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Abstract In this paper we describe permuting tri-derivations in Krasner hyperrings. In this
way we derive some important properties of permuting tri-derivations.

1 Introduction

Hyperstructures represent a natural extension of classical algebraic structures and they were in-
troduced by the French mathematician Marty [13] at the 8th congress Scandinavian Mathemati-
cians. Algebraic hyperstructures are a suitable generalization of classical algebraic structures.
In a classical algebraic structure, the composition of two elements is an element, while in an
algebraic hyperstructure, the composition of two elements is a set. In the following decades
and nowadays, a number of different hyperstructures are widely studied from the theoretical
point of view and for their applications to many subjects of pure and applied mathematics by
many mathematicians. In [15], Mittas introduced the concept of canonical hypergroups. Corsini
[4] introduced and studied the Canonical Hypergroups [6], Feebly Canonical Hypergroups [5],
Quasi- Canonical Hypergroups [7]. In [12], Krasner introduced the concept of hyperrings and
hyperfields. G.G Massouros studied the theory of hypercompositional structures into the theory
of automata (see [14]). Asokkumar [1] defined the idempotent elements of Krasner hyperrings.
Babaei et al. studied R-parts in hyperrings (see [3]).

The concept of derivations in rings plays a significant role in algebra. After Posner [17],
many papers concerning derivations have appeared in the literature. In [16], Ozturk presented
permuting tri-derivations in prime and semi-prime rings. For more information for permuting
tri derivations see [10] and [11]. In [18], Vougiouklis defined a hyperoperation called theta
hyperoperation and studied Hv-structures. Jan Chvalina et al. [8], introduced a hyperoperation
∗ on a differential ring R so that (R, ∗) is a hypergroup.

In [2], the author introduced derivations in Krasner hyperrings and in [9], the author studied
symmetric bi-derivation in Krasner hyperrings. So in this paper, we aim to generalize some
results given in [2] and [9]. In this way, we introduce the notion of permuting tri-derivations on
Krasner hyperrings and some properties of them are investigated.

2 Preliminaries

In this section, for the sake of completeness we remind some definitions used in the sequel.
A hyperoperation on a nonempty set H is a function ◦ : H ×H → ℘(H)∗ where ℘(H) is the

power set of H and (H, ◦) is called a hypergroupoid. For nonempty subsets A and B of H and
x ∈ H , let

A ◦B =
⋃

a∈A,b∈B

a ◦ b, A ◦ x = A ◦ {x} and x ◦A = {x} ◦A.

An element e ∈ H is called an identity of (H, ◦) if x ∈ x ◦ e ∩ e ◦ x, for all x ∈ H . If e is a
scalar identity of (H, ◦), then e is the unique identity of (H, ◦). The hypergroupoid is said to be
commutative if x ◦ y = y ◦ x for all x, y ∈ H .

A hypergroupoid is called a semihypergroup if (x ◦ y) ◦ z = x ◦ (y ◦ z), for all x, y, z ∈ H .
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A semihypergroup is called a hypergroup if H ◦ x = x ◦H = H , for all x ∈ H .
An element y of a hypergroupoid (H, ◦) is called an inverse of x ∈ H if (x ◦ y) ∩ (y ◦ x)

contains at least one identity. A hypergroup (H, ◦) is said to be regular if every element of (H, ◦)
has at least one inverse. A regular hypergroup (H, ◦) is said to be reversible if for all x, y, z ∈ H ,
x ∈ y ◦ z ⇒ z ∈ y

′ ◦ x and y ∈ x ◦ z′
, for some inverse y

′
of y and some inverse z

′
of z.

Definition 2.1. A non-empty set R with a hyperaddition + and a multiplication . is called additive
hyperring or Krasner hyperring if it satisfies the following:

(1) (R,+) is a canonical hypergroup, i.e.,

(i) for every x, y, z ∈ R, x+ (y + z) = (x+ y) + z,

(ii) for every x, y ∈ R, x+ y = y + x,

(iii) there exists 0 ∈ R such that 0 + x = x for all x ∈ R,

(iv) for every x ∈ R there exists an unique element denoted by −x ∈ R such that 0 ∈ x+ (−x)

(v) for every x, y, z ∈ R, z ∈ x+ y implies y ∈ −x+ z and x ∈ z − y.

