Noetherian modules with prime nilradical

Mahdi Rahmatinia and Ahmad Yousefian Darani
Communicated by Ayman Badawi

MSC 2010 Classifications: Primary 20M99, 13F10; Secondary 13A15, 13M05.
Keywords and phrases: Φ-Noetherian module; ϕ-Noetherian ring; Noetherian module; multiplication module.

Abstract

This paper is devoted to studying Φ-Noetherian modules as a new class of Noetherian modules. A module M is Φ-Noetherian if $\operatorname{Nil}(M)$ is divided prime and each submodule that properly contains $\operatorname{Nil}(M)$ is finitely generated. If M is a Φ-Noetherian module and X_{1}, \ldots, X_{n} are indeterminates, then a submodule N of $M\left[X_{1}, \ldots, X_{n}\right]$ which contains a nonnil element of M is finitely generated.

1 Introduction

We assume throughout this paper all rings are commmutative with $1 \neq 0$ and all modules are unitary. Let R be a ring with identity and $\operatorname{Nil(R)}$ be the set of nilpotent elements of R. Recall from [20] and [10], that a prime ideal P of R is called a divided prime ideal if $P \subset(x)$ for every $x \in R \backslash P$; thus a divided prime ideal is comparable to every ideal of R. Badawi in [9], [11], [10], [14], [15] and [16] investigated the class of rings $\mathcal{H}=\{R \mid R$ is a commutative ring with $1 \neq$ 0 and $\operatorname{Nil(R)}$ is a divided prime ideal of $R\}$. Anderson and Badawi in [6] and [7] generalized the concept of Prüfer, Dedekind, Krull and Bezout domain to context of rings that are in the class \mathcal{H}. Also, Lucas and Badawi in [12] generalized the concept of Mori domains to the context of rings that are in the class \mathcal{H}. Let R be a ring, $Z(R)$ the set of zero divisors of R and $S=R \backslash Z(R)$. Then $T(R):=S^{-1} R$ denoted the total quotient ring of R. We start by recalling some background material. A nonzero divisor of a ring R is called a regular element and an ideal of R is said to be regular if it contains a regular element. An ideal I of a ring R is said to be a nonnil ideal if $I \nsubseteq \operatorname{Nil}(R)$. If I is a nonnil ideal of $R \in \mathcal{H}$, then $\operatorname{Nil}(R) \subset I$. In particular, it holds if I is a regular ideal of a ring $R \in \mathcal{H}$. Recall from [6] that for a ring $R \in \mathcal{H}$, the map $\phi: T(R) \longrightarrow R_{N i l(R)}$ given by $\phi(a / b)=a / b$, for $a \in R$ and $b \in R \backslash Z(R)$, is a ring homomorphism from $T(R)$ into $R_{N i l(R)}$ and ϕ restricted to R is also a ring homomorphism from R into $R_{N i l(R)}$ given by $\phi(x)=x / 1$ for every $x \in R$.
For a nonzero ideal I of R let $I^{-1}=\{x \in T(R): x I \subseteq R\}$. It is obvious that $I I^{-1} \subseteq R$. An ideal I of R is called invertible, if $I I^{-1}=R$. An integral domain R is called a Dedekind domain if every nonzero ideal of R is invertible. Recall from [22] that a ring R is called a Dedekind ring if every regular ideal of R is invertible. An integral domain R is called almost Dedekind if for each nonzero prime ideal P of R, R_{P} is a Dedekind domain. We generaliz the concept of almost Dedekind domains to the context of commutative rings with zero divisors. A ring R is an almost Dedekind if for each regular prime ideal P of R, R_{P} is a Dedeking ring. Let $R \in \mathcal{H}$. Then a nonnil ideal I of R is called ϕ-invertible if $\phi(I)$ is an invertible ideal of $\phi(R)$. Recall from [7] that R is called ϕ-Dedekind ring if every nonnil ideal of R is ϕ-invertible.
Let R be a ring and M be an R-module. Then M is a multiplication R-module if every submodule N of M has the form $I M$ for some ideal I of R. If M be a multiplication R-module and N a submodule of M, then $N=I M$ for some ideal I of R. Hence $I \subseteq\left(N:_{R} M\right)$ and so $N=I M \subseteq\left(N:_{R} M\right) M \subseteq N$. Therefore $N=\left(N:_{R} M\right) M$ [17]. Let M be a multiplication R-module, $N=I M$ and $L=J M$ be submodules of M for ideals I and J of R. Then, the product of N and L is denoted by $N . L$ or $N L$ and is defined by $I J M$ [5]. An R-module M is called a cancellation module if $I M=J M$ for two ideals I and J of R implies $I=J$ [1]. By [25, Corollary 1 to Theorem 9], finitely generated faithful multiplication modules are cancellation modules. It follows that if M is a finitely generated faithful multiplication R-module, then $\left(I N:_{R} M\right)=I\left(N:_{R} M\right)$ for all ideals I of R and all submodules N of M. If R is an integral domain and M a faithful multiplication R-module, then M is a finitely generated R-module [18].

