PERMUTING TRI-DERIVATIONS ON HYPERRINGS

Seda Oğuz Ünal

Communicated by Ayman Badawi

MSC 2010 Classifications: Primary 20N20.

Keywords and phrases: Krasner hyperring, permuting tri-derivation.

Abstract In this paper we describe permuting tri-derivations in Krasner hyperrings. In this way we derive some important properties of permuting tri-derivations.

1 Introduction

Hyperstructures represent a natural extension of classical algebraic structures and they were introduced by the French mathematician Marty [13] at the 8th congress Scandinavian Mathematicians. Algebraic hyperstructures are a suitable generalization of classical algebraic structures. In a classical algebraic structure, the composition of two elements is an element, while in an algebraic hyperstructure, the composition of two elements is a set. In the following decades and nowadays, a number of different hyperstructures are widely studied from the theoretical point of view and for their applications to many subjects of pure and applied mathematics by many mathematicians. In [15], Mittas introduced the concept of canonical hypergroups. Corsini [4] introduced and studied the Canonical Hypergroups [6], Feebly Canonical Hypergroups [5], Quasi- Canonical Hypergroups [7]. In [12], Krasner introduced the concept of hyperrings and hyperfields. G.G Massouros studied the theory of hypercompositional structures into the theory of automata (see [14]). Asokkumar [1] defined the idempotent elements of Krasner hyperrings. Babaei et al. studied R-parts in hyperrings (see [3]).

The concept of derivations in rings plays a significant role in algebra. After Posner [17], many papers concerning derivations have appeared in the literature. In [16], Ozturk presented permuting tri-derivations in prime and semi-prime rings. For more information for permuting tri derivations see [10] and [11]. In [18], Vougiouklis defined a hyperoperation called theta hyperoperation and studied H_v -structures. Jan Chvalina et al. [8], introduced a hyperoperation * on a differential ring R so that (R, *) is a hypergroup.

In [2], the author introduced derivations in Krasner hyperrings and in [9], the author studied symmetric bi-derivation in Krasner hyperrings. So in this paper, we aim to generalize some results given in [2] and [9]. In this way, we introduce the notion of permuting tri-derivations on Krasner hyperrings and some properties of them are investigated.

2 Preliminaries

In this section, for the sake of completeness we remind some definitions used in the sequel.

A hyperoperation on a nonempty set H is a function $\circ : H \times H \to \wp(H)^*$ where $\wp(H)$ is the power set of H and (H, \circ) is called a hypergroupoid. For nonempty subsets A and B of H and $x \in H$, let

$$A \circ B = \bigcup_{a \in A, b \in B} a \circ b, \quad A \circ x = A \circ \{x\} \quad and \quad x \circ A = \{x\} \circ A.$$

An element $e \in H$ is called an identity of (H, \circ) if $x \in x \circ e \cap e \circ x$, for all $x \in H$. If e is a scalar identity of (H, \circ) , then e is the unique identity of (H, \circ) . The hypergroupoid is said to be commutative if $x \circ y = y \circ x$ for all $x, y \in H$.

A hypergroupoid is called a semihypergroup if $(x \circ y) \circ z = x \circ (y \circ z)$, for all $x, y, z \in H$.

A semihypergroup is called a hypergroup if $H \circ x = x \circ H = H$, for all $x \in H$.

An element y of a hypergroupoid (H, \circ) is called an inverse of $x \in H$ if $(x \circ y) \cap (y \circ x)$ contains at least one identity. A hypergroup (H, \circ) is said to be regular if every element of (H, \circ) has at least one inverse. A regular hypergroup (H, \circ) is said to be reversible if for all $x, y, z \in H$, $x \in y \circ z \Rightarrow z \in y' \circ x$ and $y \in x \circ z'$, for some inverse y' of y and some inverse z' of z.

