, c∗o =

co
h
,

t∗ =
tu

h
,K∗i =

Ki

h2 , w
∗ =

wh

u
, p∗ =

p

ρu2

After dropping the asterisks, governing equations of motion (2.4, 2.5, 2.6, 2.7) are given by

∂u1

∂t
= −∂p

∂x
+

1
R1

∂2u1

∂y2 (3.1)

∂u2

∂t
= −ρ∂p

∂x
+

1
R2

∂2u2

∂y2 +
Cp
R2

∂c

∂y
− M2

R2
u2 (3.2)

∂c

∂t
= − 2n

R2Pj
c− n

R2Pj

∂u2

∂y
+

1
R2Pj

∂2c

∂y2 (3.3)

∂u3

∂t
= −ρ′ ∂p

∂x
+

1
R3

∂2u3

∂y2 (3.4)
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and boundary conditions (2.8− 2.17) become

∂u1

∂y
= ασ1(u

′
1 +

R1

σ2
1

∂p

∂x
) at y = −1 (3.5)

u′1 = u1 at y = −1 (3.6)
µ

m

∂u1

∂y
=

1
Cp

∂u2

∂y
+ c at y = 0 (3.7)

c = 0 at y = 0 (3.8)

u1 = u2 at y = 0 (3.9)
µ′

m

∂u3

∂y
=

1
Cp

∂u2

∂y
+ c at y = 1 (3.10)

c = 0 at y = 1 (3.11)

u2 = u3 at y = 1 (3.12)
∂u3

∂y
= −ασ2(u

′
3 + ρ′

R3

σ2
2

∂p

∂x
) at y = 2 (3.13)

u′3 = u3 at y = 2 (3.14)

where

ui = ui1 + ui2e
iwt , i = 1, 2, 3

c = cs + coe
iwt

−∂p
∂x

=

(
∂p

∂x

)
s

+

(
∂p

∂x

)
o

eiwt

are non-dimensional velocities, mocrorotation and pressure gradient respectively.
M = Boh

√
σ

µ2+k
is the Hartmann’s number. R1 = ρ1hu

µ1
, R2 = ρ2hu

µ2+k
, R3 = ρ3hu

µ3
are

Reynolds numbers respectively in flow regions I, II, III and σ1 = h√
K1
, σ2 = h√

K2
are non-

dimensional parameters inversely proportional to square root of permeabilities of regions I&III
respectively. Cp = k

µ2+k
is coupling parameter. Pj =

j(µ2+k)
γ is micorotation parameter, n = kh2

γ

is gyration parameter andm = k
µ2

is micropolar fluid material parameter.ρ = ρ1
ρ2

, ρ′ = ρ1
ρ3

, µ = µ1
µ2

and µ′ = µ3
µ2

are non-dimensional parameters.

3.1 Steady flow

The governing equations of steady flow are given by

d2u11

dy2 +R1Ps = 0 (3.15)

d2u21

dy2 + Cp
∂cs
∂y
−M2u21 + ρR2Ps = 0 (3.16)

d2cs
dy2 − n

du21

dy
− 2ncs = 0 (3.17)

d2u31

dy2 + ρ′R3Ps = 0 (3.18)

The boundary conditions to be satisfied by ui1 & cs are
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du11

dy
= ασ1(u

′
11 −

R1

σ2
1
Ps) at y = −1 (3.19)

u′11 = u11 at y = −1 (3.20)
µ

m

du11

dy
=

1
Cp

du21

dy
+ cs at y = 0 (3.21)

cs = 0 at y = 0 (3.22)

u11 = u21 at y = 0 (3.23)
µ′

m

du31

dy
=

1
Cp

du21

dy
+ cs at y = 1 (3.24)

cs = 0 at y = 1 (3.25)

u21 = u31 at y = 1 (3.26)
du31

dy
= −ασ2(u

′
31 − ρ′

R3

σ2
2
Ps) at y = 2 (3.27)

u′31 = u31 at y = 2 (3.28)

where Ps = ( ∂p∂x)s.

