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Abstract This paper deals with some existence results for a class of fractional differential equations involving
Riemann-Liouville fractional derivative, by using the lower and upper solution method and the measure of noncom-
pactness in the weighted space of continuous functions, we prove the existence of maximal and minimal solutions.
Finally an example is provided to illustrate our results.

1 Introduction

Differential equations of fractional order have been recently proved to be valuable tools in the modeling of many
physical phenomena [20]. There has been a significant theoretical development in fractional differential equations in
recent years, see the monographs of Abbas et al. [1], Kilbas et al. [15], Podlubny [26], Somko et al. [27]. The
monotone iterative technique, combined with the method of upper and lower solutions, is a powerful tool for proving
the existence of solutions for nonlinear ordinary differential equations in abstract spaces [25]. Also many people paid
attention to the existence result of solution of the initial value problem for fractional differential equations involving
Riemann-Liouville fractional derivative of order 0 < α < 1, see [5, 34].
In [31], the lower and upper solution method was used to study the IVP

LDα
0+x(t) = f(t, x(t)), t ∈ (0, 1), (0 < α < 1),

x(0) = 0,

where LDα is the Riemann-Liouville fractional derivative of order 0 < α < 1, I1−α
0+ is Riemann-Liouville integral of

order 1− α and f : [0, 1]× [0,+∞)→ [0,+∞) is continuous and f(t, ·) is nondecreasing for each t ∈ [0, 1].
Very recently Zhang [32], discussed the existence and uniqueness of solution of the initial value problem

LDα
0+x(t) = f(t, x(t)), (0 < α < 1, t > 0),

I1−α
0+ x(t) |t=0= x0,

was obtained under the assumption that f : [0, 1] × R → R is Lipchitz continuous, by using the Banach contraction
mapping principal. In [22] a new proof of the maximum principle was given by using the completely monotonicity of
the Mittag-Leffler type function.
Let X be a general Banach space and let 0 < α < 1. The objective of the paper was discussed by using the method of
lower and upper solutions and its associated monotone iterative method of fractional differential equations

LDα
0+x(t) = f(t, x(t)), t ∈ J ′ := (0, b], (1.1)

lim
t→0+

t1−αx(t) = x0, (1.2)

where LDα
0+ is the Riemann-Liouville fractional derivative of order α ∈ (0, 1),

f : [0, b]×X → X is a continuous function.
Our aim in this paper is obtain similar results in more general setting, namely when the function right-hand side has
values on infinite dimensional Banach space.
This paper is organized as follows. In Section 2, we recall some notion of fractional calculus and theory of measure
noncompactness. In, Section 3, we prove the main results. Finally an illustrative example is given in Section 4.

2 Preliminaries

In this section, we introduce the notations, definitions, and preliminary facts that will be used in remainder of this
paper.
Let J := [0, b], b > 0 and (X, ‖ · ‖) be a Banach space, C(J,X) be the space of X-valued continuous functions on J
endowed with the uniform norm topology

‖x‖∞ = sup{‖x(t)‖, t ∈ J}.
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L1(J,X) the space of X-valued Bochner integrable functions on J with norm

‖f‖L1 =

∫ b

0
‖f(t)‖dt.

We consider the Banach space of continuous functions

C1−α(J,X) = {x ∈ C(J ′, X) : lim
t→0+

t1−αx(t) exists }.

A norm in this space is given by
‖x‖α = sup

t∈J
t1−α‖x‖.

For Ω a subset of the space C1−α(J,X), define Ωα by

Ωα = {xα, x ∈ Ω},

where

xα(t) =

{
t1−αx(t), if t ∈ (0, b];
lim
t→0+

t1−αx(t), if t = 0.

It is clear that xα ∈ C(J,X).

Lemma 2.1. [34, Lemma 1] A set Ω ⊂ C1−α(J,X) is relatively compact if and only if Ωα is relatively compact in
C(J,X).

Definition 2.2. Let 0 < α < 1. A function h : J → X has a fractional integral if the following integral

Iαh(t) =
1

Γ(α)

∫ t

0
(t− s)1−αh(s)ds, (2.1)

is defined for t ≥ 0, where Γ(·) is the gamma function.
The Reimann-Liouville derivative of h of order α is defined as

LDαh(t) =
1

Γ(1− α)
d

dt

∫ t

0
(t− s)−αh(s)ds = d

dt
I1−αh(t), (2.2)

provided it is well defined for t ≥ 0. The previous integral is taken in Bochner sense. Let φα(t) : R→ R defined by

φα =


t1−α

Γ(α)
, if t > 0,

0, if t ≤ 0.

