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Abstract This paper is devoted to studying Φ-Noetherian modules as a new class of Noethe-
rian modules. A moduleM is Φ-Noetherian ifNil(M) is divided prime and each submodule that
properly contains Nil(M) is finitely generated. If M is a Φ-Noetherian module and X1, ..., Xn

are indeterminates, then a submodule N of M [X1, ..., Xn] which contains a nonnil element of
M is finitely generated.

1 Introduction

We assume throughout this paper all rings are commmutative with 1 6= 0 and all modules are
unitary. Let R be a ring with identity and Nil(R) be the set of nilpotent elements of R. Recall
from [20] and [10], that a prime ideal P of R is called a divided prime ideal if P ⊂ (x) for every
x ∈ R\P ; thus a divided prime ideal is comparable to every ideal ofR. Badawi in [9], [11], [10],
[14], [15] and [16] investigated the class of rings H = {R | R is a commutative ring with 1 6=
0 and Nil(R) is a divided prime ideal of R}. Anderson and Badawi in [6] and [7] generalized
the concept of Prüfer, Dedekind, Krull and Bezout domain to context of rings that are in the
class H. Also, Lucas and Badawi in [12] generalized the concept of Mori domains to the con-
text of rings that are in the class H. Let R be a ring, Z(R) the set of zero divisors of R and
S = R \ Z(R). Then T (R) := S−1R denoted the total quotient ring of R. We start by recalling
some background material. A nonzero divisor of a ring R is called a regular element and an ideal
of R is said to be regular if it contains a regular element. An ideal I of a ring R is said to be a
nonnil ideal if I * Nil(R). If I is a nonnil ideal of R ∈ H, then Nil(R) ⊂ I . In particular, it
holds if I is a regular ideal of a ring R ∈ H. Recall from [6] that for a ring R ∈ H, the map
φ : T (R) −→ RNil(R) given by φ(a/b) = a/b, for a ∈ R and b ∈ R \ Z(R), is a ring homomor-
phism from T (R) into RNil(R) and φ restricted to R is also a ring homomorphism from R into
RNil(R) given by φ(x) = x/1 for every x ∈ R.
For a nonzero ideal I of R let I−1 = {x ∈ T (R) : xI ⊆ R}. It is obvious that II−1 ⊆ R. An
ideal I of R is called invertible, if II−1 = R. An integral domain R is called a Dedekind domain
if every nonzero ideal of R is invertible. Recall from [22] that a ring R is called a Dedekind ring
if every regular ideal of R is invertible. An integral domain R is called almost Dedekind if for
each nonzero prime ideal P of R, RP is a Dedekind domain. We generaliz the concept of almost
Dedekind domains to the context of commutative rings with zero divisors. A ring R is an almost
Dedekind if for each regular prime ideal P of R, RP is a Dedeking ring. Let R ∈ H. Then a
nonnil ideal I of R is called φ-invertible if φ(I) is an invertible ideal of φ(R). Recall from [7]
that R is called φ-Dedekind ring if every nonnil ideal of R is φ-invertible.
Let R be a ring and M be an R-module. Then M is a multiplication R-module if every sub-
module N of M has the form IM for some ideal I of R. If M be a multiplication R-module
and N a submodule of M , then N = IM for some ideal I of R. Hence I ⊆ (N :R M) and so
N = IM ⊆ (N :R M)M ⊆ N . Therefore N = (N :R M)M [17]. Let M be a multiplication
R-module, N = IM and L = JM be submodules of M for ideals I and J of R. Then, the
product of N and L is denoted by N.L or NL and is defined by IJM [5]. An R-module M is
called a cancellation module if IM = JM for two ideals I and J of R implies I = J [1]. By
[25, Corollary 1 to Theorem 9], finitely generated faithful multiplication modules are cancella-
tion modules. It follows that if M is a finitely generated faithful multiplication R-module, then
(IN :R M) = I(N :R M) for all ideals I of R and all submodules N of M . If R is an integral
domain andM a faithful multiplicationR-module, thenM is a finitely generatedR-module [18].



Noetherian modules with prime nilradical 113

Let M be an R-module and set

T = {t ∈ S : for all m ∈M, tm = 0 implies m = 0} = (R \ Z(M)) ∩ (R \ Z(R)).