3.2 Oscillatory flow

The governing equations of oscillatory flow are given by

d2u12

dy2 − iwR1u12 +R1Po = 0 (3.29)

d2u22

dy2 − (M2 +R2iw)u22 + Cp
dco
dy

+ ρR2Po = 0 (3.30)

d2co
dy2 − n

du22

dy
− (2n+R2Pjiw) co = 0 (3.31)

d2u32

dy2 − iwR3u32 + ρ′R3Po = 0 (3.32)

The boundary conditions to be satisfied by ui2 & co are

du12

dy
= ασ1(u

′
12 −

R1

σ2
1
Po) at y = −1 (3.33)

u′12 = u12 at y = −1 (3.34)
µ

m

du12

dy
=

1
Cp

du22

dy
+ co at y = 0 (3.35)

co = 0 at y = 0 (3.36)

u12 = u22 at y = 0 (3.37)
µ′

m

du32

dy
=

1
Cp

du22

dy
+ co at y = 1 (3.38)

co = 0 at y = 1 (3.39)

u22 = u32 at y = 1 (3.40)
du32

dy
= −ασ2(u

′
32 − ρ′

R3

σ2
2
Po) at y = 2 (3.41)

u′32 = u32 at y = 2 (3.42)

where Po = ( ∂p∂x)o.
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4 Solution of the problem

4.1 Steady flow solution

The solution of steady flow described in section 3.1 is given by

u11 = C1 + C2y −
1
2
R1Psy

2

u21 = C3e
λ1y + C4e

λ2y + C5e
λ3y + C6e

λ4y +
R2Psρ

M2

cs = D3e
λ1y +D4e

λ2y +D5e
λ3y +D6e

λ4y

u31 = C7 + C8y −
1
2
R3Psρ

′y2

Since the expressions are very cumbersome so the constants Ci, i = 1, 2, 3, 4, 5, 6, 7, 8 and
Dj , j = 3, 4, 5, 6 are not reported.

4.2 Oscillatory flow solution

The solution of oscillatory flow described in section 3.2 is given by

u12 = C9e
√
iωR1y + C10e

−
√
iωR1y − iPo

ω

u22 = C11e
λ5y + C12e

λ6y + C13e
λ7y + C14e

λ8y +
R2Poρ

M2 + iωR2

co = D11e
λ5y +D12e

λ6y +D13e
λ7y +D14e

λ8y

u32 = C15e
√
iωR3y + C16e

−
√
iωR3y − iPoρ

′

ω

Since the expressions are very cumbersome so the constants Ci, i = 9, 10, 11, 12, 13, 14, 15, 16
and Dj , j = 11, 12, 13, 14 are not reported.

4.3 Pulsatile flow solution

The solution of pulsatile flow is given by

u1 = u11 + u12e
iωt

u2 = u21 + u22e
iωt

c = cs + coe
iωt

u3 = u31 + u32e
iωt

where u11, u21, u31, cs, and u12, u22, co, u32 are reported in sections 4.1 and 4.2 respectively.

4.4 Mass flux

The instantaneous mass fluxes are given by

Q1 =

0∫
−1

u11dy +

 0∫
−1

u12dy

 eiωt

Q2 =

1∫
0

u21dy +

 1∫
0

u22dy

 eiωt

Q3 =

2∫
1

u31dy +

 2∫
1

u32dy

 eiωt
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where Q1, Q2 and Q3 are mass fluxes respectively in Regions- I, II and III and full expressions
are not reported due to brevity.