Definition 2.1. A non-empty set R with a hyperaddition + and a multiplication \cdot is called additive hyperring or Krasner hyperring if it satisfies the following:

- (1) (R, +) is a canonical hypergroup, i.e.,
- (i) for every $x, y, z \in R, x + (y + z) = (x + y) + z$,
- (ii) for every $x, y \in R, x + y = y + x$,
- (iii) there exists $0 \in R$ such that 0 + x = x for all $x \in R$,
- (iv) for every $x \in R$ there exists an unique element denoted by $-x \in R$ such that $0 \in x + (-x)$
- (v) for every $x, y, z \in R$, $z \in x + y$ implies $y \in -x + z$ and $x \in z y$.
- (2) (R, .) is a semigroup having 0 as a bilaterally absorbing element, i.e.,
- (i) for every $x, y, z \in R$, (x.y).z = x.(y.z),
- (ii) x.0 = 0.x = 0 for all $x \in R$.
- (3) The multiplication . is distributive with respect to the hyperoperation +. i.e., for every $x, y, z \in R$, x.(y + z) = x.y + x.z and (x + y).z = x.z + y.z.

A non-empty subset I of a canonical hypergroup R is called a canonical subhypergroup of R if I itself is a canonical hypergroup under the same hyperoperation as that of R. Equivalently, a non-empty subset I of a canonical hypergroup R is a canonical subhypergroup of R if for every $x, y \in I, xy \subseteq I$. Here after we denote xy instead of x.y. Moreover, for $A, B \subseteq R$ and $x \in R$, by A + B we mean the set $\bigcup_{a \in A, b \in B} (a + b)$ and $AB = \bigcup_{a \in A, b \in B} (ab), A + x = A + \{x\}, x + B = \{x\} + B$ and also $-A = \{-a : a \in A\}$. The following elementary facts in a hyperring easily follow from the axioms:

- (i) -(-a) = a for every $a \in R$;
- (ii) 0 is the unique element such that for every $a \in R$, there is an element $-a \in R$ with the property $0 \in a + (-a)$ and -0 = 0;
- (iii) -(a+b) = -a b for all $a, b \in R$;
- (iv) -(ab) = (-a)b = a(-b) for all $a, b \in R$.

In a hyperring R, if there exists an element $1 \in R$ such that 1a = a1 = a for every $a \in R$, then the element 1 is called the identity element of the hyperring R. In fact, the element 1 is unique. Further, if ab = ba for every $a, b \in R$ then the hyperring R is called a commutative hyperring. Throughout this paper, by a hyperring we mean the Krasner hyperring.

Example 2.2. The set $R = \{0, 1\}$ with the following hyperoperations is a hyperring.

+	0 1		0	1
0	$\{0\}$ $\{1\}$	0	$\{0\}$	{0}
1	$\{1\} \{0,1\}$	1	$\{0\}$	{1}

Definition 2.3. Let R be a hyperring. A non-empty subset S of R is called a subhyperring of R if $x - y \subseteq S$ and $xy \in S$ for all $x, y \in S$.

Definition 2.4. Let R be a hyperring and I be a non-empty subset of R. I is called a left (resp. right) hyperideal of R if

- (i) (I, +) is a canonical subhypergroup of R, i.e., for every $x, y \in I, x y \subseteq I$
- (ii) for every $a \in I$, $r \in R$, $ra \subseteq I$ (resp. $ar \subseteq I$). A hyperideal of R is one which is a left as well as a right hyperideal of R.

Definition 2.5. A hyperring R is said to be prime hyperring if aRb = 0 for $a, b \in R$ implies either a = 0 or b = 0.

Definition 2.6. A hyperring R is said to be reduced hyperring if it has no nilpotent elements. That is, if $x^n = 0$ for all $x \in R$ and a natural number n, then x = 0.

Definition 2.7. A hyperring R is said to be 2-torsion free if $0 \in x + x$ for $x \in R$ implies x = 0.

3 Permuting tri-derivations of hyperrings and examples

In this section we define permuting tri-derivation and strong permuting tri-derivation of hyperrings and give examples.

Definition 3.1. Let R be a hyperring. A mapping $D : R \times R \times R \to R$ is called permuting if it satisfies the condition D(x, y, z) = D(x, z, y) = D(y, x, z) = D(y, z, x) = D(z, x, y) = D(z, y, x) for all $x, y, z \in R$.

Definition 3.2. Let R be a hyperring. A map $D : R \times R \times R \to R$ is said to be a permuting tri-derivation of R if D satisfies:

- (i) $D(x+w,y,z) \subseteq D(x,y,z) + D(w,y,z)$
- (ii) $D(xw, y, z) \in D(x, y, z)w + xD(w, y, z)$

for all $x, y, z, w \in R$.