Let M be an R-module and set

$$
T=\{t \in S: \text { for all } m \in M, t m=0 \text { implies } m=0\}=(R \backslash Z(M)) \cap(R \backslash Z(R))
$$

Then T is a multiplicatively closed subset of R with $T \subseteq S$, and if M is torsion-free then $T=S$. In particular, $T=S$ if M is a faithful multiplication R-module [18, Lemma 4.1]. Let N be a nonzero submodule of M. Then we write $N^{-1}=\left(M:_{R_{T}} N\right)=\left\{x \in R_{T}: x N \subseteq M\right\}$ and $N_{\nu}=\left(N^{-1}\right)^{-1}$. Then N^{-1} is an R-submodule of $R_{T}, R \subseteq N^{-1}$ and $N N^{-1} \subseteq M$. We say that N is invertible in M if $N N^{-1}=M$. Clearly $0 \neq M$ is invertible in M. An R-module M is called a Dedekind module if every nonzero submodule of M is invertible, [24]. If N is an invertible submodule of a faithful multiplication module M over an integral domain R, then $\left(N:_{R} M\right)$ is invertible [3]. Let R be a ring and M an R-module. Then M is said to be an almost Dedekind module if for each prime ideal P of R, M_{P} is an R_{P}-module. Clearly Dedekind modules are almost Dedekind, [4].
Let M be an R-module. An element $r \in R$ is said to be zero divisor on M if $r m=0$ for some $0 \neq m \in M$. The set of zero divisors of M is denoted by $Z_{R}(M)$ (briefly, $Z(M)$). It is easy to see that $Z(M)$ is not necessarily an ideal of R, but it has the property that if $a, b \in R$ with $a b \in Z(M)$, then either $a \in Z(M)$ or $b \in Z(M)$. A submodule N of M is called a nilpotent submodule if $\left[\begin{array}{ll}N & :_{R}\end{array}\right]^{n} N=0$ for some positive integer n. An element $m \in M$ is said to be nilpotent if $R m$ is a nilpotent submodule of M [2]. We let $\operatorname{Nil}(M)$ to denote the set of all nilpotent elements of M; then $\operatorname{Nil}(M)$ is a submodule of M provided that M is a faithful module, and if in addition M is multiplication, then $\operatorname{Nil}(M)=\operatorname{Nil}(R) M=\bigcap P$, where the intersection runs over all prime submodules of M, [2, Theorem 6]. If M contains no nonzero nilpotent elements, then M is called a reduced R-module. A submodule N of M is said to be a nonnil submodule if $N \nsubseteq \operatorname{Nil}(M)$. Recall that a submodule N of M is prime if whenever $r m \in N$ for some $r \in R$ and $m \in M$, then either $m \in N$ or $r M \subseteq N$. If N is a prime submodule of M, then $p:=\left[N:_{R} M\right]$ is a prime ideal of R. In this case we say that N is a p-prime submodule of M. Let N be a submodule of multiplication R-module M, then N is a prime submodule of M if and only if $\left[N:_{R} M\right.$] is a prime ideal of R if and only if $N=p M$ for some prime ideal p of R with $\left[0:_{R} M\right] \subseteq p$, [18, Corollary 2.11]. Recall from [4] that a prime submodule P of M is called a divided prime submodule if $P \subset R m$ for every $m \in M \backslash P$; thus a divided prime submodule is comparable to every submodule of M.
Now assume that $T^{-1}(M)=\mathfrak{T}(M)$. Set

$$
\mathbb{H}=\{M \mid M \text { is an } R-\text { module and } N i l(M) \text { is a divided prime submodule of } M\}
$$

