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Abstract. New divergence measure of Csiszar’s class has been introduced. Bounds of this di-
vergence are evaluated in terms of other well known symmetric and non- symmetric divergences.
Metric nature has been discussed as well.

1 Introduction

Divergence measures are basically measures of distance between two probability distributions
or compare two probability distributions. Divergence measure must increase as probability dis-
tributions move apart.
Divergence measures have been demonstrated very useful in a variety of disciplines such as
Bayesian model validation (1996) [45], quantum information theory (2008, 2000) [29, 31],
model validation (1987) [3], robust detection (1980) [35], economics and political science (1972,
1967) [43, 44], biology (1975) [34], analysis of contingency tables (1978) [14], approximation
of probability distributions (1968, 1980) [8, 26], signal processing (1967, 1967) [24, 25], pattern
recognition (1978, 1979, 1973, 1990) [2, 5, 7, 23], color image segmentation (2010) [30], 3D
image segmentation and word alignment (2006) [42], cost- sensitive classification for medical
diagnosis (2009) [37], magnetic resonance image analysis (2010) [46] etc.
Also we can use divergence measures in fuzzy mathematics as fuzzy directed divergences and
fuzzy entropies (2010, 2004, 2012) [1, 16, 22], which are very useful to find the amount of av-
erage ambiguity or difficulty in making a decision whether an element belongs to a set or not.
Fuzzy information measures have recently found applications to fuzzy aircraft control, fuzzy
traffic control, engineering, medicines, computer science, management and decision making etc.
Divergence measures are also very useful to find the utility of an event (2010, 1986) [4, 39], i.e.,
an event is how much useful compare to other event.
Let Γn = {P = (p1, p2, p3, ..., pn) : pi > 0,

∑n
i=1 pi = 1}, n ≥ 2 be the set of all complete

finite discrete probability distributions. The restriction here to discrete distributions is only for
convenience, similar results hold for continuous distributions as well. If we take pi ≥ 0 for some
i = 1, 2, 3..., n, then we have to suppose that 0f (0) = 0f

( 0
0

)
= 0.

Csiszar’s f - divergence (1974, 1967)[9, 10] is widely used due to its compact nature, which is
given by

Cf (P,Q) =
n∑

i=1

qif

(
pi
qi

)
, (1.1)

where f : (0,∞) → R (set of real no.) is real, continuous, and convex function and P =
(p1, p2, ..., pn) , Q = (q1, q2, ..., qn) ∈ Γn, where pi and qi are probabilities.
Cf (P,Q) is a natural distance measure from a true probability distribution P to an arbitrary
probability distribution Q. Typically P represents observations or a precise calculated probabil-
ity distribution, whereas Q represents a model, a description or an approximation of P .

Definition 1.1. Convex function: A function f (t) is said to be convex over an interval (a, b) if
for every t1, t2 ∈ (a, b) and 0 ≤ λ ≤ 1, we have

f [λt1 + (1 − λ) t2] ≤ λf (t1) + (1 − λ) f (t2) ,

and said to be strictly convex if equality does not hold only if λ 6= 0 or λ 6= 1.
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Geometrically, it means that if A,B,C are three distinct points on the graph of convex function
f with B between A and C, then B is on or below chord AC.

Definition 1.2. Jensen Inequality: Let f : I ⊂ R → R be differentiable convex on I0 (I0 is the
interior of the interval I), ti ∈ I0, λi > 0 ∀ i = 1, 2, ..., n and

∑n
i=1 λi = 1, then we have the

following inequality.

f

(
n∑

i=1

λiti

)
≤

n∑
i=1

λif (ti) . (1.2)

If function is concave, then Jensen’s inequality will be reversed.

Corollary 1.3. After replacing λi with qi as
∑n

i=1 qi = 1 and ti with pi

qi
in (1.2) for each i =

1, ..., n by assuming that the function is normalized, i.e., f (1) = 0, we get

f (1) ≤
n∑

i=1

qif

(
pi
qi

)
,i.e.,Cf (P,Q) ≥ 0. (1.3)

The following theorem is well known in literature (1967) [10].