The hyperring R equipped with a permuting tri-derivation D is called a D- differential hyperring. If the map D is such that D(x+w, y, z) = D(x, y, z) + D(w, y, z) for all $x, y, z, w \in R$ and satisfies the condition (*ii*), then D is called a strong permuting tri-derivation of R. In this case, the hyperring is called strongly D- differential hyperring.

Proposition 3.3. Let R be a hyperring and $D : R \times R \times R \to R$ be a permuting tri-derivation of R. Then

- (*i*) $D(a, b, 0) = 0, \forall a, b \in R.$
- (*ii*) $D(-a, b, c) = -D(a, b, c), \forall a, b, c \in R.$

(iii) if 1 is the identity element of R, then $D(1, a, b) \in D(1, a, b) + D(1, a, b), \forall a, b \in R$.

Proof.

- (i) $D(a, b, 0) = D(a, b, 0.0) \in D(a, b, 0) \cdot 0 + 0 \cdot D(a, b, 0)$ and so D(a, b, 0) = 0.
- (ii) $\forall a, b, c \in R, 0 = D(a, b, 0) = D(a, b, c c) \subseteq D(a, b, c) + D(a, b, -c)$. That is $D(a, b, c) \in 0 D(a, b, -c)$. Hence we get D(a, b, c) = -D(a, b, -c). Therefore we obtain -D(a, b, c) = -(-D(a, b, -c)) = D(a, b, -c).
- (iii) $D(1, a, b) = D(1.1, a, b) \in D(1, a, b).1 + 1.D(1, a, b) = D(1, a, b) + D(1, a, b), \forall a, b \in R.$ Therefore we obtain $D(1, a, b) \in D(1, a, b) + D(1, a, b).$

Example 3.4. Consider the hyperring $R = \{0, a, b\}$ with the hyperaddition and the multiplication defined as follows.

+	0	a	b		0	a	
0	{0}	$\{a\}$	$\{b\}$	0	0	0	
a	$\{a\}$	$\{a,b\}$	R	a	0	b	
b	$\{b\}$	$R = \{$	$\{a,b\}$	b	0	a	

Define a map $D : R \times R \times R \to R$ by D(0,0,0) = 0, D(a,0,0) = D(0,a,0) = D(0,0,a) = D(b,0,0) = D(0,b,0) = D(0,0,b) = 0, D(a,a,0) = D(a,0,a) = D(0,a,a) = b, D(b,b,0) = D(b,0,b) = a, D(a,b,0) = D(a,0,b) = D(0,a,b) = D(b,a,0) = D(b,0,a) = D(0,b,a) = a, D(b,b,a) = D(b,a,b) = D(a,b,b) = a, D(a,b,b) = a. Clearly, D is a strong permuting tri-derivation of R.