and

$$
\mathbb{H}_{0}=\{M \in \mathbb{H} \mid \operatorname{Nil}(M)=Z(M) M\}
$$

For an R-module $M \in \mathbb{H}, \operatorname{Nil}(M)$ is a prime submodule of M. So $P:=\left[\operatorname{Nil}(M):_{R} M\right]$ is a prime ideal of R. If M is an R-module and $\operatorname{Nil}(M)$ is a proper submodule of M, then $\left[\operatorname{Nil}(M):_{R} M\right] \subseteq Z(R)$. Consequently, $R \backslash Z(R) \subseteq R \backslash\left[N i l(M):_{R} M\right]$. In particular, $T \subseteq R \backslash\left[N i l(M):_{R} M\right][26]$. Recall from [26] that we can define a mapping $\Phi: \mathfrak{T}(M) \longrightarrow M_{P}$ given by $\Phi(x / s)=x / s$ which is clearly an R-module homomorphism. The restriction of Φ to M is also an R-module homomorphism from M in to M_{P} given by $\Phi(m / 1)=m / 1$ for every $m \in M$. A nonnil submodule N of M is said to be Φ-invertible if $\Phi(N)$ is an invertible submodule of $\Phi(M)$ [28]. An R-module M is called a Φ-Dedekind module if every nonnil submodule of M is Φ-invertible [28]. Ahmad in [26], introduced a new class of modules which is closely related to the class of Noetherian modules. A module M is called a Φ-Noetherian if every nonnil submodule of M is finitely generated. In this paper we find some properties of this class of modules.

2 Some properties of Φ-Noetherian modules

Theorem 2.1. [26, Theorem 11] Let R be a ring and M be a finitely generated faithful multiplication R-module with $M \in \mathbb{H}_{0}$. The following are equivalent:
(1) M is a-Noetherian R-module;
(2) $\frac{M}{N i l(M)}$ is a Noetherian R-module;
(3) $\frac{\Phi(M)}{N i l(\Phi(M))}$ is a Noetherian R-module;
(4) $\Phi(M)$ is a Φ-Noetherian R-module;
(5) each nonnil prime submodule of M is finitely generated.

Proposition 2.2. Let R be a ring and not an integral domain and let $M \in \mathbb{H}$ be a finitely genetated faithful multiplication R-module. Then $\operatorname{Nil}(M)$ is finitely generated if and only if M is an Artinian module with only maximal submodule $\operatorname{Nil}(M)$. Inparticular, If M is a Noetherian module, then M is an Artinian module with only maximal submodule $\operatorname{Nil}(M) \neq(0)$.

Proof. By [25, Proposition 13], [26, Proposition 1] and [13, Proposition 2.3], we have $\operatorname{Nil}(R)=$ $\left(N i l(M):_{R} M\right)$ is finitely generated if and only if R is a local Artinian ring with maximal ideal $\operatorname{Nil}(R)$. Hence $\operatorname{Nil}(M)=\operatorname{Nil}(R) M$ is finitely generated if and only if M is an Artinian module with only maximal submodule $\operatorname{Nil}(M)$, because M is faithful multiplication. For next statement, Since M is Noetherian faithful multiplication, R is Noetherian. Thus, by [13, Proposition 2.3], R is a local ring with maximal ideal $\operatorname{Nil}(R) \neq(0)$. Therefore, M is an Artinian module with only maximal submodule $\operatorname{Nil}(M) \neq(0)$.

Proposition 2.3. Let R be a ring and $M \in \mathbb{H}_{0}$ be a Φ-Noetherian faithful multiplication R module and let N be a proper submodule of M. If $N \subset N i l(M)$, then $\frac{M}{N}$ is a Φ-Noetherian module. If $N \nsubseteq \operatorname{Nil}(M)$, then $N i l(M) \subset N$ and $\frac{M}{N}$ is a Noetherian module. Moreover, if $N i l(M) \subset N$, then M / N is both Noetherian module and Φ-Noetherian module if and only if N is either a prime submodule or a primary submodule whose radical is a maximal submodule.