Theorem 1.4. If the function f is convex and normalized, i.e., f ′′ (t) ≥ 0 ∀ t > 0 and f (1) = 0
respectively, then Cf (P,Q) and its adjoint Cf (Q,P ) are both non-negative and convex in the
pair of probability distribution (P,Q) ∈ Γn × Γn.

The following theorem (2005) [41] is being used in this article for further calculation of
bounds. This theorem relates two f - divergence measures.

Theorem 1.5. Let f1, f2 : I ⊂ R+ → R be two convex differentiable and normalized functions,
i.e., f ′′1 (t) , f ′′2 (t) ≥ 0 ∀ t > 0 and f1 (1) = f2 (1) = 0 respectively and suppose the following
assumptions.
(i) f1 and f2 are twice differentiable on (α, β), 0 < α ≤ 1 ≤ β <∞ with α 6= β.
(ii) There exists the real constants m,M such that m < M and

m ≤
f ′′1 (t)

f ′′2 (t)
≤M,f ′′2 (t) 6= 0 ∀ t ∈ (α, β) . (1.4)

If P,Q ∈ Γn is such that 0 < α ≤ pi

qi
≤ β < ∞ ∀ i = 1, 2, 3..., n, then we have the following

inequalities
mCf2 (P,Q) ≤ Cf1 (P,Q) ≤MCf2 (P,Q) , (1.5)

where Cf (P,Q) is given by (1.1).

2 New Divergence Measure

In this section, we introduce a new divergence measure of Csiszar’s class and define the proper-
ties.
Let f : (0,∞) → R be a real differentiable mapping, which is defined as

f (t) = f1 (t) = et
(
t2 − 1

)
,∀ t ∈ (0,∞) , (2.1)

f ′1 (t) = et
(
t2 + 2t− 1

)
and

f ′′1 (t) = et
(
t2 + 4t+ 1

)
. (2.2)

We can check that the function f1 (t) strictly convex and normalized because f ′′1 (t) > 0 ∀ t ∈
(0,∞) and f1 (1) = 0 respectively.
After putting this convex function in (1.1), we obtain

Cf1 (P,Q) = C∗ (P,Q) =
n∑

i=1

e
pi
qi

(
p2
i − q2

i

)
qi

. (2.3)
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In view of corollary (1.3) and theorem (1.4), we see that C∗ (P,Q) is positive and convex for the
pair of probability distribution (P,Q) ∈ Γn × Γn and equal to zero (Non- degeneracy) or attains
its minimum value when pi = qi, i.e., when probability distributions are parallel to each other.
It will be maximum when probability distributions are perpendicular to each other. We can also
see that C∗ (P,Q) is non- symmetric divergence w.r.t. P and Q because C∗ (P,Q) 6= C∗ (Q,P ).

Figure 1. Convex function f1 (t)

3 Upper and Lower Bounds

To estimate the new exponential divergence C∗ (P,Q), it would be very interesting to establish
some upper and lower bounds. So in this section, we obtain bounds of the divergence measure
(2.3) in terms of other well known divergence measures.
I. With symmetric divergence measures:

Proposition 3.1. Let P,Q ∈ Γn and 0 < α ≤ pi

qi
≤ β <∞, then we have

eα (α+ 1)3 (
α2 + 4α+ 1

)
8

∆ (P,Q) ≤ C∗ (P,Q) ≤
eβ (β + 1)3 (

β2 + 4β + 1
)

8
∆ (P,Q) ,

(3.1)
where ∆ (P,Q) is given by (3.4).

Proof. Let us consider

f2 (t) =
(t− 1)2

t+ 1
, t ∈ (0,∞) (3.2)

and
f ′2 (t) =

(t− 1) (t+ 3)

(t+ 1)2 ,

f ′′2 (t) =
8

(t+ 1)3 . (3.3)

Since f ′′2 (t) > 0 ∀ t > 0 and f2 (1) = 0, so f2 (t) is strictly convex and normalized function
respectively. By putting f2 (t) in (1.1), we get

Cf2 (P,Q) =
n∑

i=1

(pi − qi)
2

pi + qi
= ∆ (P,Q) , (3.4)

where ∆ (P,Q) is called the Triangular discrimination (1978) [11].
Now, let

g (t) =
f ′′1 (t)

f ′′2 (t)
=
et
(
t2 + 4t+ 1

)
(t+ 1)3

8
,

where f ′′1 (t) and f ′′2 (t) are given by (2.2) and (3.3) respectively and

g′ (t) =
et (t+ 1)2 (

t3 + 10t2 + 23t+ 8
)

