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Abstract In this paper we describe permuting tri-derivations in Krasner hyperrings. In this
way we derive some important properties of permuting tri-derivations.

1 Introduction

Hyperstructures represent a natural extension of classical algebraic structures and they were in-
troduced by the French mathematician Marty [13] at the 8th congress Scandinavian Mathemati-
cians. Algebraic hyperstructures are a suitable generalization of classical algebraic structures.
In a classical algebraic structure, the composition of two elements is an element, while in an
algebraic hyperstructure, the composition of two elements is a set. In the following decades
and nowadays, a number of different hyperstructures are widely studied from the theoretical
point of view and for their applications to many subjects of pure and applied mathematics by
many mathematicians. In [15], Mittas introduced the concept of canonical hypergroups. Corsini
[4] introduced and studied the Canonical Hypergroups [6], Feebly Canonical Hypergroups [5],
Quasi- Canonical Hypergroups [7]. In [12], Krasner introduced the concept of hyperrings and
hyperfields. G.G Massouros studied the theory of hypercompositional structures into the theory
of automata (see [14]). Asokkumar [1] defined the idempotent elements of Krasner hyperrings.
Babaei et al. studied R-parts in hyperrings (see [3]).

The concept of derivations in rings plays a significant role in algebra. After Posner [17],
many papers concerning derivations have appeared in the literature. In [16], Ozturk presented
permuting tri-derivations in prime and semi-prime rings. For more information for permuting
tri derivations see [10] and [11]. In [18], Vougiouklis defined a hyperoperation called theta
hyperoperation and studied H,-structures. Jan Chvalina et al. [8], introduced a hyperoperation
* on a differential ring R so that (R, *) is a hypergroup.

In [2], the author introduced derivations in Krasner hyperrings and in [9], the author studied
symmetric bi-derivation in Krasner hyperrings. So in this paper, we aim to generalize some
results given in [2] and [9]. In this way, we introduce the notion of permuting tri-derivations on
Krasner hyperrings and some properties of them are investigated.

2 Preliminaries

In this section, for the sake of completeness we remind some definitions used in the sequel.

A hyperoperation on a nonempty set H is a function o : H x H — p(H)* where p(H ) is the
power set of H and (H, o) is called a hypergroupoid. For nonempty subsets A and B of H and
x € H,let

AoB = U aob, Aozx=Ao{z} and zoA={z}oA
ac€A,beB

An element e € H is called an identity of (H,o) if z € zoeNeox, forallz € H. Ifeis a
scalar identity of (H, o), then e is the unique identity of (H, o). The hypergroupoid is said to be
commutative if zoy = yox forall z,y € H.

A hypergroupoid is called a semihypergroup if (zoy) oz =z o (yoz),forall z,y,z € H.
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A semihypergroup is called a hypergroup if H ox =x 0o H = H,forallz € H.
An element y of a hypergroupoid (H, o) is called an inverse of x € H if (z o y) N (y o z)
contains at least one identity. A hypergroup (H, o) is said to be regular if every element of (H, o)
has at least one 1nverse A regular hypergroup (H o) is said to be reversible if for all z,y, z € H
rEyoz=z2€y oxandy € z oz, for some inverse y of y and some inverse z of z.

Definition 2.1. A non-empty set R with a hyperaddition + and a multiplication . is called additive
hyperring or Krasner hyperring if it satisfies the following:

(1) (R,+) is a canonical hypergroup, i.e.,
(i) foreveryz,y,2 € R,z + (y+2) = (z+y) + 2,
(i) foreveryz,y € R,z +y =y +x,
(ii1) there exists 0 € R such that 0 + x = x for all x € R,
(iv) for every z € R there exists an unique element denoted by —z € R such that 0 € z + (—x)
(v) forevery z,y,z € R,z € x +yimpliesy € —z+zandz € z — y.
(2) (R,.) is a semigroup having 0 as a bilaterally absorbing element, i.c.,
(i) forevery z,y,2 € R, (v.y).2 = x.(y.2),
(i) z.0=0.x =0forall x € R.