(2) (R, .) is a semigroup having 0 as a bilaterally absorbing element, i.e.,

(i) for every x, y, z ∈ R, (x.y).z = x.(y.z),

(ii) x.0 = 0.x = 0 for all x ∈ R.

(3) The multiplication . is distributive with respect to the hyperoperation +. i.e., for every
x, y, z ∈ R, x.(y + z) = x.y + x.z and (x+ y).z = x.z + y.z.

A non-empty subset I of a canonical hypergroup R is called a canonical subhypergroup of R
if I itself is a canonical hypergroup under the same hyperoperation as that of R. Equivalently, a
non-empty subset I of a canonical hypergroup R is a canonical subhypergroup of R if for every
x, y ∈ I , xy ⊆ I . Here after we denote xy instead of x.y. Moreover, for A,B ⊆ R and x ∈ R,
by A + B we mean the set ∪a∈A,b∈B(a + b) and AB = ∪a∈A,b∈B(ab), A + x = A + {x},
x+B = {x}+B and also −A = {−a : a ∈ A}. The following elementary facts in a hyperring
easily follow from the axioms:

(i) −(−a) = a for every a ∈ R;

(ii) 0 is the unique element such that for every a ∈ R, there is an element −a ∈ R with the
property 0 ∈ a+ (−a) and −0 = 0;

(iii) −(a+ b) = −a− b for all a, b ∈ R;

(iv) −(ab) = (−a)b = a(−b) for all a, b ∈ R.

In a hyperring R, if there exists an element 1 ∈ R such that 1a = a1 = a for every a ∈ R, then
the element 1 is called the identity element of the hyperring R. In fact, the element 1 is unique.
Further, if ab = ba for every a, b ∈ R then the hyperring R is called a commutative hyperring.
Throughout this paper, by a hyperring we mean the Krasner hyperring.

Example 2.2. The set R = {0, 1} with the following hyperoperations is a hyperring.

+ 0 1
0 {0} {1}
1 {1} {0, 1}

. 0 1
0 {0} {0}
1 {0} {1}

Definition 2.3. Let R be a hyperring. A non-empty subset S of R is called a subhyperring of R
if x− y ⊆ S and xy ∈ S for all x, y ∈ S.

Definition 2.4. Let R be a hyperring and I be a non-empty subset of R. I is called a left (resp.
right) hyperideal of R if
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(i) (I,+) is a canonical subhypergroup of R, i.e., for every x, y ∈ I , x− y ⊆ I

(ii) for every a ∈ I , r ∈ R, ra ⊆ I (resp. ar ⊆ I). A hyperideal of R is one which is a left as
well as a right hyperideal of R.

Definition 2.5. A hyperring R is said to be prime hyperring if aRb = 0 for a, b ∈ R implies
either a = 0 or b = 0.

Definition 2.6. A hyperring R is said to be reduced hyperring if it has no nilpotent elements.
That is, if xn = 0 for all x ∈ R and a natural number n, then x = 0.

Definition 2.7. A hyperring R is said to be 2−torsion free if 0 ∈ x+ x for x ∈ R implies x = 0.

3 Permuting tri-derivations of hyperrings and examples

In this section we define permuting tri-derivation and strong permuting tri-derivation of hyper-
rings and give examples.

Definition 3.1. Let R be a hyperring. A mapping D : R × R × R → R is called permuting
if it satisfies the condition D(x, y, z) = D(x, z, y) = D(y, x, z) = D(y, z, x) = D(z, x, y) =
D(z, y, x) for all x, y, z ∈ R.

Definition 3.2. Let R be a hyperring. A map D : R × R × R → R is said to be a permuting
tri-derivation of R if D satisfies:

(i) D(x+ w, y, z) ⊆ D(x, y, z) +D(w, y, z)

(ii) D(xw, y, z) ∈ D(x, y, z)w + xD(w, y, z)

for all x, y, z, w ∈ R.

The hyperring R equipped with a permuting tri-derivation D is called a D− differential hy-
perring. If the map D is such that D(x+w, y, z) = D(x, y, z)+D(w, y, z) for all x, y, z, w ∈ R
and satisfies the condition (ii), then D is called a strong permuting tri-derivation of R. In this
case, the hyperring is called strongly D− differential hyperring.