8
.
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It is clear that g′ (t) > 0 for t > 0, therefore g (t) is strictly increasing function in interval (0,∞).
So

m = inf
t∈(α,β)

g (t) = g (α) =
eα (α+ 1)3 (

α2 + 4α+ 1
)

8
(3.5)

and

M = sup
t∈(α,β)

g (t) = g (β) =
eβ (β + 1)3 (

β2 + 4β + 1
)

8
. (3.6)

The result (3.1) is obtained by using (2.3), (3.4), (3.5), and (3.6) in inequalities (1.5).

Proposition 3.2. Let P,Q ∈ Γn and 0 < α ≤ pi

qi
≤ β <∞, then we have

eαα2
(
α2 + 4α+ 1

)
1 + α

J (P,Q) ≤ C∗ (P,Q) ≤
eββ2

(
β2 + 4β + 1

)
1 + β

J (P,Q) , (3.7)

where J (P,Q) is given by (3.10).

Proof. Let us consider
f2 (t) = (t− 1) log t, t ∈ (0,∞) (3.8)

and
f ′2 (t) =

t− 1
t

+ log t,

f ′′2 (t) =
1 + t

t2
. (3.9)

Since f ′′2 (t) > 0 ∀ t > 0 and f2 (1) = 0, so f2 (t) is strictly convex and normalized function
respectively. By putting f2 (t) in (1.1), we get

Cf2 (P,Q) =
n∑

i=1

(pi − qi) log
pi
qi

= J (P,Q) , (3.10)

where J (P,Q) is called the J- divergence or Jeffrey- Kullback divergence (1946, 1951) [21, 27].
Now, let

g (t) =
f ′′1 (t)

f ′′2 (t)
=
ett2

(
t2 + 4t+ 1

)
1 + t

,

where f ′′1 (t) and f ′′2 (t) are given by (2.2) and (3.9) respectively and

g′ (t) =
ett
(
t4 + 8t3 + 17t2 + 14t+ 2

)
(1 + t)

2 .

It is clear that g′ (t) > 0 for t > 0, therefore g (t) is strictly increasing function in interval (0,∞).
So

m = inf
t∈(α,β)

g (t) = g (α) =
eαα2

(
α2 + 4α+ 1

)
1 + α

(3.11)

and

M = sup
t∈(α,β)

g (t) = g (β) =
eββ2

(
β2 + 4β + 1

)
1 + β

. (3.12)

The result (3.7) is obtained by using (2.3), (3.10), (3.11), and (3.12) in inequalities (1.5).

Proposition 3.3. Let P,Q ∈ Γn and 0 < α ≤ pi

qi
≤ β <∞, then we have

eαα3
(
α2 + 4α+ 1

)
2 (α3 + 1)

ψ (P,Q) ≤ C∗ (P,Q) ≤
eββ3

(
β2 + 4β + 1

)
2 (β3 + 1)

ψ (P,Q) , (3.13)

where ψ (P,Q) is given by (3.16).
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Proof. Let us consider

f2 (t) =
(t− 1)2

(t+ 1)
t

, t ∈ (0,∞) (3.14)

and

f ′2 (t) = 2t− 1
t2

− 1,

f ′′2 (t) =
2
(
1 + t3

)
t3

. (3.15)

Since f ′′2 (t) > 0 ∀ t > 0 and f2 (1) = 0, so f2 (t) is strictly convex and normalized function
respectively. By putting f2 (t) in (1.1), we get

Cf2 (P,Q) =
n∑

i=1

(pi − qi)
2
(pi + qi)

piqi
= ψ (P,Q) , (3.16)

where ψ (P,Q) is called the Symmetric chi- square divergence (2000) [13].
Now, let

g (t) =
f ′′1 (t)

f ′′2 (t)
=
ett3

(
t2 + 4t+ 1

)
2 (t3 + 1)

,

where f ′′1 (t) and f ′′2 (t) are given by (2.2) and (3.15) respectively and

g′ (t) =
ett2

(
t6 + 6t5 + 5t4 + t3 + 9t2 + 17t+ 3

)
2 (t3 + 1)2 .