Then
Iαx(t) = (φα ∗ x)(t),

and
LDαx(t) =

d

dt
(φ1−α ∗ x)(t).

Lemma 2.3. [9] Let α, β ∈ R+. Then ∫ 1

0
tα−1(1− t)β−1dt =

Γ(α)Γ(β)

Γ(α+ β)
, (2.3)

and hence ∫ x

0
tα−1(x− t)β−1dt = xα+β−1 Γ(α)Γ(β)

Γ(α+ β)
. (2.4)

The integral in the first equation of Lemma is known as Beta function B(α, β).
We recall Gronwall’s Lemma for singular kernels whose proof can be found in [30].

Lemma 2.4. Let v : J → [0,∞) be a real function and ω(·) is a nonnegative, locally integrable function on J and
there are constants λ and 0 < α < 1 such that

v(t) ≤ ω(t) + λ

∫ t

0
(t− s)−αv(s)ds.

Then there exists a constant K = K(α) such that

v(t) ≤ ω(t) +Kλ

∫ t

0
(t− s)−αω(s)ds,

for every t ∈ J .
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Next, we recall some definitions and properties of measure of noncompactness.

Definition 2.5. [4] Let X be a Banach space, P(X) denote the collection of all nonempty subsets of X , and (A,≥) a
partially ordered set A map β : P(X) −→ A is called a measure of noncompactness on X , MNC for short, if

β(coΩ) = β(Ω)

for every Ω ∈ P(X), where coΩ is the closure of convex hull of Ω.

Definition 2.6. [13] A measure of noncompactness β is called

(1) monotone if Ω0,Ω1 ∈ P(X), Ω0 ⊂ Ω1 implies β(Ω0) ≤ β(Ω1),

(2) nonsingular if β({a} ∪Ω) = β(Ω) for every a ∈ X , Ω ∈ P(X),

(3) invariant with respect to the union with compact sets if β(K∪Ω) = β(Ω) for every relatively compact setK ⊆ X
and Ω ∈ P(X),

(4) regular if the condition β(Ω) = 0 is equivalent to the relative compactness of Ω,

(5) algebraically semiadditive if β(γ1 + γ2) ≤ β(γ1) + β(γ2), where γ1 + γ2 = {x+ y : x ∈ γ1, y ∈ γ2},

(6) β(λγ) ≤ |λ|β(γ) for any λ ∈ R.

(7) If {Wn}+∞n=1 is a decreasing sequence of bounded closed nonempty subsets and lim
n→+∞

β(Wn) = 0, then ∩+∞n=1Wn

is nonempty and compact.

One of the most important examples of the measure of noncompactness possessing all these properties is the Hausdoff
measure of noncopactness defined by:

χ(Ω) = inf{ε > 0 : Ω has a finite ε−net}.

For any W ⊂ C(J,X), we define∫ t

0
W (s)ds =

{∫ t

0
x(s)ds : x ∈W, for t ∈ J = [0, b]

}
,

where W (s) = {x(s) ∈ X : x ∈ w}.

Lemma 2.7. [11] If W ⊂ C(J,X) is bounded and equicontinuous then β(W (t)) is continuous on J and

β

(∫ t

0
W (s)ds

)
≤
∫ t

0
β(W (s))ds, for t ∈ [0, b].

Lemma 2.8. [15] The linear initial value problem

LDα
0+x(t) + λx(t) = p(t), t ∈ (0, b],

lim
t→0+

t1−αx(t) = x0,

where λ ≥ 0 is a constant and p ∈ L1(J,X), has the following integral representation for a solution

x(t) = Γ(α)x0t
α−1Eα,α(−λtα) +

∫ t

0
(t− s)α−1Eα,α(−λ(t− s)α)p(s)ds.

Where Eα,α(t) is a Mittag-Leffler function.

Lemma 2.9. [28] For 0 < α ≤ 1, the Mittag-Leffler type function Eα,α(−λtα) satisfies

0 ≤ Eα,α(−λtα) ≤
1

Γ(α)
, t ∈ [0,∞), λ ≥ 0.

Lemma 2.10. [12] Suppose that X is an ordered Banach space u0, y0 ∈ X , u0 ≤ y0, D = [u0, y0], N : D → X is an
increasing completely continuous operator and

u0 ≤ Nu0, y0 ≥ Ny0.