Example 3.5. Let R be a commutative hyperring and $M(R) = \left\{ \begin{pmatrix} 0 & a \\ 0 & b \end{pmatrix} : a, b \in R \right\}$ be a collection of 2 × 2 matrices over R. A hyperaddition \oplus is defined on M(R) by $\begin{pmatrix} 0 & a \\ 0 & b \end{pmatrix} \oplus$ $\begin{pmatrix} 0 & c \\ 0 & d \end{pmatrix} = \left\{ \begin{pmatrix} 0 & x \\ 0 & y \end{pmatrix} : x \in a + c, y \in b + d \right\} \text{ for all } \begin{pmatrix} 0 & a \\ 0 & b \end{pmatrix}, \begin{pmatrix} 0 & c \\ 0 & d \end{pmatrix} \in M(R). \text{ Clearly, this}$ hyperaddition is well-defined and $(M(R), \oplus)$ is a canonical hypergroup. The matrix $\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$ is the additive identity of M(R). Also for each matrix $\begin{pmatrix} 0 & a \\ 0 & b \end{pmatrix} \in M(R)$, there exists a unique matrix $\begin{pmatrix} 0 & -a \\ 0 & -b \end{pmatrix} \in M(R)$ such that $\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \in \begin{pmatrix} 0 & a \\ 0 & b \end{pmatrix} \oplus \begin{pmatrix} 0 & -a \\ 0 & -b \end{pmatrix}$. Now a multiplication \otimes is defined on M(R) by $\begin{pmatrix} 0 & a \\ 0 & b \end{pmatrix} \otimes \begin{pmatrix} 0 & c \\ 0 & d \end{pmatrix} = \begin{pmatrix} 0 & ad \\ 0 & bd \end{pmatrix}$ for all $\begin{pmatrix} 0 & a \\ 0 & b \end{pmatrix}, \begin{pmatrix} 0 & c \\ 0 & d \end{pmatrix} \in M(R)$. Clearly, the multiplication \otimes is well defined and associative. Therefore $(M(R), \otimes)$ is a semigroup. Let $\begin{pmatrix} 0 & a \\ 0 & b \end{pmatrix}$, $\begin{pmatrix} 0 & c \\ 0 & d \end{pmatrix}$, $\begin{pmatrix} 0 & e \\ 0 & f \end{pmatrix} \in M(R)$. Then $\begin{pmatrix} 0 & a \\ 0 & b \end{pmatrix} \otimes \left\{ \begin{pmatrix} 0 & c \\ 0 & d \end{pmatrix} \oplus \begin{pmatrix} 0 & e \\ 0 & f \end{pmatrix} \right\} = \begin{pmatrix} 0 & a \\ 0 & b \end{pmatrix} \otimes \left\{ \begin{pmatrix} 0 & r \\ 0 & s \end{pmatrix} : r \in c + e, s \in d + f \right\} \text{ and}$ $\left\{ \begin{pmatrix} 0 & a \\ 0 & b \end{pmatrix} \otimes \begin{pmatrix} 0 & c \\ 0 & d \end{pmatrix} \right\} \oplus \left\{ \begin{pmatrix} 0 & a \\ 0 & b \end{pmatrix} \otimes \begin{pmatrix} 0 & e \\ 0 & f \end{pmatrix} \right\} = \begin{pmatrix} 0 & ad \\ 0 & bd \end{pmatrix} \oplus \begin{pmatrix} 0 & af \\ 0 & bf \end{pmatrix}$ $= \left\{ \begin{pmatrix} 0 & l \\ 0 & m \end{pmatrix} : l \in ad + af, m \in bd + bf \right\}.$ So, we have $egin{pmatrix} 0&a\0&b\end{pmatrix}\otimesigg\{egin{pmatrix} 0&c\0&d\end{pmatrix}\oplusigg(egin{pmatrix} 0&e\0&f\end{pmatrix}igg\}=igg\{egin{pmatrix} 0&a\0&b\end{pmatrix}\otimesigg(egin{pmatrix} 0&c\0&d\end{pmatrix}igg\}\oplusigg\{egin{pmatrix} 0&a\0&b\end{pmatrix}\otimesigg(egin{pmatrix} 0&e\0&f\end{pmatrix}igg\}.$ $\left\{ \begin{pmatrix} 0 & c \\ 0 & d \end{pmatrix} \oplus \begin{pmatrix} 0 & e \\ 0 & f \end{pmatrix} \right\} \otimes \begin{pmatrix} 0 & a \\ 0 & b \end{pmatrix} = \left\{ \begin{pmatrix} 0 & c \\ 0 & d \end{pmatrix} \otimes \begin{pmatrix} 0 & a \\ 0 & b \end{pmatrix} \right\} \oplus \left\{ \begin{pmatrix} 0 & e \\ 0 & f \end{pmatrix} \otimes \begin{pmatrix} 0 & a \\ 0 & b \end{pmatrix} \right\}.$ Thus M(R) is a Krasner hyperring