Then T is a multiplicatively closed subset of R with T ⊆ S, and if M is torsion-free then T = S.
In particular, T = S if M is a faithful multiplication R-module [18, Lemma 4.1]. Let N be a
nonzero submodule of M . Then we write N−1 = (M :RT

N) = {x ∈ RT : xN ⊆ M} and
Nν = (N−1)−1. Then N−1 is an R-submodule of RT , R ⊆ N−1 and NN−1 ⊆ M . We say
that N is invertible in M if NN−1 = M . Clearly 0 6= M is invertible in M . An R-module
M is called a Dedekind module if every nonzero submodule of M is invertible, [24]. If N is
an invertible submodule of a faithful multiplication module M over an integral domain R, then
(N :R M) is invertible [3]. Let R be a ring and M an R-module. Then M is said to be an almost
Dedekind module if for each prime ideal P of R, MP is an RP -module. Clearly Dedekind
modules are almost Dedekind, [4].
Let M be an R-module. An element r ∈ R is said to be zero divisor on M if rm = 0 for some
0 6= m ∈ M . The set of zero divisors of M is denoted by ZR(M) (briefly, Z(M)). It is easy
to see that Z(M) is not necessarily an ideal of R, but it has the property that if a, b ∈ R with
ab ∈ Z(M), then either a ∈ Z(M) or b ∈ Z(M). A submodule N of M is called a nilpotent
submodule if [N :R M ]nN = 0 for some positive integer n. An element m ∈ M is said to
be nilpotent if Rm is a nilpotent submodule of M [2]. We let Nil(M) to denote the set of
all nilpotent elements of M ; then Nil(M) is a submodule of M provided that M is a faithful
module, and if in addition M is multiplication, then Nil(M) = Nil(R)M =

⋂
P , where the

intersection runs over all prime submodules of M , [2, Theorem 6]. If M contains no nonzero
nilpotent elements, then M is called a reduced R-module. A submodule N of M is said to be
a nonnil submodule if N * Nil(M). Recall that a submodule N of M is prime if whenever
rm ∈ N for some r ∈ R and m ∈ M , then either m ∈ N or rM ⊆ N . If N is a prime
submodule of M , then p := [N :R M ] is a prime ideal of R. In this case we say that N is a
p-prime submodule of M . Let N be a submodule of multiplication R-module M , then N is a
prime submodule of M if and only if [N :R M ] is a prime ideal of R if and only if N = pM for
some prime ideal p of R with [0 :R M ] ⊆ p, [18, Corollary 2.11]. Recall from [4] that a prime
submodule P of M is called a divided prime submodule if P ⊂ Rm for every m ∈M \ P ; thus
a divided prime submodule is comparable to every submodule of M .
Now assume that T−1(M) = T(M). Set

H = {M |M is an R− module and Nil(M) is a divided prime submodule of M}

and
H0 = {M ∈ H | Nil(M) = Z(M)M}.

For an R-module M ∈ H, Nil(M) is a prime submodule of M . So P := [Nil(M) :R M ]
is a prime ideal of R. If M is an R-module and Nil(M) is a proper submodule of M , then
[Nil(M) :R M ] ⊆ Z(R). Consequently, R \ Z(R) ⊆ R \ [Nil(M) :R M ]. In particular,
T ⊆ R\[Nil(M) :R M ] [26]. Recall from [26] that we can define a mapping Φ : T(M) −→MP

given by Φ(x/s) = x/s which is clearly an R-module homomorphism. The restriction of Φ to
M is also an R-module homomorphism from M in to MP given by Φ(m/1) = m/1 for every
m ∈ M . A nonnil submodule N of M is said to be Φ-invertible if Φ(N) is an invertible
submodule of Φ(M) [28]. An R-module M is called a Φ-Dedekind module if every nonnil
submodule of M is Φ-invertible [28]. Ahmad in [26], introduced a new class of modules which
is closely related to the class of Noetherian modules. A module M is called a Φ-Noetherian if
every nonnil submodule of M is finitely generated. In this paper we find some properties of this
class of modules.