Then the operator N has a minimal fixed u∗ and a maximal fixed y∗. If we let

un = Nun−1 , yn = Nyn−1, n = 1, 2 · · · ,

then
u0 ≤ u1 ≤ u2 ≤ · · · ≤ un ≤ · · · ≤ yn ≤ · · · ≤ y2 ≤ y1 ≤ y0,

un → u∗, yn → y∗.
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Definition 2.11. A function v(·) ∈ C1−α(J,X) is called as a lower solution of (1.1)-(1.2) if it satisfies
LDα

0+v(t) ≤ f(t, v(t)), t ∈ (0, b], (2.5)

lim
t→0+

t1−αv(t) ≤ x0. (2.6)

Definition 2.12. A function w(·) ∈ C1−α(J,X) is called as an upper solution of (1.1)-(1.2) if it satisfies
LDα

0+w(t) ≥ f(t, w(t)), t ∈ (0, b], (2.7)

lim
t→0+

t1−αw(t) ≥ x0. (2.8)

3 Main Results

Before stating and proving the main results, we introduce following assumptions

(H1) The map f : [0, b]×X → X is continuous.

(H2) There exists a constant c > 0 such that

‖f(t, x)‖ ≤ c(1 + t1−α‖x‖) for all t ∈ [0, b] and x ∈ X.

(H3) there exists a constant c1 > 0, and let F (t, x) = f(t, x) + λx(t) such that for each nonempty, bounded set
Ω ⊂ C1−α(J,X)

β(F (t,Ω(t)) ≤ c1β(Ω(t)), for all t ∈ [0, b],

where β is measure of noncompactness in X .

(H4) Assume that f : [0, b]×X → X satisfies

f(t, x)− f(t, v) + λ(x− v) ≥ 0 for x̂ ≤ v ≤ x ≤ x̃,

where λ ≥ 0 is a constant and x̂, x̃ are lower and upper solutions of problem (1.1)-(1.2) respectively.

Theorem 3.1. Suppose (H1)-(H3) holds. The function x(·) ∈ C1−α(J,X) solves problem (1.1)-(1.2) if and only if it a
fixed point of the operator N defined by

N(x)(t) = Γ(α)x0t
α−1Eα,α(−λtα)

+

∫ t

0
(t− s)α−1Eα,α(−λ(t− s)α)[f(s, x(s)) + λx(s)]ds.

Proof. It’s clear that the operator N is well defined, i.e., for every x ∈ C1−α(J,X) and t > 0, the integral∫ t

0
(t− s)α−1Eα,α(−λ(t− s)α)[f(s, x(s)) + λx(s)]ds,

belongs to C1−α(J,X).

Step 1. N is continuous.
Let {xn} be a sequence such that xn → x in C1−α(J,X). Then

t1−α‖N(xn)(t)−N(x)(t)‖

≤ t1−α

Γ(α)

∫ t

0
(t− s)α−1‖f(s, xn(s))− f(s, x(s))‖ds

+
λt1−α

Γ(α)

∫ t

0
(t− s)α−1‖xn(s)− x(s)‖ds

≤ t1−α

Γ(α)

∫ t

0
(t− s)α−1sα−1s1−α‖f(s, xn(s))− f(s, x(s))‖ds

+
λt1−α

Γ(α)

∫ t

0
(t− s)α−1sα−1s1−α‖xn(s)− x(s)‖ds

≤ t1−α

Γ(α)

∫ t
0 (t− s)

α−1sα−1ds‖f(s, xn(s))− f(s, x(s))‖α

+
λt1−α

Γ(α)

∫ t

0
(t− s)α−1sα−1ds‖xn(s)− x(s)‖α

≤ bα

Γ(α)
B(α, α)‖f(·, xn(·))− f(·, x(·))‖α +

λbα

Γ(α)
B(α, α)‖xn(·)− x(·)‖α
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Using the hypothesis (H2) we have

‖N(xn)(t)−N(x)(t)‖α −→ 0 as n→ +∞.

Step 2. N maps bounded sets into bounded sets in C1−α(J,X).
Indeed, it enough to show that there exists a positive constant l such that for each x ∈ Br = {x ∈ C1−α(J,X) :
‖x‖α ≤ r} one has ‖N(x)‖α ≤ l.
Let x ∈ Br. Then for each t ∈ (0, b], by (H2) we have

t1−α‖Nx(t)‖ ≤ ‖x0‖+
t1−α

Γ(α)

∫ t

0
(t− s)α−1‖f(s, x(s))‖ds

+
λt1−α

Γ(α)

∫ t

0
(t− s)α−1‖x(s)‖ds

≤ ‖x0‖+
t1−α

Γ(α)

∫ t

0
(t− s)α−1c(1 + s1−α‖x(s)‖)ds

+
λt1−α

Γ(α)

∫ t

0
(t− s)α−1sα−1s1−α‖x(s)‖ds

≤ ‖x0‖+
ct1−α

Γ(α)

∫ t
0 (t− s)

α−1(1 + r)ds

+
λt1−α

Γ(α)

∫ t

0
(t− s)α−1sα−1rds

≤ ‖x0‖+
cb1−α(1 + r)

Γ(α)

∫ t

0
(t− s)α−1ds

+
λb1−αr

Γ(α)

∫ t

0
(t− s)α−1sα−1ds,

‖N(x)‖α ≤ ‖x0‖+
cb(1 + r)

Γ(α+ 1)
+
λbαrΓ(α)

Γ(2α)
:= l.