Proof. If $N \subset \operatorname{Nil}(M)$, then $\operatorname{Nil}\left(\frac{M}{N}\right)=\frac{\operatorname{Nil}(M)}{N}$ is a divided prime submodule of $\frac{M}{N}$. Hence, $\frac{M}{N} \in \mathbb{H}$. Since $\frac{\frac{M}{N}}{\operatorname{Nil}\left(\frac{M}{N}\right)}$ is module-isomorphic to $\frac{M}{\operatorname{Nil}(M)}$ and $\frac{M}{\operatorname{Nil(M)}}$ is Noetherian module by Theorem 2.1, we conclude that $\frac{M}{N}$ is a Φ-Noetherian module.
Now, suppose that $N \nsubseteq \operatorname{Nil}(M)$. Since $\operatorname{Nil}(M)$ is a divided prime submodule of $M, N i l(M) \subset$ N. Let Q be a prime submodule of $\frac{M}{N}$. Then $Q=\frac{P}{N}$ for some nonnil prime submodule P of M such that $N \subseteq P$. Since P is finitely generated, Q is finitely generated. Therefore $\frac{M}{N}$ is Noetherian module.
The third statement follows from Proposition 2.2.
Corollary 2.4. Let R be a ring and $M \in \mathbb{H}_{0}$ be a finitely generated faithful multiplication R module. Then a homomorphic image of M is either a Φ-Noetherian module or a Noetherian module.

Lemma 2.5. Let R be an integral domain and M be a faithful multiplication R-module. Then R is an almost-Dedekind domain if and only if M is an almost-Dedekind module.

Proof. Let R be an almost-Dedekind domain. Then R_{P} is a Dedekind domain for each nonzero prime ideal P of R. Hence, by [4], M_{P} is a Dedekind module. Therefore, M is an almostDedekind module. The converse is similar.

It is clear that if M is a Φ-Dedekind module, then M is a Φ-Prüfer module.
Theorem 2.6. Let R be a ring and $M \in \mathbb{H}_{0}$ be a finitely generated faithful multiplication R module. If M is a Φ-Noetherian and Φ-Prüfer module, then M is $a \Phi$-Dedekind module.

Proof. Suppose that M is Φ-Noetherian and Φ-Prüfer module. Then, by [26, Theorem 7] and [28, Theorem 2.11] $\frac{M}{\operatorname{Nil(M)}}$ is a Noetherian and Prüfer module. Thus $\frac{M}{\operatorname{Nil(M)}}$ is a Dedekind module. Therefore, M is a Φ-Dedekind module.

Proposition 2.7. Let R be an integral domain and M be a faithful multiplication R-module. If M is an almost-Dedekind module but not Dedekind module, then M is locally Noetherian module but not Noetherian module.

Proof. Suppose that M is an almost-Dedekind module but not Dedekind. Then, by Lemma 2.5 and [4], R is an almost-Dedekind domain but not Dedekind. Hence, by [13], R is a locally Noetherian ring but not Noetherian. Therefore, M is a locally Noetherian module but not Noetherian.

Proposition 2.8. Let R be an integral domain and M be a faithful multiplication R-module. If M is a locally Noetherian module and each nonzero element is contained in at most finitely many maximal submodules, then M is a Noetherian module.

Proof. Suppose that M is a locally Noetherian module and each nonzero element is contained in at most finitely many maximal submodules. Then R is a locally Noetherian domain and each nonzero element is contained in at most finitely many maximal ideals. Hence, by [23, Exercisee $\sharp 10$, page 73], R is a Noetherian domain. Therefore, M is a Noetherian module, because M is faithful multiplication.

Lemma 2.9. Let R be a ring and M be a finitely generated faithful multiplication R-module. The following are hold:
(1) If $R \in \mathcal{H}$ is a ϕ-Noetherian ring, Then M is $a \Phi$-Noetherian module.
(2) If $M \in \mathbb{H}$ is $a \Phi$-Noetherian module, then R is $a \phi$-Noetherian ring.

Proof. Since $\operatorname{Nil}(R) \subseteq \operatorname{Ann}\left(\frac{M}{\operatorname{Nil(R)M}}\right)=\operatorname{Ann}\left(\frac{M}{\operatorname{Nil}(M)}\right)$, we have:
(1) Let $R \in \mathcal{H}$. Then, by [26, Proposition 3], $M \in \mathbb{H}$. If R is a ϕ-Noetherian ring, then [16, Theorem 2.2], $\frac{R}{\operatorname{Nil}(R)}$ is a Noetherian domain. So, $\frac{M}{N i l(M)}$ is a Noetherian module. Therefore, by [26, Theorem 7], M is a Φ-Noetherian module.
(2) Let $M \in \mathbb{H}$. Then, by [26, Proposition 3], $R \in \mathcal{H}$. If M is a Φ-Noetherian module, then by [26, Theorem 7], $\frac{M}{N i l(M)}$ is a Noetherian module. So, $\frac{R}{N i l(R)}$ is a Noetherian domain. Therefore, by [16, Theorem 2.2], R is a ϕ-Noetherian ring.