Now define a function D on M(R) by $D\left(\begin{pmatrix} 0 & a \\ 0 & b \end{pmatrix}, \begin{pmatrix} 0 & c \\ 0 & d \end{pmatrix}, \begin{pmatrix} 0 & e \\ 0 & f \end{pmatrix}\right) = \begin{pmatrix} 0 & bdf \\ 0 & 0 \end{pmatrix}$. Clearly this map is well defined. Now we will show that D is a permuting tri-derivation. For all

$$\begin{pmatrix} 0 & a \\ 0 & b \end{pmatrix}, \begin{pmatrix} 0 & c \\ 0 & d \end{pmatrix}, \begin{pmatrix} 0 & e \\ 0 & f \end{pmatrix}, \begin{pmatrix} 0 & g \\ 0 & h \end{pmatrix} \in M(R)$$

$$D\left(\begin{pmatrix} 0 & a \\ 0 & b \end{pmatrix} \oplus \begin{pmatrix} 0 & g \\ 0 & h \end{pmatrix}, \begin{pmatrix} 0 & c \\ 0 & d \end{pmatrix}, \begin{pmatrix} 0 & e \\ 0 & f \end{pmatrix}\right) = D\left(\left\{\begin{pmatrix} 0 & r \\ 0 & s \end{pmatrix} : r \in a + g, s \in b + h\right\}, \begin{pmatrix} 0 & c \\ 0 & d \end{pmatrix}, \begin{pmatrix} 0 & e \\ 0 & f \end{pmatrix}\right)$$