It is clear that g′ (t) > 0 for t > 0, therefore g (t) is strictly increasing function in interval (0,∞).
So

m = inf
t∈(α,β)

g (t) = g (α) =
eαα3

(
α2 + 4α+ 1

)
2 (α3 + 1)

(3.17)

and

M = sup
t∈(α,β)

g (t) = g (β) =
eββ3

(
β2 + 4β + 1

)
2 (β3 + 1)

. (3.18)

The result (3.13) is obtained by using (2.3), (3.16), (3.17), and (3.18) in inequalities (1.5).
In a similar procedure, we obtain the bounds of C∗ (P,Q) with the other well known symmetric
divergence measures. The results are as follows.

Proposition 3.4. If f2 (t) =
t
2 log t+

(
t+1

2

)
log 2

t+1 , then we have

2eαα (1 + α)
(
α2 + 4α+ 1

)
I (P,Q) ≤ C∗ (P,Q) ≤ 2eββ (1 + β)

(
β2 + 4β + 1

)
I (P,Q) ,

(3.19)
where

I (P,Q) =
1
2

[
n∑

i=1

pi log
2pi

pi + qi
+

n∑
i=1

qi log
2qi

pi + qi

]
(3.20)

is the Jensen- Shannon divergence or Information radius (1982, 1969) [6, 38].

Proposition 3.5. If f2 (t) =
(

1−
√
t
)2

2 , then we have

4eα
(
α2 + 4α+ 1

)
α

3
2h (P,Q) ≤ C∗ (P,Q) ≤ 4eβ

(
β2 + 4β + 1

)
β

3
2h (P,Q) , (3.21)

where

h (P,Q) =
n∑

i=1

(√
pi −

√
qi
)2

2
(3.22)

is the Hellinger discrimination or Kolmogorov’s divergence (1909) [15].
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Proposition 3.6. If f2 (t) =
(t−1)2
√
t

, then we have

4eα
(
α2 + 4α+ 1

)
α

5
2

3α2 + 2α+ 3
E (P,Q) ≤ C∗ (P,Q) ≤

4eβ
(
β2 + 4β + 1

)
β

5
2

3β2 + 2β + 3
E (P,Q) , (3.23)

where

E (P,Q) =
n∑

i=1

(pi − qi)
2

√
piqi

(3.24)

is the Jain- Srivastava divergence (2007)[20].

Proposition 3.7. If f2 (t) =
(
t+1

2

)
log t+1

2
√
t
, then we have

4eα
(
α2 + 4α+ 1

)
α2 (1 + α)

α2 + 1
T (P,Q) ≤ C∗ (P,Q) ≤

4eβ
(
β2 + 4β + 1

)
β2 (1 + β)

β2 + 1
T (P,Q) ,

(3.25)
where

T (P,Q) =
n∑

i=1

(
pi + qi

2

)
log

pi + qi
2√piqi

(3.26)

is the Arithmetic- Geometric mean divergence (1995) [40].

Proposition 3.8. If f2 (t) =

(
t2−1

)2

2t
3
2

, then we have

8eαα
7
2
(
α2 + 4α+ 1

)
15α4 + 2α2 + 15

ψM (P,Q) ≤ C∗ (P,Q) ≤
8eββ

7
2
(
β2 + 4β + 1

)
15β4 + 2β2 + 15

ψM (P,Q) , (3.27)

where

ψM (P,Q) =
n∑

i=1

(
p2
i − q2

i

)2

2 (piqi)
3
2

(3.28)

is the Kumar- Johnson divergence (2005) [28].

II. With Non- symmetric divergence measures:

Proposition 3.9. Let P,Q ∈ Γn and 0 < α ≤ pi

qi
≤ β <∞, then we have

eα
(
α2 + 4α+ 1

)
2

χ2 (P,Q) ≤ C∗ (P,Q) ≤
eβ
(
β2 + 4β + 1

)
2

χ2 (P,Q) , (3.29)

where χ2 (P,Q) is given by (3.32).