Proposition 2.10. Let R be a ring and $M \in \mathbb{H}$ be a finitely generated faithful multiplication R module. Let M_{P} be a Φ-Noetherian module for every maximal ideal P of R and each nonnil element of M lies in only a finite number of maximal submodules of M. Then M is a Φ-Noetherian module.

Proof. Since $M \in \mathbb{H}$, by [26, Proposition 3], $R \in \mathcal{H}$. Suppose that for every maximal ideal P of R, M_{P} is a Φ-Noetherian module and each nonnil element of M lies in only a finite number of maximal submodules of M. Hence, by Lemma $2.9, R_{P}$ is a ϕ-Noetherian module for every maximal ideal P of R and each nonnil element of M lies in only a finite number of maximal ideals of M. Thus, by [13, Proposition 2.6], R is a ϕ-Noetherian ring. Therefore, by Lemma 2.9, M is a Φ-Noetherian module.

Proposition 2.11. Let R be a ring, $M \in \mathbb{H}_{0}$ be a Φ-Noetherian faithful multiplication R-module and P a prime submodule of M. If P is minimal over an submodule generated by n or fewer elements, then $h t(P) \leq n$. In particular, if P is a prime minimal submodule over a nonnil element of M, then $h t(P)=1$.

Proof. The module $\frac{M}{N i l(M)}$ is Noetherian module by Theorem 2.1. Assume P is minimal over the submodule $N=\left(a_{1}, \ldots a_{n}\right)$. If $N \subset \operatorname{Nil}(M)$, there is nothing to prove since we would have $N=\operatorname{Nil}(M)$, the prime of height 0 . Thus we may assume N is not nilpotent. Since $\operatorname{Nil}(M)$ is divided, $\operatorname{Nil}(M) \subset N$. Thus $\frac{N}{N i l(M)}$ can be generated by n (or fewer) elements. Since M is Notherian, $h t\left(\frac{P}{N i l(M)}\right) \leq n$. Hence $h t(P) \leq n$.

Proposition 2.12. Let R be a ring and $M \in \mathbb{H}$ be a faithful multiplication R-module such that satisfy the ascending chain condition on radical submodules. If M has an infinite number of prime submodules of height 1, then their intersection is $\operatorname{Nil}(M)$.

Proof. Suppose that M satisfy the ascending chain condition on radical submodules and M has an infinite number of prime submodules of height 1 . Then R satisfy the ascending chain condition on radical ideals and R has an infinite number of prime ideals of height 1 . Hence, their intersection is $\operatorname{Nil}(R)$, by [23, Theorem 145]. Therefore, the intersection of an infinite number of prime submodule of height 1 is $\operatorname{Nil}(M)$.

Proposition 2.13. Let R be a ring, $M \in \mathbb{H}$ be a Φ-Noetherian faithful multiplication R-module and P a nonnil prime submodule of M with $h t(P)=n$. Then there exist nonnil elements a_{1}, \ldots, a_{n} in M such that P is minimal over the submodule $\left(a_{1}, \ldots, a_{n}\right)$, and for any $1 \leq i \leq n$, every nonnil prime submodule of M minimal over $\left(a_{1}, \ldots, a_{n}\right)$ has height i.

Proposition 2.14. Let R be a ring, $M \in \mathbb{H}$ be a Φ-Noetherian faithful multiplication R-module and N a proper submodule of M generated by n elements. If P is a prime submodule of M conatining N with $h t\left(\frac{P}{N}\right)=k$, then $h t(P) \leq n+k$.

Proof. Suppose that M is a Φ-Noetherian module and N a proper submodule of M generated by n elements. Then, by Lemma $2.9, R$ is a ϕ-Noetherian ring and $\left(N:_{R} M\right)$ is a proper ideal of R generated by n elements. If P is a prime submodule of M conatining N with $h t\left(\frac{P}{N}\right)=k$, then $\left(P:_{R} M\right)$ is a prime ideal of R containing $\left(N:_{R} M\right)$ with $h t\left(\frac{\left(P:_{R} M\right)}{\left(N:_{R} M\right)}\right)=k$. Hence, by [13, Proposition 2.10], $h t\left(P:_{R} M\right)=n+k$. Therefore, $h t(P)=n+k$.