2 Some properties of Φ-Noetherian modules

Theorem 2.1. [26, Theorem 11] Let R be a ring and M be a finitely generated faithful multipli-
cation R-module with M ∈ H0. The following are equivalent:
(1)M is a Φ-Noetherian R-module;
(2) M

Nil(M) is a Noetherian R-module;
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(3) Φ(M)
Nil(Φ(M)) is a Noetherian R-module;

(4) Φ(M) is a Φ-Noetherian R-module;
(5) each nonnil prime submodule of M is finitely generated.

Proposition 2.2. Let R be a ring and not an integral domain and let M ∈ H be a finitely gene-
tated faithful multiplication R-module. Then Nil(M) is finitely generated if and only if M is
an Artinian module with only maximal submodule Nil(M). Inparticular, If M is a Noetherian
module, then M is an Artinian module with only maximal submodule Nil(M) 6= (0).

Proof. By [25, Proposition 13], [26, Proposition 1] and [13, Proposition 2.3], we haveNil(R) =
(Nil(M) :R M) is finitely generated if and only if R is a local Artinian ring with maximal ideal
Nil(R). HenceNil(M) = Nil(R)M is finitely generated if and only ifM is an Artinian module
with only maximal submoduleNil(M), becauseM is faithful multiplication. For next statement,
Since M is Noetherian faithful multiplication, R is Noetherian. Thus, by [13, Proposition 2.3],
R is a local ring with maximal ideal Nil(R) 6= (0). Therefore, M is an Artinian module with
only maximal submodule Nil(M) 6= (0).

Proposition 2.3. Let R be a ring and M ∈ H0 be a Φ-Noetherian faithful multiplication R-
module and let N be a proper submodule of M . If N ⊂ Nil(M), then M

N is a Φ-Noetherian
module. If N * Nil(M), then Nil(M) ⊂ N and M

N is a Noetherian module. Moreover, if
Nil(M) ⊂ N , then M/N is both Noetherian module and Φ-Noetherian module if and only if N
is either a prime submodule or a primary submodule whose radical is a maximal submodule.

Proof. If N ⊂ Nil(M), then Nil(MN ) = Nil(M)
N is a divided prime submodule of M

N . Hence,
M
N ∈ H. Since

M
N

Nil(MN )
is module-isomorphic to M

Nil(M) and M
Nil(M) is Noetherian module by

Theorem 2.1, we conclude that MN is a Φ-Noetherian module.
Now, suppose thatN * Nil(M). SinceNil(M) is a divided prime submodule ofM , Nil(M) ⊂
N . Let Q be a prime submodule of M

N . Then Q = P
N for some nonnil prime submodule P of

M such that N ⊆ P . Since P is finitely generated, Q is finitely generated. Therefore M
N is

Noetherian module.
The third statement follows from Proposition 2.2.

Corollary 2.4. Let R be a ring and M ∈ H0 be a finitely generated faithful multiplication R-
module. Then a homomorphic image of M is either a Φ-Noetherian module or a Noetherian
module.

Lemma 2.5. Let R be an integral domain and M be a faithful multiplication R-module. Then R
is an almost-Dedekind domain if and only if M is an almost-Dedekind module.

Proof. Let R be an almost-Dedekind domain. Then RP is a Dedekind domain for each nonzero
prime ideal P of R. Hence, by [4], MP is a Dedekind module. Therefore, M is an almost-
Dedekind module. The converse is similar.

It is clear that if M is a Φ-Dedekind module, then M is a Φ-Prüfer module.

Theorem 2.6. Let R be a ring and M ∈ H0 be a finitely generated faithful multiplication R-
module. If M is a Φ-Noetherian and Φ-Prüfer module, then M is a Φ-Dedekind module.

Proof. Suppose that M is Φ-Noetherian and Φ-Prüfer module. Then, by [26, Theorem 7] and
[28, Theorem 2.11] M

Nil(M) is a Noetherian and Prüfer module. Thus M
Nil(M) is a Dedekind

module. Therefore, M is a Φ-Dedekind module.

Proposition 2.7. LetR be an integral domain andM be a faithful multiplicationR-module. IfM
is an almost-Dedekind module but not Dedekind module, then M is locally Noetherian module
but not Noetherian module.