(3) The multiplication . is distributive with respect to the hyperoperation +. i.e., for every
vy, z€ Rx.(y+z2)=xy+zzand (r+y)z=1z2+y.2

A non-empty subset I of a canonical hypergroup R is called a canonical subhypergroup of R
if I itself is a canonical hypergroup under the same hyperoperation as that of R. Equivalently, a
non-empty subset I of a canonical hypergroup R is a canonical subhypergroup of R if for every
x,y € I, xy C I. Here after we denote xy instead of z.y. Moreover, for A, B C Rand x € R,
by A + B we mean the set Uscapep(a +b) and AB = Ugeapep(ab), A+ 2 = A+ {z},
x4+ B = {2} + Bandalso —A = {—a: a € A}. The following elementary facts in a hyperring
easily follow from the axioms:

(i) —(—a) = aforevery a € R;

(i1) O is the unique element such that for every a € R, there is an element —a € R with the
property 0 € a + (—a) and —0 = 0;

(iii) —(a+b) = —a—bforalla,b € R;
(iv) —(ab) = (—a)b = a(-b) for all a,b € R.

In a hyperring R, if there exists an element 1 € R such that la = al = a for every a € R, then
the element 1 is called the identity element of the hyperring R. In fact, the element 1 is unique.
Further, if ab = ba for every a,b € R then the hyperring R is called a commutative hyperring.
Throughout this paper, by a hyperring we mean the Krasner hyperring.

Example 2.2. The set R = {0, 1} with the following hyperoperations is a hyperring.

+ | 0 1 o0
0 {0} {1} 0 {0} {0}
1 {1y {01} tpo{oy {1}

Definition 2.3. Let R be a hyperring. A non-empty subset S of R is called a subhyperring of R
ifr—yC Sanday € Sforall z,y € S.

Definition 2.4. Let R be a hyperring and I be a non-empty subset of R. I is called a left (resp.
right) hyperideal of R if
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(i) (I,+) is a canonical subhypergroup of R, i.e., foreveryz,y € [,z —y C I

(ii) foreverya € I,r € R, ra C I (resp. ar C I). A hyperideal of R is one which is a left as
well as a right hyperideal of R.

Definition 2.5. A hyperring R is said to be prime hyperring if aRb = 0 for a,b € R implies
eithera =0 or b = 0.

Definition 2.6. A hyperring R is said to be reduced hyperring if it has no nilpotent elements.
That is, if ™ = 0 for all z € R and a natural number n, then x = 0.

Definition 2.7. A hyperring R is said to be 2—torsion free if 0 € z + z for x € R implies = = 0.

3 Permuting tri-derivations of hyperrings and examples

In this section we define permuting tri-derivation and strong permuting tri-derivation of hyper-
rings and give examples.

Definition 3.1. Let R be a hyperring. A mapping D : R x R x R — R is called permuting
if it satisfies the condition D(z,y,2) = D(z,z,y) = D(y,z,2) = D(y,z,z) = D(z,z,y) =
D(z,y,z) forall x,y,z € R.

Definition 3.2. Let R be a hyperring. Amap D : R x R x R — R is said to be a permuting
tri-derivation of R if D satisfies:

() D(z+w,y,2) € D(x,y,2) + D(w,y, 2)
(ii) D(zw,y,z) € D(z,y,z)w + xD(w,y, 2)

forall z,y, z,w € R.

The hyperring R equipped with a permuting tri-derivation D is called a D— differential hy-
perring. If the map D is such that D(z +w,y, z) = D(z,y,2) + D(w,y,2) forall z,y, z,w € R
and satisfies the condition (i:), then D is called a strong permuting tri-derivation of R. In this
case, the hyperring is called strongly D— differential hyperring.

Proposition 3.3. Let R be a hyperring and D : R x R x R — R be a permuting tri-derivation
of R. Then

(i) D(a,b,0) =0, Ya,b € R.

(ii) D(—a,b,c¢) = —D(a,b,c), Va,b,c € R.
(iii) if 1 is the identity element of R, then D(1,a,b) € D(1,a,b) + D(1,a,b), Va,b € R.
Proof.

(i) D(a,b,0) = D(a,b,0.0) € D(a,b,0).0 +0.D(a,b,0) and so D(a, b,0) = 0.

(ii) Ya,b,c € R,0 = D(a,b,0) = D(a,b,c—c) C D(a,b,c)+ D(a,b,—c). Thatis D(a,b,c) €
0—D(a, b, —c). Hence we get D(a, b, c) = —D(a, b, —c). Therefore we obtain —D(a, b, c) =
—(=D(a,b,—c)) = D(a,b, —c).