4.5 Shear stress

The shear stress in non-dimensional forms, at the permeable walls are given by

τ1 =
∂u1

∂y
at y = −1 (4.1)

τ2 =
∂u3

∂y
at y = 2 (4.2)

5 Results and Discussions

The analytical solutions for the flow velocity and microrotation of MHD pulsating flow of a
micropolar fluid, sandwiched between viscous fluids inside permeable beds are obtained. The
expressions are evaluated numerically for different values of governing flow parameters and
presented through Figs. 2-5 and Tables 1-8. In numerical work, we take ρ = 1, ρ′ = 1 (that is
ρ1 = ρ2 = ρ3), σ1 = σ2 = σ, R2 =

µ
ρR1 and R3 =

µ
ρ′µ′R1.

Fig. 2 shows the variation of pulsating velocity in Region-I (Fig. 2(a)), Region-II (Fig. 2(b))
and Region-III (Fig. 2(c)). The velocities correspond to slip velocities at the interfaces of lower
permeable bed (y = −1) and upper permeable bed (y = 2). In fig. 2(d), we see that as ωt
is increasing through values 0o to 60o, the flow velocity is increasing. Further, as ωt increases
through values 60o to 90o, velocity decreases. Velocity profiles for different flow parameters are
depicted in fig. 3. In fig. 3(a), we see that as Hartmann’s number M is increasing, the velocity
is decreasing. Also as Reynolds number R1 is increasing, velocity is increasing (Fig. 3(b)). In
fig. 3(c), we observe that an increase in slip parameter α results in a decrease in flow velocity. In
fig. 3(d), it is noticed that as porosity parameter σ is increasing, the flow velocity is decreasing.
Furthermore, in fig 3(e), it is seen that an increase in coupling parameter Cp results in an increase
in flow velocity. In fig. 3(f), we see that as material parameter m is increasing, the flow velocity
is decreasing.

Figures 4 and 5 depict variation in microrotation velocity for various values of governing
parameter. From Figures, it is observed that microrotation velocity shows a sort of asymmetry
about a plane parallel to permeable beds and nearer to upper permeable beds.

The variation in shear stress τ at the lower permeable bed (LPB) and the upper permeable bed
(UPB), for different values of parameters entering into the problem is displayed through Tables.
1-8. In Table 1, we have presented the shear stress as R1 is increasing for the fixed set of other
values of parameters. As R1 is increasing, the shear stress at both permeable beds is increasing.
At fixing R1, As frequency parameter ωt is increasing, shear stress is increasing first and then
decreasing. The limit of increment in shear stress with increment in ωt depends on the value
of R1, as we see that at R1 = 0.5, shear stress is increasing for ωt= 0 to π

4 but for R1 = 0.9,
the shear stress is increasing for ωt= 0 to π

2 . In Table 2, we see that as Hartmann’s number M
is increasing, shear stress is decreasing at both the permeable beds. At fixing M , as frequency
parameter ωt increases through values 0 to π

4 , shear stress increases at both permeable beds and
further increase in ωt results in decrease in shear stress.

Table 3 shows the variation of shear stress with slip parameter α. As α is increasing, the shear
stress at both permeable beds is increasing. At fixing α, as ωt increases, the shear stress at both
permeable beds first increases then decreases. From Table 4, we observe that for ωt = 0, π4 ,

π
2 as

microrotation parameter Pj is increasing, shear stress at the lower permeable plate is increasing
while shear stress at the upper permeable plate is decreasing. But for ωt = 3π

4 as Pj increases
through values 1 to 5, shear stress at lower permeable bed decreases and a further increase in Pj
results in a decrease in shear stress at the lower permeable bed. In Table 5, we have presented
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(b) Region-II at ω = 1
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(c) Region-III at ω = 1

Ωt = 0Ο 90Ο, 30Ο, 45Ο, 60Ο

2.4 2.6 2.8 3.0 3.2

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

velocity

y

(d) Frequency parameter ωt.