Proof. Suppose that M is an almost-Dedekind module but not Dedekind. Then, by Lemma
2.5 and [4], R is an almost-Dedekind domain but not Dedekind. Hence, by [13], R is a lo-
cally Noetherian ring but not Noetherian. Therefore, M is a locally Noetherian module but not
Noetherian.
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Proposition 2.8. Let R be an integral domain and M be a faithful multiplication R-module. If
M is a locally Noetherian module and each nonzero element is contained in at most finitely many
maximal submodules, then M is a Noetherian module.

Proof. Suppose that M is a locally Noetherian module and each nonzero element is contained
in at most finitely many maximal submodules. Then R is a locally Noetherian domain and each
nonzero element is contained in at most finitely many maximal ideals. Hence, by [23, Exercisee
]10, page 73], R is a Noetherian domain. Therefore, M is a Noetherian module, because M is
faithful multiplication.

Lemma 2.9. Let R be a ring and M be a finitely generated faithful multiplication R-module.
The following are hold:
(1) If R ∈ H is a φ-Noetherian ring, Then M is a Φ-Noetherian module.
(2) If M ∈ H is a Φ-Noetherian module, then R is a φ-Noetherian ring.

Proof. Since Nil(R) ⊆ Ann( M
Nil(R)M ) = Ann( M

Nil(M)), we have:
(1) Let R ∈ H. Then, by [26, Proposition 3], M ∈ H. If R is a φ-Noetherian ring, then [16,
Theorem 2.2], R

Nil(R) is a Noetherian domain. So, M
Nil(M) is a Noetherian module. Therefore, by

[26, Theorem 7], M is a Φ-Noetherian module.
(2) Let M ∈ H. Then, by [26, Proposition 3], R ∈ H. If M is a Φ-Noetherian module, then by
[26, Theorem 7], M

Nil(M) is a Noetherian module. So, R
Nil(R) is a Noetherian domain. Therefore,

by [16, Theorem 2.2], R is a φ-Noetherian ring.

Proposition 2.10. Let R be a ring and M ∈ H be a finitely generated faithful multiplication R-
module. Let MP be a Φ-Noetherian module for every maximal ideal P of R and each nonnil ele-
ment of M lies in only a finite number of maximal submodules of M . Then M is a Φ-Noetherian
module.

Proof. Since M ∈ H, by [26, Proposition 3], R ∈ H. Suppose that for every maximal ideal P
of R, MP is a Φ-Noetherian module and each nonnil element of M lies in only a finite number
of maximal submodules of M . Hence, by Lemma 2.9, RP is a φ-Noetherian module for every
maximal ideal P of R and each nonnil element of M lies in only a finite number of maximal
ideals of M . Thus, by [13, Proposition 2.6], R is a φ-Noetherian ring. Therefore, by Lemma 2.9,
M is a Φ-Noetherian module.

Proposition 2.11. Let R be a ring, M ∈ H0 be a Φ-Noetherian faithful multiplication R-module
and P a prime submodule of M . If P is minimal over an submodule generated by n or fewer
elements, then ht(P ) ≤ n. In particular, if P is a prime minimal submodule over a nonnil
element of M , then ht(P ) = 1.

Proof. The module M
Nil(M) is Noetherian module by Theorem 2.1. Assume P is minimal over

the submodule N = (a1, ...an). If N ⊂ Nil(M), there is nothing to prove since we would have
N = Nil(M), the prime of height 0. Thus we may assume N is not nilpotent. Since Nil(M)
is divided, Nil(M) ⊂ N . Thus N

Nil(M) can be generated by n (or fewer) elements. Since M is
Notherian, ht( P

Nil(M)) ≤ n. Hence ht(P ) ≤ n.

Proposition 2.12. Let R be a ring and M ∈ H be a faithful multiplication R-module such that
satisfy the ascending chain condition on radical submodules. If M has an infinite number of
prime submodules of height 1, then their intersection is Nil(M).

Proof. Suppose that M satisfy the ascending chain condition on radical submodules and M
has an infinite number of prime submodules of height 1. Then R satisfy the ascending chain
condition on radical ideals and R has an infinite number of prime ideals of height 1. Hence, their
intersection is Nil(R), by [23, Theorem 145]. Therefore, the intersection of an infinite number
of prime submodule of height 1 is Nil(M).