Proof. Let us consider
f2 (t) = (t− 1)2

, t ∈ (0,∞) (3.30)

and
f ′2 (t) = 2 (t− 1) ,

f ′′2 (t) = 2. (3.31)

Since f ′′2 (t) > 0 ∀ t > 0 and f2 (1) = 0, so f2 (t) is strictly convex and normalized function
respectively. By putting f2 (t) in (1.1), we get

Cf2 (P,Q) =
n∑

i=1

(pi − qi)
2

qi
= χ2 (P,Q) , (3.32)

where χ2 (P,Q) is called the Chi- square divergence or Pearson divergence (1900) [33].
Now, let

g (t) =
f ′′1 (t)

f ′′2 (t)
=
et
(
t2 + 4t+ 1

)
2

,
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where f ′′1 (t) and f ′′2 (t) are given by (2.2) and (3.31) respectively and

g′ (t) =
et
(
t2 + 6t+ 5

)
2

.

It is clear that g′ (t) > 0 for t > 0, therefore g (t) is strictly increasing function in interval (0,∞).
So

m = inf
t∈(α,β)

g (t) = g (α) =
eα
(
α2 + 4α+ 1

)
2

(3.33)

and

M = sup
t∈(α,β)

g (t) = g (β) =
eβ
(
β2 + 4β + 1

)
2

. (3.34)

The result (3.29) is obtained by using (2.3), (3.32), (3.33), and (3.34) in inequalities (1.5).

Proposition 3.10. Let P,Q ∈ Γn and 0 < α ≤ pi

qi
≤ β <∞, then we have

eαα
(
α2 + 4α+ 1

)
K (P,Q) ≤ C∗ (P,Q) ≤ eββ

(
β2 + 4β + 1

)
K (P,Q) , (3.35)

where K (P,Q) is given by (3.38).

Proof. Let us consider
f2 (t) = t log t, t ∈ (0,∞) (3.36)

and
f ′2 (t) = 1 + log t,

f ′′2 (t) =
1
t
. (3.37)

Since f ′′2 (t) > 0 ∀ t > 0 and f2 (1) = 0, so f2 (t) is strictly convex and normalized function
respectively. By putting f2 (t) in (1.1), we get

Cf2 (P,Q) =
n∑

i=1

pi log
pi
qi

= K (P,Q) , (3.38)

where K (P,Q) is called the Kullback- Leibler divergence or Relative entropy or Directed diver-
gence or Information gain (1951) [27].
Now, let

g (t) =
f ′′1 (t)

f ′′2 (t)
= ett

(
t2 + 4t+ 1

)
,

where f ′′1 (t) and f ′′2 (t) are given by (2.2) and (3.37) respectively and

g′ (t) = et
(
t3 + 7t2 + 9t+ 1

)
.

It is clear that g′ (t) > 0 for t > 0, therefore g (t) is strictly increasing function in interval (0,∞).
So

m = inf
t∈(α,β)

g (t) = g (α) = eαα
(
α2 + 4α+ 1

)
(3.39)

and
M = sup

t∈(α,β)
g (t) = g (β) = eββ

(
β2 + 4β + 1

)
. (3.40)

The result (3.35) is obtained by using (2.3), (3.38), (3.39), and (3.40) in inequalities (1.5).

Proposition 3.11. Let P,Q ∈ Γn and 0 < α ≤ pi

qi
≤ β <∞, then we have

2α2 (1 + α) eα
(
α2 + 4α+ 1

)
G (P,Q) ≤ C∗ (P,Q) ≤ 2β2 (1 + β) eβ

(
β2 + 4β + 1

)
G (P,Q) ,

(3.41)
where G (P,Q) is given by (3.44).
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Proof. Let us consider

f2 (t) =

(
t+ 1

2

)
log

t+ 1
2t

, t ∈ (0,∞) (3.42)

and

f ′2 (t) =
1
2

[
log

t+ 1
2t

− 1
t

]
,

f ′′2 (t) =
1

2t2 (t+ 1)
. (3.43)

Since f ′′2 (t) > 0 ∀ t > 0 and f2 (1) = 0, so f2 (t) is strictly convex and normalized function
respectively. By putting f2 (t) in (1.1), we get

Cf2 (P,Q) =
n∑

i=1

(
pi + qi

2

)
log

pi + qi
2pi

= G (P,Q) , (3.44)

where G (P,Q) is called the Relative Arithmetic- Geometric divergence (1995) [40].
Now, let

g (t) =
f ′′1 (t)

f ′′2 (t)
= 2ett2 (t+ 1)

(
t2 + 4t+ 1

)
,

where f ′′1 (t) and f ′′2 (t) are given by (2.2) and (3.43) respectively and

g′ (t) = 2tet
(
t4 + 10t3 + 25t2 + 16t+ 2

)
.