Figure 2: Velocity profiles with time and frequency parameter for ρ = 1, ρ′ = 1, µ = 1.2, µ′ = 0.8, R1 = 0.5, Ps =
1, Po = 1, α = 0.5, σ = 1,M = 0.75, Cp = 1, n = 0.5,m = 0.5, Pj = 1, ω = 1 except where they are variable.

the variation of shear stress with porosity parameter σ. For ωt = 0, π4 as σ is increasing, shear
stress at both permeable beds is increasing. For ωt = π

2 as σ is increasing through values 1 to
3, shear stress at the lower permeable bed in increasing and a further increase in σ results in a
decrease in shear stress. While at the upper permeable bed as σ increases, shear stress increases.
For ωt = 3π

4 , as σ is increasing through values 1 to 3, shear stress at both permeable bed is
decreasing.

Table 6 shows that as material parameter m in increasing, shear stress at lower permeable
bed is increasing while shear stress at the upper permeable plate is decreasing. In Table 7, we
see that as gyration parameter n is increasing, shear stress at lower permeable bed is increasing
while shear stress at the upper permeable bed in decreasing. In Table 8, we notice that as coupling
parameter Cp is increasing, shear stress at both permeable beds in decreasing.
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(d) Porosity parameter σ
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Figure 3: Velocity profiles for different flow parameters at ρ = 1, ρ′ = 1, µ = 1.2, µ′ = 0.8, R1 = 0.5, Ps = 1, Po =
1, α = 0.5, σ = 1,M = 0.75, Cp = 1, n = 0.5,m = 0.5, Pj = 1, ωt = π

4 except where they are variable.
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Figure 4: Microrotation velocity profile for different flow parameters at ρ = 1, ρ′ = 1, µ = 1.2, µ′ = 0.9, R1 =
0.2, Ps = 1, Po = 1, α = 0.5, σ = 1,M = 0.1, Cp = 0.1, n = 5.5,m = 0.65, Pj = 1, ωt = π

4 except where they are
variable.
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Figure 5: Microrotation velocity profile for Material parameter m at ρ = 1, ρ′ = 1, µ = 1.2, µ′ = 0.9, R1 = 0.2, Ps =
1, Po = 1, α = 0.5, σ = 1,M = 0.1, Cp = 0.1, n = 5.5, Pj = 1, ωt = π

4

Table 1: Variation of shear stress with Reynolds number R1 at ρ = 1, ρ′ = 1, µ = 1.2, µ′ = 0.8, σ = 1, α = 0.5,M =
0.5,m = 0.5, n = 0.5, Cp = 1.0, Ps = 1, Pj = 1, Po = 1.

modτ R1 = 0.5 R1 = 0.7 R1 = 0.9 R1 = 1.1 R1 = 1.3
ωt = 0 LPB 0.97926 1.21428 1.41280 1.59601 1.77336

UPB 1.08253 1.31809 1.50839 1.68158 1.85067
ωt = π

4 LPB 1.08192 1.39971 1.67658 1.93081 2.17236
UPB 1.22710 1.57439 1.87031 2.13868 2.39278

ωt = π
2 LPB 1.02350 1.38391 1.71106 2.0172 2.31028

UPB 1.18887 1.60445 1.97759 2.32418 2.65483
ωt = 3π

4 LPB 0.81365 1.16975 1.50929 1.83594 2.15371
UPB 0.97412 1.40285 1.80884 2.19689 2.57266

Table 2: Variation of shear stress with Hartmann number M at ρ = 1, ρ′ = 1, µ = 1.2, µ′ = 0.8, σ = 1, α = 0.5, R1 =
0.5,m = 0.5, n = 0.5, Cp = 1.0, Ps = 1, Pj = 1, Po = 1.

modτ M = 0.5 M = 1.0 M = 1.5 M = 2.0 M = 2.5
ωt = 0 LPB 0.97926 0.783931 0.604217 0.473898 0.385319