Proposition 2.13. Let R be a ring, M ∈ H be a Φ-Noetherian faithful multiplication R-module
and P a nonnil prime submodule of M with ht(P ) = n. Then there exist nonnil elements
a1, ..., an in M such that P is minimal over the submodule (a1, ..., an), and for any 1 ≤ i ≤ n,
every nonnil prime submodule of M minimal over (a1, ..., an) has height i.
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Proposition 2.14. Let R be a ring, M ∈ H be a Φ-Noetherian faithful multiplication R-module
and N a proper submodule of M generated by n elements. If P is a prime submodule of M
conatining N with ht( PN ) = k, then ht(P ) ≤ n+ k.

Proof. Suppose that M is a Φ-Noetherian module and N a proper submodule of M generated
by n elements. Then, by Lemma 2.9, R is a φ-Noetherian ring and (N :R M) is a proper ideal
of R generated by n elements. If P is a prime submodule of M conatining N with ht( PN ) = k,
then (P :R M) is a prime ideal of R containing (N :R M) with ht( (P :RM)

(N :RM)) = k. Hence, by [13,
Proposition 2.10], ht(P :R M) = n+ k. Therefore, ht(P ) = n+ k.

Proposition 2.15. Let R be a ring, M ∈ H be a Φ-Noetherian faithful multiplication R-module.
Let P be a prime submodule of M with ht(P ) = n and Q be a prime submodule of M [X] such
that P 6= Q and PM [X] ( Q. Then ht(PM [X]) = n and ht(Q) = n+ 1.

Proof. Since Nil(M) is the minimal prime of M , Nil(M [X]) = Nil(R)M [X] is the minimal
prime ofM [X]. We assume thatK = M

Nil(M) andK[X] = M [X]
Nil(M [X]) . Hence, by Theorem 2.1,K

is a Noetherian module. Moreover, P
Nil(M) is a prime submodule of M with ht( P

Nil(M)) = n and
Q

Nil(M [X]) is a prime submodule of M [X] such that P
Nil(M) 6=

Q
Nil(M [X]) and ( P

Nil(M))K[X] (
Q

Nil(M [X]) . Therefore, ht(( P
Nil(M))K[X]) = ht(PM [X]) = n and ht( Q

Nil(M [X])) = ht(Q) =

n+ 1.

Proposition 2.16. Let R be a ring, M ∈ H be a Φ-Noetherian faithful multiplication R-module.
Let P be a prime submodule ofM with ht(P ) = n andQ be a prime submodule ofM [X1, ..., Xm]
such that P 6= Q and PM [X1, ..., Xm] ( Q. Then ht(PM [X1, ..., Xm]) = n and ht(Q) 6
n+m. Moreover, ht(PM [X1, ..., Xm] + (X1, ..., Xm)M [X1, ..., Xm]) = n+m.

Corollary 2.17. Let R be a ring, M ∈ H be a Φ-Noetherian faithful multiplication R-module
and dim(M) = n. Then dim(M [X1, ..., Xm]) = n+m for each integer m > 0.

Proposition 2.18. Let R be a ring, M ∈ H be a Φ-Noetherian faithful multiplication R-module.
If N is a submodule of M [X1, ..., Xn] for which N ∩M is not contained in Nil(M), then N is a
finitely generated submodule of M [X1, ..., Xn].

Proof. If N ∩M is not contained in Nil(M), then any single nonnil element in this intersection
is enough to generate the nilradical of M [X1, ..., Xn]. Since M

Nil(M) is a Noetherian module,
( N
Nil(M))[X1, ..., Xn] is finitely generated. Let {f1, ..., fm} ⊂ N generate the image ofN modulo
Nil(M)[X1, ..., Xn]. To get a finite set of generators forN , simply add any single nonnil element
k ∈ N ∩M to the set {f1, ..., fm}. Since kNil(M) = Nil(M), the set {k, f1, ..., fm} is a finite
set of generators for N .

Corollary 2.19. Let R be a ring, M ∈ H be a Φ-Noetherian faithful multiplication R-module
and let P be a prime submodule of M [X1, ..., Xn]. If ht(P ) > n, then P is finitely generated.
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