It is clear that g′ (t) > 0 for t > 0, therefore g (t) is strictly increasing function in interval (0,∞).
So

m = inf
t∈(α,β)

g (t) = g (α) = 2α2 (1 + α) eα
(
α2 + 4α+ 1

)
(3.45)

and
M = sup

t∈(α,β)
g (t) = g (β) = 2β2 (1 + β) eβ

(
β2 + 4β + 1

)
. (3.46)

The result (3.41) is obtained by using (2.3), (3.44), (3.45), and (3.46) in inequalities (1.5).
In a similar procedure, we obtain the bounds of C∗ (P,Q) with the other well known non- sym-
metric divergence measures. The results are as follows.

Proposition 3.12. If f2 (t) = (t− 1) log t+1
2 , then we have

eα (1 + α)
2 (
α2 + 4α+ 1

)
α+ 3

JR (P,Q) ≤ C∗ (P,Q) ≤
eβ (1 + β)

2 (
β2 + 4β + 1

)
β + 3

JR (P,Q) ,

(3.47)
where

JR (P,Q) =
n∑

i=1

(pi − qi) log
(
pi + qi

2qi

)
(3.48)

is the Relative J- divergence (2001) [12].

Proposition 3.13. If f2 (t) = t log 2t
t+1 , then we have

eαα (1 + α)
2 (
α2 + 4α+ 1

)
F (P,Q) ≤ C∗ (P,Q) ≤ eββ (1 + β)

2 (
β2 + 4β + 1

)
F (P,Q) ,

(3.49)
where

F (P,Q) =
n∑

i=1

pi log
2pi

pi + qi
(3.50)

is the Relative Jensen- Shannon divergence (1969) [38].
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Proposition 3.14. If f2 (t) =

(
t2−1

)2

t , then we have

eαα3
(
α2 + 4α+ 1

)
2 (3α4 + 1)

γ1 (P,Q) ≤ C∗ (P,Q) ≤
eββ3

(
β2 + 4β + 1

)
2 (3β4 + 1)

γ1 (P,Q) , (3.51)

where

γ1 (P,Q) =
n∑

i=1

(
p2
i − q2

i

)2

piq2
i

(3.52)

is the Jain Chhabra divergence (2014) [17].

Proposition 3.15. If f2 (t) = et (t− 1), then we have

α2 + 4α+ 1
α+ 1

Gexp (P,Q) ≤ C∗ (P,Q) ≤
β2 + 4β + 1

β + 1
Gexp (P,Q) , (3.53)

where

Gexp (P,Q) =
n∑

i=1

e
pi
qi (pi − qi) (3.54)

is the Jain Chhabra Exponential divergence (2016) [18].

Proposition 3.16. If f2 (t) =

(
t2−1

)2

√
t

, then we have

4eαα
5
2
(
α2 + 4α+ 1

)
35α4 − 6α2 + 3

ξ1 (P,Q) ≤ C∗ (P,Q) ≤
4eββ

5
2
(
β2 + 4β + 1

)
35β4 − 6β2 + 3

ξ1 (P,Q) , (3.55)

where

ξ1 (P,Q) =
n∑

i=1

(
p2
i − q2

i

)2

(piqi)
1
2 q2

i

(3.56)

is the Jain Chhabra divergence (2014) [19].

4 Verification of Bounds

In this section, we take example for calculating the divergences ∆ (P,Q) , h (P,Q) , G (P,Q),
γ1 (P,Q) and C∗ (P,Q) and verify numerically the inequalities (3.1), (3.21), (3.41) and (3.51).