(iii) D(1,a,b) = D(1.1,a,b) € D(1,a,b).1 + 1.D(1,a,b) = D(1,a,b) + D(1,a,b), Ya,b € R.
Therefore we obtain D(1,a,b) € D(1,a,b) + D(1,a,b).

Example 3.4. Consider the hyperring R = {0, a, b} with the hyperaddition and the multplication
defined as follows.
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+ ‘ 0 a b

01{0y  {a}  {b}
a | {a} {a, b} R
b | {b} R {a,b}

Defineamap D : Rx Rx R — Rby D(0,0,0) =0, D(a,0,0) = D(0,a,0) = D(0,0,a) =
D(b,0,0) = D(0,6,0) = D(0,0,b) =0, D(a,a,0) = D(a,0,a) = D(0,a,a) = b, D(b,b, 0)
D(b,0,b) = D(0,b,b) = a, D(a,b,0) = D(a,0,b) = D(0,a,b) = D(b,a,0) = D(b,0
D(0,b,a) = a, D(b,b,a) = D(b,a,b) = D(a,b,b) = a, D(a,a,b) = D(a,b,a) = D(b,a
b, (a a,a) = D(b,b,b) = a. Clearly, D is a strong permuting tri-derivation of R.

Example 3.5. Let R be a commutative hyperring and M (R) = { (8 Z) ta,be R} be a

i : . . 0
collection of 2 x 2 matrices over R. A hyperaddition & is defined on M (R) by <0 Z) D

0 ¢ 0 0 0
(O ;)-{(0 ;):xea—l—c,yeb—f—d}forall <0 Z)’(O CCl)eM(R).Clearly,this

hyperaddition is well-defined and (M (R),®) is a canonical hypergroup. The matrix (8 8)

is the additive identity of M (R). Also for each matrix 0 Cbl € M(R), there exists a unique

0 —a 0 0 0 a 0 —a
tri M(R h that .
matrix (0 —b) € M (R) such tha (0 0) € (O b) @ (O —b)

0 «a 0 ¢ 0 ad
N Itiplicati is defined M(R) b = for all
ow a multiplication ® is defined on M ( ) y (0 b) & (0 d> (0 bd) ora

0 0 d
Therefore ( )isa semlgroup

(0 € M(R). Then

o
LI Gl v

BRIER: 1)
RN LRERE
-4 9 (-6 )l - )

Similarly we have

|
o 2= 5)1= 6 5)={le )= A6 5)+ 6 )

Thus M (R) is a Krasner hyperring.
Now define a function D on M(R) by D 0 a ( ) (O e)) 0 bdf

(O a) , (O c) € M(R). Clearly, the multiplication ® is well defined and associative.

0 0 f
Clearly this map is well defined. Now we will show that D is a permuting tri- der1vat10n For all
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o 06 ) 5) (6 1) erem
i) 0 5)) o (Al D) reeresena) )6 1))

(99 )l D D )
( 2)e(e )-{( o]

0 a 0 g 0 c ag 0 ¢ 0 e 0 bhdf

D%J%J&J(D (05626 5) -6 )
e a 0 g 0 ¢ 0 e
) o 8)=n (6066 2))

a 0 ndf

)%%J% V)]

(0 bdfh 0 0\ (0 bdfh

“lo 0 )%lo o) o o)

Thus D is a permuting tri-derivation on M (R). Here D is a strong permuting tri-derivation.

Definition 3.6. Let R be a hyperring and D : R x R x R — R be a permuting tri-derivation. A

mapping d : R — R defined by d(z) = D(xz,x, ) is called the trace of D.

It is clear that, in case D : R X R x R — R be a permuting tri-mapping, the trace of D satisfies

the following relation

dlz+y) =D(x+y,z+y,2+y) Cd)+ D(x,z,y) + D(z,y,2) + D(x,y,y) + D(y,z,2) + D(y, z,y)
+D(y,y,2) +d(y)

and d(0) = D(0,0,0). If D is strong permuting tri-derivation, we have

d(z +y) = d(x) + D(x,x,y) + D(x,y,2) + D(z,y,y) + D(y,z,z) + D(y,z,y)
+D(y,y, ) + d(y).