Proposition 3.3. Let R be a hyperring and D : R × R × R → R be a permuting tri-derivation
of R. Then

(i) D(a, b, 0) = 0, ∀a, b ∈ R.

(ii) D(−a, b, c) = −D(a, b, c), ∀a, b, c ∈ R.

(iii) if 1 is the identity element of R, then D(1, a, b) ∈ D(1, a, b) +D(1, a, b), ∀a, b ∈ R.

Proof.

(i) D(a, b, 0) = D(a, b, 0.0) ∈ D(a, b, 0).0 + 0.D(a, b, 0) and so D(a, b, 0) = 0.

(ii) ∀a, b, c ∈ R, 0 = D(a, b, 0) = D(a, b, c− c) ⊆ D(a, b, c)+D(a, b,−c). That is D(a, b, c) ∈
0−D(a, b,−c). Hence we get D(a, b, c) = −D(a, b,−c). Therefore we obtain−D(a, b, c) =
−(−D(a, b,−c)) = D(a, b,−c).

(iii) D(1, a, b) = D(1.1, a, b) ∈ D(1, a, b).1 + 1.D(1, a, b) = D(1, a, b) +D(1, a, b), ∀a, b ∈ R.
Therefore we obtain D(1, a, b) ∈ D(1, a, b) +D(1, a, b).

Example 3.4. Consider the hyperring R = {0, a, b} with the hyperaddition and the multplication
defined as follows.
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+ 0 a b

0 {0} {a} {b}
a {a} {a, b} R

b {b} R {a, b}

. 0 a b

0 0 0 0
a 0 b a

b 0 a b

Define a map D : R×R×R→ R by D(0, 0, 0) = 0, D(a, 0, 0) = D(0, a, 0) = D(0, 0, a) =
D(b, 0, 0) = D(0, b, 0) = D(0, 0, b) = 0, D(a, a, 0) = D(a, 0, a) = D(0, a, a) = b, D(b, b, 0) =
D(b, 0, b) = D(0, b, b) = a, D(a, b, 0) = D(a, 0, b) = D(0, a, b) = D(b, a, 0) = D(b, 0, a) =
D(0, b, a) = a, D(b, b, a) = D(b, a, b) = D(a, b, b) = a, D(a, a, b) = D(a, b, a) = D(b, a, a) =
b, D(a, a, a) = D(b, b, b) = a. Clearly, D is a strong permuting tri-derivation of R.

Example 3.5. Let R be a commutative hyperring and M(R) =

{(
0 a

0 b

)
: a, b ∈ R

}
be a

collection of 2 × 2 matrices over R. A hyperaddition ⊕ is defined on M(R) by

(
0 a

0 b

)
⊕(

0 c

0 d

)
=

{(
0 x

0 y

)
: x ∈ a+ c, y ∈ b+ d

}
for all

(
0 a

0 b

)
,

(
0 c

0 d

)
∈M(R). Clearly, this

hyperaddition is well-defined and (M(R),⊕) is a canonical hypergroup. The matrix

(
0 0
0 0

)

is the additive identity of M(R). Also for each matrix

(
0 a

0 b

)
∈ M(R), there exists a unique

matrix

(
0 −a
0 −b

)
∈M(R) such that

(
0 0
0 0

)
∈

(
0 a

0 b

)
⊕

(
0 −a
0 −b

)
.

Now a multiplication ⊗ is defined on M(R) by

(
0 a

0 b

)
⊗

(
0 c

0 d

)
=

(
0 ad

0 bd

)
for all(

0 a

0 b

)
,

(
0 c

0 d

)
∈ M(R). Clearly, the multiplication ⊗ is well defined and associative.

Therefore (M(R),⊗) is a semigroup.