Step 3. N maps bounded sets into equicontinuous sets.
Let t1, t2 ∈ (0, b], t1 ≤ t2, let Br be a bounded set in C1−α(J,X) as in step 2, and let x ∈ Br, we have

‖t1−α2 N(x)(t2)− t1−α1 N(x)(t1)‖

≤ Γ(α)‖x0‖ [Eα,α(−λtα2 )− Eα,α(−λtα1 )]

+
(
t1−α2 − t1−α1

)∥∥∥∥∫ t1

0
[(t2 − s)α−1Eα,α(−λ(t2 − s)α)− (t1 − s)α−1

Eα,α(−λ(t1 − s)α)]f(s, x(s))ds‖

+t1−α2

∥∥∥∥∫ t2

t1

(t2 − s)α−1Eα,α(−λ(t2 − s)α)f(s, x(s))ds
∥∥∥∥

+
(
t1−α2 − t1−α1

)∥∥∥∥∫ t1

0

[
(t2 − s)α−1Eα,α(−λ(t2 − s)α)− (t1 − s)α−1

Eα,α(−λ(t1 − s)α)] (λx(s))ds‖

+t1−α2

∥∥∥∥∫ t2

t1

(t2 − s)α−1Eα,α(−λ(t2 − s)α)(λx(s))ds
∥∥∥∥

≤ I1 +
t1−α2 − t1−α1

Γ(α)

∫ t1

0
[(t2 − s)α−1 − (t1 − s)α−1](c(1 + s1−α‖x(s)‖))ds

+
t1−α2
Γ(α)

∫ t2

t1

(t2 − s)α−1(c(1 + s1−α‖x(s)‖))ds

+
t1−α2 − t1−α1

Γ(α)

∫ t1

0
[(t2 − s)α−1 − (t1 − s)α−1](λsα−1s1−α‖x(s)‖)ds

+
t1−α2
Γ(α)

∫ t2

t1

(t2 − s)α−1(λsα−1s1−α‖x(s)‖)ds

≤ I1 +
t1−α2 − t1−α1

Γ(α+ 1)
(c(1 + r)) [(t2 − t1)α + tα1 − tα2 ] +

t1−α2
Γ(α+ 1)

(c(1 + r)) [((t2 − t1)α]

+
Γ(α)(t1−α2 − t1−α1 )

Γ(2α)
(λr)) [(t2 − t1)α + tα1 − tα2 ] +

Γ(α)t1−α2
Γ(2α)

(λr)) [((t2 − t1)α]
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where
I1 = Γ(α)‖x0‖[Eα,α(−λtα2 )− Eα,α(−λtα1 )].

Appling by the functionEα,α(−λtα) is uniformly continuous on [0, b], we have I1 tend to zero independently of x ∈ Br
as t2 → t1.
Thus ‖t1−α2 N(x)(t2)− t1−α1 N(x)(t1)‖ tend to zero independently of x ∈ Br as t2 → t1, which means that the set NBr
is equicontinuous.
Define Br0 = {x ∈ C1−α : ‖x‖α ≤ r0}, where r0 > 0 is taken so that

r0 ≥
(
‖x0‖+

cb

Γ(α+ 1)

)
(1− L)−1,

such that
cb

Γ(α+ 1)
+
λbαΓ(α)

Γ(2α)
≤ L < 1.

Then Br0 is closed convex bounded and hence NBr0 ⊂ Br0 .
Now we prove that there exists a compact subset M ⊂ Br0 ⊂ such that NM ⊂ M . We first costruct a series of sets
{Mn} ⊂ Br0 by

M0 = Br0 , M1 = convNM0, Mn+1 = convNMn, n = 1, 2 · · · .

From the above proof it is easy to see Mn+1 ⊂ Mn for n = 1, 2 · · · and each M̂n is equicontinuous. Further from
Definition 2.6 and Lemma 2.7 we can derive that

β
(
M̂n+1(t)

)
= β(t1−αMn+1(t)) = β(t1−αNMn(t))

≤ β
[

Γ(α)x0Eα,α(−λtα) + t1−α
∫ t

0
(t− s)α−1(Eα,α(−λ(t− s)α)F (s,Mn(s))ds

]
≤ c1

t1−α

Γ(α)

∫ t

0
(t− s)α−1β(Mn(s))ds.