$$= \left\{\begin{pmatrix} 0 & sdf \\ 0 & 0 \end{pmatrix} : s \in b + h\right\}$$
and
$$D\left(\begin{pmatrix} 0 & a \\ 0 & b \end{pmatrix}, \begin{pmatrix} 0 & c \\ 0 & d \end{pmatrix}, \begin{pmatrix} 0 & e \\ 0 & f \end{pmatrix}\right) \oplus D\left(\begin{pmatrix} 0 & g \\ 0 & h \end{pmatrix}, \begin{pmatrix} 0 & c \\ 0 & d \end{pmatrix}, \begin{pmatrix} 0 & e \\ 0 & f \end{pmatrix}\right) = \left(\begin{pmatrix} 0 & 0 \\ 0 & bdf \end{pmatrix} \oplus \begin{pmatrix} 0 & 0 \\ 0 & hdf \end{pmatrix} = \left\{\begin{pmatrix} 0 & 0 \\ 0 & d \end{pmatrix}, : l \in bdf + hdf\right\}.$$
Also
$$D\left(\begin{pmatrix} 0 & a \\ 0 & b \end{pmatrix}, \begin{pmatrix} 0 & c \\ 0 & d \end{pmatrix}, \begin{pmatrix} 0 & c \\ 0 & d \end{pmatrix}, \begin{pmatrix} 0 & e \\ 0 & f \end{pmatrix}\right) = D\left(\begin{pmatrix} 0 & ag \\ 0 & bh \end{pmatrix}, \begin{pmatrix} 0 & c \\ 0 & d \end{pmatrix}, \begin{pmatrix} 0 & e \\ 0 & f \end{pmatrix}\right) = \left(\begin{pmatrix} 0 & bdf \\ 0 & b \end{pmatrix}, \begin{pmatrix} 0 & c \\ 0 & d \end{pmatrix}, \begin{pmatrix} 0 & e \\ 0 & f \end{pmatrix}\right) = D\left(\begin{pmatrix} 0 & ag \\ 0 & bh \end{pmatrix}, \begin{pmatrix} 0 & c \\ 0 & d \end{pmatrix}, \begin{pmatrix} 0 & e \\ 0 & f \end{pmatrix}\right) = \left\{D\left(\begin{pmatrix} 0 & ag \\ 0 & bh \end{pmatrix}, \begin{pmatrix} 0 & c \\ 0 & d \end{pmatrix}, \begin{pmatrix} 0 & e \\ 0 & f \end{pmatrix}\right)\right\} = \left\{D\left(\begin{pmatrix} 0 & ag \\ 0 & bh \end{pmatrix}, \begin{pmatrix} 0 & c \\ 0 & d \end{pmatrix}, \begin{pmatrix} 0 & e \\ 0 & f \end{pmatrix}\right)\right\} = \left\{D\left(\begin{pmatrix} 0 & ag \\ 0 & bh \end{pmatrix}, \begin{pmatrix} 0 & c \\ 0 & d \end{pmatrix}, \begin{pmatrix} 0 & e \\ 0 & f \end{pmatrix}\right)\right\} = \left\{D\left(\begin{pmatrix} 0 & ag \\ 0 & bh \end{pmatrix}, \begin{pmatrix} 0 & c \\ 0 & d \end{pmatrix}, \begin{pmatrix} 0 & e \\ 0 & f \end{pmatrix}\right)\right\} = \left\{D\left(\begin{pmatrix} 0 & ag \\ 0 & bh \end{pmatrix}, \begin{pmatrix} 0 & c \\ 0 & d \end{pmatrix}, \begin{pmatrix} 0 & e \\ 0 & f \end{pmatrix}\right)\right\} \oplus \left\{D\left(\begin{pmatrix} 0 & a \\ 0 & b \end{pmatrix}, \begin{pmatrix} 0 & c \\ 0 & d \end{pmatrix}, \begin{pmatrix} 0 & e \\ 0 & f \end{pmatrix}\right)\right\} = \left\{D\left(\begin{pmatrix} 0 & ag \\ 0 & b \end{pmatrix}, \begin{pmatrix} 0 & c \\ 0 & d \end{pmatrix}, \begin{pmatrix} 0 & e \\ 0 & f \end{pmatrix}\right)\right\} = \left\{D\left(\begin{pmatrix} 0 & bdf \\ 0 & b \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & d \end{pmatrix}, \begin{pmatrix} 0 & b \\ 0 & d \end{pmatrix}\right) \oplus \left\{D\left(\begin{pmatrix} 0 & a \\ 0 & b \end{pmatrix}, \begin{pmatrix} 0 & b \\ 0 & d \end{pmatrix}\right)\right\} \oplus \left\{D\left(\begin{pmatrix} 0 & a \\ 0 & b \end{pmatrix}, \begin{pmatrix} 0 & c \\ 0 & d \end{pmatrix}\right)\right\} = \left\{D\left(\begin{pmatrix} 0 & bdf \\ 0 & b \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & d \end{pmatrix}\right) \oplus \left\{D\left(\begin{pmatrix} 0 & a \\ 0 & b \end{pmatrix}\right) \oplus D\left(\begin{pmatrix} 0 & a \\ 0 & b \end{pmatrix}\right) \oplus \left\{D\left(\begin{pmatrix} 0 & a \\ 0 & b \end{pmatrix}\right)\right\} = \left\{D\left(\begin{pmatrix} 0 & bdf \\ 0 & b \end{pmatrix}\right) \oplus \left(D & 0 \\ 0 & d \end{pmatrix}\right) \oplus \left(D\left(\begin{pmatrix} 0 & a \\ 0 & b \end{pmatrix}\right) \oplus \left(D\left(\begin{pmatrix} 0 & a \\ 0 & b \end{pmatrix}\right) \oplus D\left(D\left(\begin{pmatrix} 0 & a \\ 0 & b \end{pmatrix}\right) \oplus D\left(D\left(\begin{pmatrix} 0 & a \\ 0 & b \end{pmatrix}\right) \oplus D\left(D\left(\begin{pmatrix} 0 & a \\ 0 & b \end{pmatrix}\right) \oplus D\left(D\left(\begin{pmatrix} 0 & a \\ 0 & b \end{pmatrix}\right) \oplus D\left(D\left(\begin{pmatrix} 0 & a \\ 0 & b \end{pmatrix}\right) \oplus D\left(D\left(\begin{pmatrix} 0 & a \\ 0 & b \end{pmatrix}\right) \oplus D\left(D\left(\begin{pmatrix} 0 & a \\ 0 & b \end{pmatrix}\right) \oplus D\left(D\left(\begin{pmatrix} 0 & a \\ 0 & b \end{pmatrix}\right) \oplus D\left(D\left(\begin{pmatrix} 0 & a \\ 0 & b \end{pmatrix}\right) \oplus D\left(D\left(\begin{pmatrix} 0 & a \\ 0 & b \end{pmatrix}\right) \oplus D\left(D\left(\begin{pmatrix} 0 & a \\ 0 & b \end{pmatrix}\right) \oplus D\left(D\left(\begin{pmatrix} 0 & a \\ 0 & b \end{pmatrix}\right) \oplus D\left(D\left(\begin{pmatrix} 0 & a \\ 0 & b \end{pmatrix}\right) \oplus$$