UPB 1.08253 0.867084 0.668042 0.523257 0.424812
ωt = π

4 LPB 1.08192 0.843177 0.034012 0.489142 0.393864
UPB 1.22710 0.958170 0.721701 0.557485 0.449426

ωt = π
2 LPB 1.0235 0.775083 0.567510 0.429968 0.342458

UPB 1.18887 0.904444 0.665684 0.506867 0.405621
ωt = 3π

4 LPB 0.81365 0.590353 0.414936 0.305413 0.238932
UPB 0.97412 0.714312 0.50858 0.379119 0.300063
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Table 3: Variation of shear stress with slip parameter α at ρ = 1, ρ′ = 1, µ = 1.2, µ′ = 0.8, σ = 1, R1 = 0.5,M =
0.5,m = 0.5, n = 0.5, Cp = 1.0, Ps = 1, Pj = 1, Po = 1.

modτ α = 0.1 α = 0.2 α = 0.3 α = 0.4 α = 0.5
ωt = 0 LPB 0.553001 0.724261 0.839241 0.920593 0.979268

UPB 0.564619 0.758238 0.898184 1.00311 1.08253
ωt = π

4 LPB 0.643132 0.841283 0.95758 1.03206 1.08192
UPB 0.668034 0.901741 1.05124 1.15396 1.22710

ωt = π
2 LPB 0.664281 0.846199 0.939152 0.991931 1.02350

UPB 0.701261 0.925805 1.05437 1.13529 1.18887
ωt = 3π

4 LPB 0.610382 0.737959 0.787365 0.807091 0.81365
UPB 0.654698 0.825288 0.907008 0.950289 0.97412

Table 4: Variation of shear stress with Microrotation parameter Pj at ρ = 1, ρ′ = 1, µ = 1.2, µ′ = 0.8, σ = 1, α =
0.5,M = 0.5,m = 0.5, n = 0.5, Cp = 1.0, Ps = 1, R1 = 0.5, Po = 1.

modτ Pj = 1 Pj = 5 Pj = 10 Pj = 15 Pj = 20
ωt = 0 LPB 0.979268 0.979372 0.979495 0.979588 0.979649

UPB 1.08253 1.08240 1.08226 1.08216 1.08210
ωt = π

4 LPB 1.08192 1.08210 1.08211 1.08222 1.08230
UPB 1.22710 1.22699 1.22684 1.22672 1.22603

ωt = π
2 LPB 1.02350 1.02354 1.02363 1.02372 1.02380

UPB 1.18887 1.18880 1.18868 1.18856 1.18846
ωt = 3π

4 LPB 0.813651 0.813693 0.813671 0.813743 0.813813
UPB 0.97412 0.974107 0.97404 0.973946 0.973852

Table 5: Variation of shear stress with Porosity parameter σ at ρ = 1, ρ′ = 1, µ = 1.2, µ′ = 0.8, α = 0.5, R1 =
0.5,M = 0.5,m = 0.5, n = 0.5, Cp = 1.0, Ps = 1, Pj = 1, Po = 1.

modτ σ = 1 σ = 3 σ = 5 σ = 7 σ = 9
ωt = 0 LPB 0.828586 1.13087 1.18393 1.20364 1.21357

UPB 0.830373 1.36724 1.48410 1.53310 1.55975
ωt = π

4 LPB 0.985887 1.16739 1.19000 1.19609 1.19835
UPB 1.04206 1.42620 1.50574 1.53584 1.55166

ωt = π
2 LPB 0.999361 1.02732 1.01541 1.00678 1.00094

UPB 1.09980 1.27511 1.29890 1.30536 1.30773
ωt = 3π

4 LPB 0.866681 0.732575 0.687108 0.66478 0.651622
UPB 0.994042 0.929162 0.895545 0.876975 0.865906

Table 6: Variation of shear stress with Material parameter m at ρ = 1, ρ′ = 1, µ = 1.2, µ′ = 0.8, σ = 1, α = 0.5,M =
0.5, R1 = 0.5, n = 0.5, Cp = 1.0, Ps = 1, Pj = 1, Po = 1.

modτ m = 0.1 m = 0.2 m = 0.3 m = 0.4 m = 0.5
ωt = 0 LPB 0.899858 0.927216 0.948088 0.965006 0.979268