Let

(
0 a

0 b

)
,

(
0 c

0 d

)
,

(
0 e

0 f

)
∈M(R). Then(

0 a

0 b

)
⊗

{(
0 c

0 d

)
⊕

(
0 e

0 f

)}
=

(
0 a

0 b

)
⊗

{(
0 r

0 s

)
: r ∈ c+ e, s ∈ d+ f

}
and{(

0 a

0 b

)
⊗

(
0 c

0 d

)}
⊕

{(
0 a

0 b

)
⊗

(
0 e

0 f

)}
=

(
0 ad

0 bd

)
⊕

(
0 af

0 bf

)

=

{(
0 l

0 m

)
: l ∈ ad+ af,m ∈ bd+ bf

}
. So, we have(

0 a

0 b

)
⊗

{(
0 c

0 d

)
⊕

(
0 e

0 f

)}
=

{(
0 a

0 b

)
⊗

(
0 c

0 d

)}
⊕

{(
0 a

0 b

)
⊗

(
0 e

0 f

)}
.

Similarly we have{(
0 c

0 d

)
⊕

(
0 e

0 f

)}
⊗

(
0 a

0 b

)
=

{(
0 c

0 d

)
⊗

(
0 a

0 b

)}
⊕

{(
0 e

0 f

)
⊗

(
0 a

0 b

)}
.

Thus M(R) is a Krasner hyperring.

Now define a function D on M(R) by D

((
0 a

0 b

)
,

(
0 c

0 d

)
,

(
0 e

0 f

))
=

(
0 bdf

0 0

)
.

Clearly this map is well defined. Now we will show that D is a permuting tri-derivation. For all
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(
0 a

0 b

)
,

(
0 c

0 d

)
,

(
0 e

0 f

)
,

(
0 g

0 h

)
∈M(R)

D

((
0 a

0 b

)
⊕

(
0 g

0 h

)
,

(
0 c

0 d

)
,

(
0 e

0 f

))
= D

({(
0 r

0 s

)
: r ∈ a+ g, s ∈ b+ h

}
,

(
0 c

0 d

)
,

(
0 e

0 f

))

=

{(
0 sdf

0 0

)
: s ∈ b+ h

}
and

D

((
0 a

0 b

)
,

(
0 c

0 d

)
,

(
0 e

0 f

))
⊕D

((
0 g

0 h

)
,

(
0 c

0 d

)
,

(
0 e

0 f

))
=(

0 0
0 bdf

)
⊕

(
0 0
0 hdf

)
=

{(
0 0
0 l

)
: l ∈ bdf + hdf

}
.

Also

D

((
0 a

0 b

)
⊗

(
0 g

0 h

)
,

(
0 c

0 d

)
,

(
0 e

0 f

))
= D

((
0 ag

0 bh

)
,

(
0 c

0 d

)
,

(
0 e

0 f

))
=

(
0 bhdf

0 0

)
and{
D

((
0 a

0 b

)
,

(
0 c

0 d

)
,

(
0 e

0 f

))
⊗

(
0 g

0 h

)}
⊕

{(
0 a

0 b

)
⊗D

((
0 g

0 h

)
,

(
0 c

0 d

)
,

(
0 e

0 f

))}

=

{(
0 bdf

0 0

)
⊗

(
0 g

0 h

)}
⊕

{(
0 a

0 b

)
⊗

(
0 hdf

0 0

)}

=

(
0 bdfh

0 0

)
⊕

(
0 0
0 0

)
=

(
0 bdfh

0 0

)
.

Thus D is a permuting tri-derivation on M(R). Here D is a strong permuting tri-derivation.

Definition 3.6. Let R be a hyperring and D : R × R × R → R be a permuting tri-derivation. A
mapping d : R→ R defined by d(x) = D(x, x, x) is called the trace of D.
It is clear that, in case D : R × R ×R→ R be a permuting tri-mapping, the trace of D satisfies
the following relation

d(x+ y) = D(x+ y, x+ y, x+ y) ⊆ d(x) +D(x, x, y) +D(x, y, x) +D(x, y, y) +D(y, x, x) +D(y, x, y)

+D(y, y, x) + d(y)

and d(0) = D(0, 0, 0). If D is strong permuting tri-derivation, we have

d(x+ y) = d(x) +D(x, x, y) +D(x, y, x) +D(x, y, y) +D(y, x, x) +D(y, x, y)

+D(y, y, x) + d(y).