Definition 3.6. Let R be a hyperring and $D: R \times R \times R \to R$ be a permuting tri-derivation. A mapping $d: R \to R$ defined by d(x) = D(x, x, x) is called the trace of D. It is clear that, in case $D: R \times R \times R \to R$ be a permuting tri-mapping, the trace of D satisfies the following relation

$$\begin{aligned} d(x+y) &= D(x+y, x+y, x+y) \subseteq d(x) + D(x, x, y) + D(x, y, x) + D(x, y, y) + D(y, x, x) + D(y, x, y) \\ &+ D(y, y, x) + d(y) \end{aligned}$$

and d(0) = D(0, 0, 0). If D is strong permuting tri-derivation, we have

$$\begin{aligned} d(x+y) &= d(x) + D(x,x,y) + D(x,y,x) + D(x,y,y) + D(y,x,x) + D(y,x,y) \\ &+ D(y,y,x) + d(y). \end{aligned}$$

Since

$$\begin{aligned} 0 &= d(0) = d(x + (-x)) \subseteq dx + D(x, x, -x) + D(x, -x, x) + D(x, -x, -x) + D(-x, x, x) \\ &+ D(-x, x, -x) + D(-x, -x, x) + d(-x) = -d(x) + d(-x), \end{aligned}$$

we have $d(-x) \in 0 - (-d(x))$. Therefore we obtain d(-x) = d(x).

Proposition 3.7. Let R be a hyperring. D be a permuting tri-derivation of R and a, b be fixed elements of R. Then $S = \{x \in R : D(x, a, b) = 0\}$ is a subhyperring of R.

Proof. S is nonempty since D(0, a, b) = 0. So we get D(x, a, b) = 0 and D(y, a, b) = 0 for $x, y \in S$. Hence we have $D(x + y, a, b) \subseteq D(x, a, b) + D(y, a, b)$. In addition to this for any $x \in S$, D(-x, a, b) = -D(x, a, b) = 0. Also, $D(xy, a, b) \in D(x, a, b)y + xD(y, a, b) = 0$. Thus for any $x, y \in S$, $x + y \subseteq S$, $-x \in S$, $xy \in S$. Therefore S is a subhyperring of R.

Proposition 3.8. Let D be a permuting tri-derivation of a prime hyperring R and $a \in R$ such that aD(x, y, z) = 0 (or D(x, y, z)a = 0) for all $x, y, z \in R$. Then either a = 0 or D = 0.

Proof. Assume that aD(x, y, z) = 0 for all $x, y, z \in R$, then we have

$$0 = aD(xt, y, z) \in axD(t, y, z) + aD(x, y, z)t = axD(t, y, z)$$

That is, axD(t, y, z) = 0. Since R is a prime hyperring we obtain a = 0 or D(t, y, z) = 0. If $a \neq 0$, then we have D(t, y, z) = 0. That is, D = 0.

Suppose that D(x, y, z)a = 0 for all $x, y, z \in R$, then

$$0 = D(xt, y, z)a \in xD(t, y, z)a + D(x, y, z)ta = D(x, y, z)ta$$

That is, D(x, y, z)ta = 0. Since R is a prime hyperring we obtain a = 0 or D(x, y, z) = 0. If $a \neq 0$, then we have D(x, y, z) = 0. That is, D = 0.

Proposition 3.9. Let R be a prime hyperring with $charR \neq 2,3$ and D be a strong permuting tri-derivation with trace d of R and $a \in R$ such that ad(x) = 0 (or d(x)a = 0) for all $x \in R$. Then either a = 0 or D = 0.

Proof. Assume that ad(x) = 0 for all $x \in R$. Replacing x by x + y we get

0 = ad(x + y) = ad(x) + 3aD(x, x, y) + 3aD(x, y, y) + ad(y).

Since $charR \neq 3$ we obtain

$$aD(x, x, y) + aD(x, y, y) = 0.$$
 (3.1)

Writing -x for x in (3.1) we have

$$aD(x, y, y) = 0.$$
 (3.2)

Replacing x by xy in (3.2) we conclude axd(y) = 0. Since R is prime hyperring we obtain a = 0 or d(y) = 0 for all $x \in R$. Consequently a = 0 or D = 0.