Define the function Fn(t) = β(Mn(t)) for n = 1, 2 · · · we get

Fn+1(t) ≤ c1
t1−α

Γ(α)

∫ t

0
(t− s)α−1Fn(s)ds, (3.1)

for n = 1, 2, · · · the fact Mn+1 ⊂Mn.
Taking limit as n→∞ in (3.1) we get

F (t) ≤ c1
t1−α

Γ(α)

∫ t

0
(t− s)α−1F (s)ds,

for all t ∈ J . An application of Lemma 2.4 yields F (t) = 0 for all t ∈ J .
Therefore, ∩∞n=1Mn =M is nonempty and compact in C1−α(J,X) due to Definition 2.6, and NM ⊂M by definition
of Mn.
Up to now we have verified that there exists a nonempty bounded convex and compact subset M such that NM ⊂
M . An employment of Schauder’s fixed point theorem shows that there exists at least a fixed point x of N in M .
Combining with the fact that lim

t→0+
Eα,α(−λtα) = Eα,α(0) = 1/Γ(α) yields that lim

t→0+
t1−α(Nx)(t) = x0. The proof is

complete.

Theorem 3.2. Assume (H1)-(H4), hold, and v, w ∈ C1−α(J,X) are lower and upper solutions of (1.1)-(1.2) respec-
tively such that

v(t) ≤ w(t), 0 ≤ t ≤ b.
Then, the fractional IVP (1.1)-(1.2) has a minimal solution u∗ and a maximal solution y∗ such that

u∗ = lim
n
Nnv, y∗ = lim

n
Nnw.

Proof. Suppose that functions v, w ∈ C1−α(J,X) are lower and upper solution of IVP (1.1)-(1.2). We consider in
C1−α(J,X) the order induced by the sector D = [v, w] define [v, w] = {x ∈ C1−α(J,X) : v ≤ x ≤ w}, then there are
v ≤ Nv, w ≥ Nw. In fact, by the definition of the lower solution, there exist p(t) ≥ 0 and ε ≥ 0, we have

LDα
0+v(t) = f(t, v(t))− p(t), t ∈ (0, b],

lim
t→0+

t1−αv(t) = x0 − ε.

Using Theorem 3.1 and Lemma 2.9, one has

v(t) = Γ(α)(x0 − ε)tα−1Eα,α(−λtα)

+

∫ t

0
(t− s)α−1Eα,α(−λ(t− s)α) [f(s, v(s)) + λv(s)− p(s)] ds

≤ (Nv)(t).
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Similarly, there is w ≥ Nw.
The operator N : D → C1−α(J,X) is increasing and completely continuous by the use of Lemma 2.10 the existence
of u∗, y∗ is obtained. The proof is complete.

4 An example

As an application of our results we consider the following fractional equation

LDα
0+x(t) =

1
et2 + 1

{
ln(|xk|+ 1) +

1
1 + k

}
k∈N

, t ∈ J = [0, 1], (4.1)

lim
t→0+

t1−αx(t) = x0, (4.2)

c0 represents the space of all sequences converging to zero, which is a Banach space with respect to the norm

‖x‖ = sup
k

|xk|.

Let t ∈ J and x = {xk}k ∈ c0, we have

‖f(t, x)‖∞ =
1

et2 + 1
‖ ln(|xk|+ 1) + 1

k+1‖∞

≤ 1
et2 + 1

(
sup
k

|xk|+ 1
)

≤ 1
et2 + 1

(1 + ‖x‖∞).

Hence condition (H1)− (H2) are satisfied with c =
1

e+ 1
, for all t ∈ [0, 1].

So, that function F by defined

F (t, x(t)) =
1

et2 + 1

{
ln(|xk|+ 1) +

1
k + 1

}
k∈N

+ λx(t), for all t ∈ [0, 1].

We recall that the measure of noncompactness β in space c0 can be computed by means of the formula

β(Ω) = lim
n→+∞

sup
x∈Ω

‖(I − Pn)x‖∞.

Where Ω is a bounded subset in c0 and Pn is the projection onto the linear span of n vectors, we get

β(F (t,Ω)) ≤ c1β(Ω(t)) for all t ∈ [0, 1],

with c = (e+ 1)−1. Therefore β(F (t,Ω(t)) ≤ c1β(Ω(t)), with c1 = max(c, λ) due to (H3) and definition . Then by
Theorem 3.2 the problem (4.1)-(4.2) has a lower and upper solutions.
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