Proposition 2.15. Let R be a ring, $M \in \mathbb{H}$ be a Φ-Noetherian faithful multiplication R-module. Let P be a prime submodule of M with $h t(P)=n$ and Q be a prime submodule of $M[X]$ such that $P \neq Q$ and $P M[X] \subsetneq Q$. Then $h t(P M[X])=n$ and $h t(Q)=n+1$.

Proof. Since $\operatorname{Nil}(M)$ is the minimal prime of $M, \operatorname{Nil}(M[X])=\operatorname{Nil}(R) M[X]$ is the minimal prime of $M[X]$. We assume that $K=\frac{M}{N i l(M)}$ and $K[X]=\frac{M[X]}{N i l(M[X])}$. Hence, by Theorem $2.1, K$ is a Noetherian module. Moreover, $\frac{P}{\operatorname{Nil(M)}}$ is a prime submodule of M with $h t\left(\frac{P}{N i l(M)}\right)=n$ and $\frac{Q}{\operatorname{Nil(M[X])}}$ is a prime submodule of $M[X]$ such that $\frac{P}{\operatorname{Nil(M)}} \neq \frac{Q}{\operatorname{Nil(M[X])}}$ and $\left(\frac{P}{\operatorname{Nil(M)}) K[X] \subsetneq}\right.$ $\frac{Q}{N i l(M[X])}$. Therefore, $h t\left(\left(\frac{P}{N i l(M)}\right) K[X]\right)=h t(P M[X])=n$ and $h t\left(\frac{Q}{N i l(M[X])}\right)=h t(Q)=$ $n+1$.

Proposition 2.16. Let R be a ring, $M \in \mathbb{H}$ be a Φ-Noetherian faithful multiplication R-module. Let P be a prime submodule of M with $h t(P)=n$ and Q be a prime submodule of $M\left[X_{1}, \ldots, X_{m}\right]$ such that $P \neq Q$ and $P M\left[X_{1}, \ldots, X_{m}\right] \subsetneq Q$. Then $h t\left(P M\left[X_{1}, \ldots, X_{m}\right]\right)=n$ and $h t(Q) \leqslant$ $n+m$. Moreover, $h t\left(P M\left[X_{1}, \ldots, X_{m}\right]+\left(X_{1}, \ldots, X_{m}\right) M\left[X_{1}, \ldots, X_{m}\right]\right)=n+m$.

Corollary 2.17. Let R be a ring, $M \in \mathbb{H}$ be a Φ-Noetherian faithful multiplication R-module and $\operatorname{dim}(M)=n$. Then $\operatorname{dim}\left(M\left[X_{1}, \ldots, X_{m}\right]\right)=n+m$ for each integer $m>0$.

Proposition 2.18. Let R be a ring, $M \in \mathbb{H}$ be a Φ-Noetherian faithful multiplication R-module. If N is a submodule of $M\left[X_{1}, \ldots, X_{n}\right]$ for which $N \cap M$ is not contained in $N i l(M)$, then N is a finitely generated submodule of $M\left[X_{1}, \ldots, X_{n}\right]$.

Proof. If $N \cap M$ is not contained in $\operatorname{Nil}(M)$, then any single nonnil element in this intersection is enough to generate the nilradical of $M\left[X_{1}, \ldots, X_{n}\right]$. Since $\frac{M}{N i l(M)}$ is a Noetherian module, $\left(\frac{N}{\operatorname{Nil}(M)}\right)\left[X_{1}, \ldots, X_{n}\right]$ is finitely generated. Let $\left\{f_{1}, \ldots, f_{m}\right\} \subset N$ generate the image of N modulo $\operatorname{Nil}(M)\left[X_{1}, \ldots, X_{n}\right]$. To get a finite set of generators for N, simply add any single nonnil element $k \in N \cap M$ to the set $\left\{f_{1}, \ldots, f_{m}\right\}$. Since $k N i l(M)=\operatorname{Nil}(M)$, the set $\left\{k, f_{1}, \ldots, f_{m}\right\}$ is a finite set of generators for N.

Corollary 2.19. Let R be a ring, $M \in \mathbb{H}$ be a Φ-Noetherian faithful multiplication R-module and let P be a prime submodule of $M\left[X_{1}, \ldots, X_{n}\right]$. If $h t(P)>n$, then P is finitely generated.