Since

0=d(0)=d(z+ (—z)) Cdz+ D(z,z,—z) + D(z, —x,x) + D(x,—z, —x) + D(—z,,7)
+D(—z,z,—x) + D(—z,—z,x) + d(—z) = —d(z) + d(—2),

we have d(—x) € 0 — (—d(x)). Therefore we obtain d(—z) = d(z).

Proposition 3.7. Let R be a hyperring. D be a permuting tri-derivation of R and a,b be fixed
elements of R. Then S = {x € R : D(z,a,b) = 0} is a subhyperring of R.

Proof. S is nonempty since D(0,a,b) = 0. So we get D(z,a,b) = 0 and D(y,a,b) = 0 for
z,y € S. Hence we have D(z + y,a,b) C D(x,a,b) + D(y,a,b). In addition to this for any
x €S, D(-x,a,b) = —D(x,a,b) = 0. Also, D(zy,a,b) € D(x,a,b)y + xD(y,a,b) = 0. Thus
forany z,y € S,z +y C S, —x € S, xy € S. Therefore S is a subhyperring of R.

Proposition 3.8. Let D be a permuting tri-derivation of a prime hyperring R and a € R such
that aD(z,y,z) = 0 (or D(z,y,z)a =0) for all z,y, z € R. Then either a =0 or D = 0.
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Proof. Assume that aD(z,y,z) = 0 for all z,y, 2 € R, then we have
0=aD(zt,y,z) € axD(t,y,2) + aD(z,y, 2)t = axD(t,y, 2)

That is, azD(t,y,z) = 0. Since R is a prime hyperring we obtain « = 0 or D(¢,y,z) = 0. If
a # 0, then we have D(t,y,z) = 0. Thatis, D = 0.
Suppose that D(z,y, z)a = 0 for all z;,y, z € R, then

0= D(at,y,z)a € xD(t,y,2z)a+ D(z,y,2)ta = D(x,y, z)ta

That is, D(z,y, z)ta = 0. Since R is a prime hyperring we obtain a« = 0 or D(z,y,z) = 0. If
a # 0, then we have D(z,y,2) = 0. Thatis, D = 0.

Proposition 3.9. Let R be a prime hyperring with charR # 2,3 and D be a strong permuting
tri-derivation with trace d of R and a € R such that ad(x) = 0 (or d(xz)a = 0) for all x € R.
Then either a =0 or D = 0.

Proof. Assume that ad(x) = 0 for all z € R. Replacing x by z + y we get
0=ad(z+y) =ad(z) +3aD(z,z,y) + 3aD(z,y,y) + ad(y).
Since charR # 3 we obtain
aD(z,z,y) + aD(z,y,y) = 0. (3.1
Writing —z for « in (3.1) we have
aD(z,y,y) = 0. (3.2)

Replacing z by zy in (3.2) we conclude axd(y) = 0. Since R is prime hyperring we obtain
a=0ord(y) =0forall z € R. Consequently a =0 or D = 0.

Theorem 3.10. Let D be a permuting tri-derivation of 2—torsion free reduced hyperring R. If
D(D(z,y,2),y,2) =0forall z,y,z € R then D = 0.

Proof. Let D(D(z,y,z2),y,2) = 0forall z,y, 2 € R. Replacing = by zt, t € R, we obtain

0= D(D(xt,y,z),y,2) € D(D(z,y,2)t +xD(t,y,2),y,z) € D(D(z,y,2)t,y,2z) + D(zD(t,y,2),y, 2)
€ D(D(z,y,2)t,y,2) + D(zD(t,y,2),y,2) € D(z,y,2)D(t,y,z) + D(D(z,y, 2),y, 2)t +
D(z,y,2z)D(t,y,z) + xD(D(t,y,2),y, 2)

= D(w,y,2)D(t,y,2) + D(x,y,2)D(t,y, 2)

Since R is 2—torsion free hyperring we get D(x,y, z)D(t,y, z) = 0. If we take z instead of ¢ we
have D(z,y,2)*> = 0 for all z,y,z € R. Since R is reduced hyperring we have D(z,y, z) = 0
for all z,y, z € R. Hence we obtain D = 0.
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