Example 4.1. Let P be the binomial probability distribution with parameters (n = 10, p = 0.7)
and Q its approximated Poisson probability distribution with parameter (λ = np = 7) for the
random variable X , then we have

xi 0 1 2 3 4 5 6 7 8 9 10
pi ≈ .0000059 .000137 .00144 .009 .036 .102 .200 .266 .233 .121 .0282
qi ≈ .000911 .00638 .022 .052 .091 .177 .199 .149 .130 .101 .0709
pi

qi
≈ .00647 .0214 .0654 .173 .395 .871 1.005 1.785 1.792 1.198 .397

Table 1. Evaluation of discrete probability distributions for n = 10, p = 0.7, q = 0.3

By using Table 1, we get the followings:

α (= .00647) ≤
pi
qi

≤ β (= 1.792) . (4.1)

∆ (P,Q) =
11∑
i=1

(pi − qi)
2

pi + qi
≈ .1812. (4.2)
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h (P,Q) =
11∑
i=1

(√
pi −

√
qi
)2

2
≈ .0502. (4.3)

G (P,Q) =
11∑
i=1

pi + qi
2

log
(
pi + qi

2pi

)
≈ .0746. (4.4)

γ1 (P,Q) =
11∑
i=1

(
p2
i − q2

i

)2

piq2
i

≈ 2.25065. (4.5)

C∗ (P,Q) =
11∑
i=1

e
pi
qi

(
p2
i − q2

i

)
qi

≈ 3.818206. (4.6)

Put the approximated values from (4.1) to (4.6) in inequalities (3.1), (3.21), (3.41) and (3.51)
respectively and get the following results
.02384 ≤ [C∗ (P,Q) = 3.818206] ≤ 33.66544,
1.07905 × 10−4 ≤ [C∗ (P,Q) = 3.818206] ≤ 32.8958,
6.49086 × 10−6 ≤ [C∗ (P,Q) = 3.818206] ≤ 91.3545 and
3.14708 × 10−7 ≤ [C∗ (P,Q) = 3.818206] ≤ 13.8475 respectively.
Hence verified the bounds of C∗ (P,Q) in terms of the ∆ (P,Q), h (P,Q), G (P,Q) and γ1 (P,Q)
for p = 0.7, whereC∗ (P,Q), ∆ (P,Q), h (P,Q),G (P,Q) and γ1 (P,Q) are given by (2.3), (3.4),
(3.22), (3.44) and (3.52) respectively.
Similarly, we can verify the bounds of C∗ (P,Q) in terms of the other divergences or can verify
the other inequalities for different values of p and q and for other discrete probability distributions
as well, like; Negative binomial, Geometric, uniform etc.

5 Metric Space Nature

We know that C∗ (P,Q) is non- symmetric but

C∗ (P,Q) + C∗ (Q,P ) =
n∑

i=1

(
p2
i − q2

i

)
e

pi
qi

qi
+

n∑
i=1

(
q2
i − p2

i

)
e

qi
pi

pi

=
n∑

i=1

(
p2
i − q2

i

)(e pi
qi

qi
− e

qi
pi

pi

)
= C∗

∗ (P,Q) .

(5.1)

is symmetric with respect to probability distributions P,Q ∈ Γn, as C∗
∗ (P,Q) = C∗

∗ (Q,P ).
We can see that

√
C∗

∗ (P,Q) > 0 and = 0 if and only if P = Q or pi = qi ∀ i = 1, 2, 3..., n. The√
C∗

∗ (P,Q) is symmetric because C∗
∗ (P,Q) is symmetric or

√
C∗

∗ (P,Q) =
√
C∗

∗ (Q,P ).
In this section we prove that

√
C∗

∗ (P,Q) satisfies triangle inequality and then obtain a new
metric space over an interval (0,∞). For this, we prove the following theorem.