Acknowledgement. The author would like to thank the referee for carefully reading the manuscript and for giving constructive comments which substantially helped improving the quality of the paper.

References

[1] Ali, M. M. Some remarks on generalized $G C D$ domains. Comm. Algebra 36 (2008) 142-164.
[2] AlI, M. M. Idempotent and nilpotent submodules of multiplication modules. Comm. Algebra 36 (2008) 4620-4642.
[3] Alı, M. M. Invertibility of multiplication modules П. New Zealand J. Math. 39 (2009) 45-64.
[4] AlI, M. M. Invertibility of multiplication modules III. New Zealand J. Math. 39 (2009) 139-213.
[5] AMERI, R. On the prime submodules of multiplication modules. IJMMS 27 (2003) 1715-1724.
[6] Anderson, D. F.; Badawi, A. On ϕ-Prüfer rings and ϕ-Bezout rings. Houston J. Math. 2 (2004) 331-343.
[7] Anderson, D. F.; BADAWI, A. On ϕ-Dedekind rings and ϕ-Krull rings. Houston J. Math. 4 (2005) 1007-1022.
[8] Anderson, D. F.; Barucci, V.; Dobbs, D. D. Coherent Mori domain and the principal ideal theorem. Comm. Algebra 15 (1987) 1119-1156.
[9] Badawi, A. On ϕ-pseudo- valuation rings. Lecture Notes Pure Appl. Math. vol 205 (1999) 101-110. Marcel Dekker. New York/Basel.
[10] Badawi, A. On divided commutative rings. Comm. Algebra 27 (1999) 1465-1474.
[11] Badawi, A. On ϕ-pseudo- valuation rings II. Houston J. Math. 26 (2000) 473-480.
[12] Badawi, A.; Lucas, T. On ϕ-Mori rings. Houston J. Math. 32 (2006) 1-32.
[13] Badawi, A.; Lucas, T. Rings with prime nilradical. Houston J. Math. 32 (2006) 1-32.
[14] BADAWI, A. On ϕ-chained rings and ϕ-pseudo-valuation rings. Houston J. Math. 27 (2001) 725-736.
[15] BADAWI, A. On divided rings and ϕ-pseudo-valuation rings. International J of Commutative Rings(IJCR) 1 (2002) 51-60.
[16] Badawi, A. On nonnil Noetherian rings. Comm. Algebra 31 (2003) 1669-1677.
[17] BARNARD, A. Multiplication modules. J. Algebra 71 (1981) 174-178.
[18] El-Bast, Z.; Smith, P. F. Multiplication modules. Comm. Algebra 16 (1998) 755-799.
[19] Barucci, V.; Gabelli, S. How far is a Mori domain from being a Krull domain. J. Pure App. Algebra 45 (1987) 101-112.
[20] Dobbs, D. E. Divided rings and going-down. Pacific J. math. 67 (1976) 353-363.
[21] GILMER, R. W. Integral domains which are almost Dedekind.
[22] J. Huckaba, Commutative rings with zero divisors, New York, Basel: Marcel Dekker, (1998).
[23] I. Kaplansky, Commutative Rings- rev. ed., The University of Chicago Press, Chicago, (1974).
[24] Naoum, A. G; Al-Alwan, F. H Dedekind modules. Comm. Algebra 24 (1996) 397-412.
[25] Smith, P. F. Some remarks on multiplication modules. Arch. der. Math. 50 (1988) 223-235.
[26] Yousefian Darani, A. Nonnil-Noetherian modules over a commutative rings. Journal of Algebraic Systems,To appear.
[27] Youseffian Darani, A.; Rahmatinia, M. On ϕ-Mori modules. New York j. Math. 21 (2015) 1-14.
[28] Youseffian Darani, A.; Motmaen, S. On Φ-Dedekind, Φ-Prüfer and Φ-Bezout modules. Georgian Mathematical Journal, To appear.

Author information

Mahdi Rahmatinia and Ahmad Yousefian Darani, University of Applied Science and Technology, Malayer, Iran, Iran.
E-mail: m.rahmati@uma.ac.ir, mahdi.rahmatinia@gmail.com
yousefian@uma.ac.ir, youseffian@gmail.com
Received: Februery 25, 2018.
Accepted: June 9, 2018