UPB 1.10717 1.09312 1.08628 1.08329 1.08253
ωt = π

4 LPB 0.976527 1.01275 1.04039 1.06287 1.08192
UPB 1.25292 1.23586 1.22859 1.22641 1.22710

ωt = π
2 LPB 0.906406 0.946542 0.97719 1.0022 1.0235

UPB 1.21175 1.19405 1.1875 118662 1.1887
ωt = 3π

4 LPB 0.700705 0.739294 0.768775 0.792943 0.813651
UPB 0.990355 0.974477 0.969699 0.970431 0.97412

Table 7: Variation of shear stress with Gyration parameter n at ρ = 1, ρ′ = 1, µ = 1.2, µ′ = 0.8, σ = 1, α = 0.5,M =
0.5,m = 0.5, R1 = 0.5, Cp = 1.0, Ps = 1, Pj = 1, Po = 1.

modτ n = 0.5 n = 1.0 n = 1.5 n = 2.0 n = 2.5
ωt = 0 LPB 0.979268 0.978286 0.97741 0.976623 0.975913

UPB 1.08253 1.08372 1.08477 1.08572 1.08657
ωt = π

4 LPB 1.08192 1.08069 1.07960 1.07861 1.07773
UPB 1.22710 1.22863 1.22999 1.23121 1.23232

ωt = π
2 LPB 1.02350 1.02221 1.02105 1.02001 1.01908

UPB 1.18887 1.19053 1.19202 1.19335 1.19455
ωt = 3π

4 LPB 0.813651 0.81248 0.811432 0.81049 0.809636
UPB 0.97412 0.975685 0.977082 0.978337 0.97947
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Table 8: Variation of shear stress with Coupling parameterCp at ρ = 1, ρ′ = 1, µ = 1.2, µ′ = 0.8, σ = 1, α = 0.5,M =
0.5,m = 0.5, n = 0.5, R1 = 0.5, Ps = 1, Pj = 1, Po = 1.

modτ Cp = 0.2 Cp = 0.4 Cp = 0.6 Cp = 0.8 Cp = 1.0
ωt = 0 LPB 1.10624 1.04764 1.04764 0.994691 0.979268

UPB 1.13062 1.0980 1.0980 1.08319 1.08253
ωt = π

4 LPB 1.25528 1.17468 1.17468 1.10261 1.08192
UPB 1.30741 1.25682 1.25682 1.22992 1.2271

ωt = π
2 LPB 1.22312 1.12909 1.12909 1.04676 1.02350

UPB 1.29476 1.23044 1.23044 1.19375 1.18887
ωt = 3π

4 LPB 1.01556 0.918693 0.918693 0.836418 0.813651
UPB 1.09493 1.02333 1.02333 0.980623 0.97412

6 Conclusion

We analysed the problem of MHD pulsatile flow of a micropolar fluid sandwiched between two
viscous fluids layers inside permeable beds. Separate solutions for flow velocity, microrotation,
and mass fluxes are obtained using B-J slip boundary condition at the permeable beds. Analytical
solutions are evaluated numerically for different values of governing parameters. Effects of
flow parameters on flow velocity and microrotation are displayed graphically and variations in
shear stress at both permeable walls are presented numerically through tables. We noticed the
following

• Hartmann number M , slip parameter α, porosity parameter σ and material parameter m
suppress the flow.

• Reynolds number R1 and coupling parameter Cp promote the flow.

• Flow velocity shows mixed trends with frequency parameter ωt.

• Microrotation velocity shows a sort of asymmetry about a plane parallel to permeable beds.

• Shear stress at both permeable beds increase with the increase in Reynolds number R1
and slip parameter α while shear stress at both permeable beds decreases with increase in
Hartmann number M and coupling parameter Cp.

• Shear stress at both permeable beds show mixed trends with microrotation parameter Pj ,
porosity parameter σ, material parameter m and gyration parameter n.
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