Theorem 5.1. Let x (p, q) : (0,∞)× (0,∞) → (0,∞) be defined as

x (p, q) =
(
p2 − q2)(e p

q

q
− e

q
p

p

)
, (5.2)

i.e., we can write

C∗
∗ (P,Q) =

n∑
i=1

x (pi, qi) . (5.3)

Then triangle inequality will be√
x (p, q) ≤

√
x (p, r) +

√
x (r, q), (5.4)

where p, q, r ∈ (0,∞).
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Proof. To prove the inequality (5.4), first let us consider

Xpq (r) =
√
x (p, r) +

√
x (r, q), (5.5)

then
d

dr
Xpq (r) = X ′

pq (r) =
x′ (p, r)

2
√
x (p, r)

+
x′ (r, q)

2
√
x (r, q)

. (5.6)

Now from (5.2), we can write

x (p, r) =
(
p2 − r2)(e p

r

r
− e

r
p

p

)
(5.7)

and after differentiating (5.7) w.r.t r, we obtain

x′ (p, r) = −e
p
r

r3

[
p3 + r3 + rp (p− r)

]
− e

r
p

p2

(
p2 − r2 − 2rp

)
. (5.8)

Put p = rt, i.e., t = p
r ∈ (0,∞) in (5.8), we get

[x′ (p, r)]p=rt = k (t) = −et
(
t3 + t2 − t+ 1

)
− e

1
t

t2
(
t2 − 2t− 1

)
. (5.9)

Now from (5.7), we can write

x (t, 1) =

(
t2 − 1

) (
tet − e

1
t

)
t

. (5.10)

From (5.7) and (5.10), we have the following relation for p = rt√
x (p, r) =

√
r
√
x (t, 1) =

√
r l (t) , (5.11)

where we are assuming √
x (t, 1) = l (t) . (5.12)

Now, differentiate (5.9) w.r.t. t, we obtain

k′ (t) = −

(
t2 + 4t+ 1

) (
ett5 + e

1
t

)
t4

. (5.13)

Now, let we define a function

s (t) =
k (t)

l (t)
, ∀ t ∈ (0,∞) . (5.14)

From (5.10) and (5.13), we can see that l (t) =
√
x (t, 1) ≥ 0 and k′ (t) < 0 ∀ t ∈ (0,∞), i.e.,

k (t) is monotonically decreasing function and k (1) = 0, so s (t) will be decreasing as well in
(0,∞) with limt→1 s (t) = 0 or the nature of s (t) depends on the nature of k (t) only as l (t) is
fix and positive. Therefore, we conclude that s (t) changes the sign at t = 1, so

s (t) =


> 0 if t < 1
< 0 if t > 1
= 0 if t→ 1

. (5.15)

Now suppose u = q
p ∈ (0,∞) ⇒ q

r = q
p
p
r = ut ∈ (0,∞), so (5.6) can be written as

2
√
rX ′

pq (r) = s (t) + s (ut) . (5.16)

Now we have two cases on u, as follows.
Case I: If we are taking u > 1 or q > p, then (by considering that s (t) is decreasing function)
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(a) For t > 1 ⇒ s (t) < 0 and s (ut) < 0 ⇒ s (t) + s (ut) < 0.
(b) For 1

u < t < 1 ⇒ s (t) > 0 and s (ut) < 0 ⇒ s (t) > s (ut) ⇒ s (t) + s (ut) > 0.
(c) For t < 1

u < 1 ⇒ s (t) > 0 and s (ut) > 0.
It means X ′

pq (r) =
s(t)+s(ut)

2
√
r

changes the sign at t = 1 or r = p, so Xpq (r) attains its minimum
value at t = 1 or r = p.
Case II: This case is for u < 1 or q < p, can be done in a similar manner.
Similarly, repeating the above procedure by considering t = q

r ∈ (0,∞) and u = p
q ∈ (0,∞) ⇒

p
r = p

q
q
r = ut ∈ (0,∞), then we get that X ′

pq (r) changes the sign at t = 1 or r = q, so Xpq (r)
attains its minimum value at t = 1 or r = q. Therefore, right side of (5.4) has its minimum value
at p = q = r ∀ p, q, r ∈ (0,∞).
Hence proof the result (5.4) or theorem 5.1.
In view of this proof, we conclude that the new divergence measure

√
C∗

∗ (P,Q) is a metric or
we obtain a new metric space

√
(C∗

∗ , (0,∞)) over (0,∞).
Comparison Graph

Figure 2. Comparison of Divergence Measures

In Figure 2, we have considered pi = (a, 1 − a) , qi = (1 − a, a), where a ∈ (0, 1). It is clear
from the Figure that the new divergence C∗ (P,Q) has a steeper slope than the other well known
divergences.
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