Since

0 = d(0) = d(x+ (−x)) ⊆ dx+D(x, x,−x) +D(x,−x, x) +D(x,−x,−x) +D(−x, x, x)
+D(−x, x,−x) +D(−x,−x, x) + d(−x) = −d(x) + d(−x),

we have d(−x) ∈ 0− (−d(x)). Therefore we obtain d(−x) = d(x).

Proposition 3.7. Let R be a hyperring. D be a permuting tri-derivation of R and a, b be fixed
elements of R. Then S = {x ∈ R : D(x, a, b) = 0} is a subhyperring of R.

Proof. S is nonempty since D(0, a, b) = 0. So we get D(x, a, b) = 0 and D(y, a, b) = 0 for
x, y ∈ S. Hence we have D(x + y, a, b) ⊆ D(x, a, b) + D(y, a, b). In addition to this for any
x ∈ S, D(−x, a, b) = −D(x, a, b) = 0. Also, D(xy, a, b) ∈ D(x, a, b)y + xD(y, a, b) = 0. Thus
for any x, y ∈ S, x+ y ⊆ S, −x ∈ S, xy ∈ S. Therefore S is a subhyperring of R.

Proposition 3.8. Let D be a permuting tri-derivation of a prime hyperring R and a ∈ R such
that aD(x, y, z) = 0 (or D(x, y, z)a = 0) for all x, y, z ∈ R. Then either a = 0 or D = 0.
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Proof. Assume that aD(x, y, z) = 0 for all x, y, z ∈ R, then we have

0 = aD(xt, y, z) ∈ axD(t, y, z) + aD(x, y, z)t = axD(t, y, z)

That is, axD(t, y, z) = 0. Since R is a prime hyperring we obtain a = 0 or D(t, y, z) = 0. If
a 6= 0, then we have D(t, y, z) = 0. That is, D = 0.

Suppose that D(x, y, z)a = 0 for all x, y, z ∈ R, then

0 = D(xt, y, z)a ∈ xD(t, y, z)a+D(x, y, z)ta = D(x, y, z)ta

That is, D(x, y, z)ta = 0. Since R is a prime hyperring we obtain a = 0 or D(x, y, z) = 0. If
a 6= 0, then we have D(x, y, z) = 0. That is, D = 0.

Proposition 3.9. Let R be a prime hyperring with charR 6= 2, 3 and D be a strong permuting
tri-derivation with trace d of R and a ∈ R such that ad(x) = 0 (or d(x)a = 0) for all x ∈ R.
Then either a = 0 or D = 0.

Proof. Assume that ad(x) = 0 for all x ∈ R. Replacing x by x+ y we get

0 = ad(x+ y) = ad(x) + 3aD(x, x, y) + 3aD(x, y, y) + ad(y).

Since charR 6= 3 we obtain

aD(x, x, y) + aD(x, y, y) = 0. (3.1)

Writing −x for x in (3.1) we have

aD(x, y, y) = 0. (3.2)

Replacing x by xy in (3.2) we conclude axd(y) = 0. Since R is prime hyperring we obtain
a = 0 or d(y) = 0 for all x ∈ R. Consequently a = 0 or D = 0.

Theorem 3.10. Let D be a permuting tri-derivation of 2−torsion free reduced hyperring R. If
D(D(x, y, z), y, z) = 0 for all x, y, z ∈ R then D = 0.

Proof. Let D(D(x, y, z), y, z) = 0 for all x, y, z ∈ R. Replacing x by xt, t ∈ R, we obtain

0 = D(D(xt, y, z), y, z) ∈ D(D(x, y, z)t+ xD(t, y, z), y, z) ∈ D(D(x, y, z)t, y, z) +D(xD(t, y, z), y, z)

∈ D(D(x, y, z)t, y, z) +D(xD(t, y, z), y, z) ∈ D(x, y, z)D(t, y, z) +D(D(x, y, z), y, z)t+

D(x, y, z)D(t, y, z) + xD(D(t, y, z), y, z)

= D(x, y, z)D(t, y, z) +D(x, y, z)D(t, y, z)

Since R is 2−torsion free hyperring we get D(x, y, z)D(t, y, z) = 0. If we take x instead of t we
have D(x, y, z)2 = 0 for all x, y, z ∈ R. Since R is reduced hyperring we have D(x, y, z) = 0
for all x, y, z ∈ R. Hence we obtain D = 0.
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