Theorem 3.10. Let D be a permuting tri-derivation of 2-torsion free reduced hyperring R. If D(D(x, y, z), y, z) = 0 for all $x, y, z \in R$ then D = 0.

Proof. Let D(D(x, y, z), y, z) = 0 for all $x, y, z \in R$. Replacing x by $xt, t \in R$, we obtain

$$\begin{aligned} 0 &= D(D(xt, y, z), y, z) \in D(D(x, y, z)t + xD(t, y, z), y, z) \in D(D(x, y, z)t, y, z) + D(xD(t, y, z), y, z) \\ &\in D(D(x, y, z)t, y, z) + D(xD(t, y, z), y, z) \in D(x, y, z)D(t, y, z) + D(D(x, y, z), y, z)t + D(x, y, z)D(t, y, z) + xD(D(t, y, z), y, z) \\ &= D(x, y, z)D(t, y, z) + D(x, y, z)D(t, y, z) \end{aligned}$$

Since R is 2-torsion free hyperring we get D(x, y, z)D(t, y, z) = 0. If we take x instead of t we have $D(x, y, z)^2 = 0$ for all $x, y, z \in R$. Since R is reduced hyperring we have D(x, y, z) = 0 for all $x, y, z \in R$. Hence we obtain D = 0.

References

- [1] A. Asokummar, On the ideal theory of commutative semi-groups, Tamkang J. Math. 38, 209–2154 (2007).
- [2] A. Asokummar, Derivations in Hyperrings and Prime Hyperrings, *Iranian Journal of Mathematical Sciences and Informatics* **8**, 1–13 (2013).
- [3] H. Babaei, M. Jafarpour, Sh. Mousavi, R-parts in hyperrings, *Iranian Journal of Mathematical Sciences and Informatics* 7, 1–13 (2012).
- [4] P. Corsini, Prolegomena of hypergroup theory, Second edition, Aviani editöre, (1993).
- [5] P. Corsini, Feebly canonical and 1-hypergroups, Acta Universitatis Carolinae, Math. et Phys 24 (1983).
- [6] P.Corsini, Sugli ipergruppi canonici finiti con identiti parziali scalari, *Rend. Circ. Mat. di Palermo serie II, t. XXXVI* (1987).

- [7] P.Corsini, P. Bonansinga, Sugli omomorfismi semi-ipergruppi e di ipergruppi, B.U.M.I., I-B, (1982).
- [8] J. Chvalina, L. Chvalinova, Multistructures determined by differential rings, *Archivum Mathematicum*, 36, 429–434, (2000).
- [9] H. Durna, Symmetric bi-derivation on Hyperrings, *Cumhuriyet University Faculty of Science Journal*, 37, (2016).
- [10] H. Durna, Tri-additive maps and permuting tri-derivations, Commun. Fac. Sci. Univ. Ank. Series A1, 54, 1–8, (2016).
- [11] H. Durna, Permuting triderivations of prime and semiprime rings, *Miskolc Mathematical Notes*, 18, 489–497, (2017).
- [12] M. Krasner, A class of hyperrings and hyperfields, Int. J. Math and Math Sci., 2, 307–312, (1983).
- [13] F. Marty, Sur une generalization de la notion de groupe, 8th Congress Math. Scandenavesi, Stockholm, 45–49, (1934).
- [14] G. G. Massouros, Hypercompositional Structures from the Computer Theory, *Ratio Mathematica*, 13, 37–42, (1999).
- [15] J. Mittas, Sur les hyperanneaux et les hypercorps, Mat Balk, (1983).
- [16] M. A. Ozturk, Permuting tri-derivations in prime and semi-prime rings, *East Asian Math. J.*, 15, 177–190, (1999).
- [17] E. C. Posner, Derivations in prime rings, Proc. Amer. Math. Soc. 8, 1093–1100, (1957).
- [18] T. Vougiouklis, The Hyper Theta-Algebras, Advances in Algebra 1(1), 67–78, (2008).

Author information

Seda Oğuz Ünal, Department of Science and Mathematics Education, Cumhuriyet University, Sivas 58140, TURKEY.

E-mail: sdaoguz@gmail.com

Received: March 23, 2018. Accepted: June 21, 2018