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Abstract We state and prove (first by construction, and then by induction) the invariance,
with respect to matrix power, of the anti-diagonals ratio of a general 2 × 2 matrix, adding these
proofs to others found previously.

1 Introduction

Let

M = M(A,B,C,D) =

(
A B

C D

)
(1.1)

be a general 2×2 matrix (assumingA,B,C,D 6= 0), with Tr{M} = A+D and |M| = AD−BC.
A somewhat unusual result holds which remains little known in the literature.

Theorem 1.1. Unless otherwise indeterminate, the ratio of the two anti-diagonal terms in Mn is
the quantity B/C, being invariant with respect to integer power n ≥ 1.

In a previous publication [1] the observation was formulated in four different ways (as two
direct proofs, and two inductive ones), while in [2] it was extended to establish invariance of all
anti-diagonal ratios within an arbitrary dimension tri-diagonal matrix. The article [3] delivers yet
another (direct) proof for the case when D = A and the matrix M becomes slightly specialised.
This paper offers two further proofs of Theorem 1.1 accordingly.

2 The Proofs

2.1 Proof I

Proof. Consider, writing the 2-square identity matrix as I2,∑
i≥0

(Mz)i = [I2 −Mz]−1 =
1

1− f(z;A,B,C,D)
E(z;A,B,C,D) (I.1)

after a little algebra, where f(z;A,B,C,D) = z(Tr{M} − |M|z) and

E(z;A,B,C,D) =

(
1−Dz Bz

Cz 1−Az

)
. (I.2)

In the l.h.s. sum of (I.1), the terms within Mn each have an accompanying multiplier zn. To
capture the corresponding zn terms in the r.h.s. version of the matrix Mn would require some
effort (by writing [1 − f(z;A,B,C,D)]−1 as

∑
j≥0 f

j(z;A,B,C,D) =
∑

j≥0 z
j(Tr{M} −

|M|z)j1), but their precise identification is unnecessary for it is enough to see that the anti-
diagonal terms of E alone are Bz and Cz—each possessing the same power of z—whence the

1And, further, expressing the summand thereof as a binomially expanded sum
∑j

p=0

(j
p

)
(Tr{M})j−p(−|M|)pzj+p.
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anti-diagonals ratio of the r.h.s. form of Mn will (through cancellation) simplify to just B/C;
since the power n is arbitrary, the result is established.

Remark 2.1. It is clear that if D = A then the diagonals ratio of Mn(A,B,C,A) is unity (since
the diagonal elements of E are then each 1 − Az), a fact mentioned (in passing) in [1, p. 362]
and established formally in [3].

Line of Argument: Examples. We offer some detail, by way of examples, to the logical ar-
gument outlined in the proof for the reader’s benefit. To assist in this, we write the function
f(z;A,B,C,D) as f(z;A,B,C,D) = z(α+ βz) (where α = α(A,D) = Tr{M} = A+D and
β = β(A,B,C,D) = −|M| = −(AD −BC)), and split the matrix E as

E(z;A,B,C,D) = I2 +Esz, (2.1)

where Es(A,B,C,D) = (−D B
C −A). Then (I.1) can be written as∑

i≥0

(Mz)i = [1 + z(α+ βz) + z2(α+ βz)2 + z3(α+ βz)3 + · · · ](I2 +Esz)

= [1 + αz + (α2 + β)z2 + α(α2 + 2β)z3 + · · · ](I2 +Esz). (2.2)

Thus, gathering up the r.h.s. terms in z3, for instance, (2.2) delivers

(Mz)3 = α(α2 + 2β)z3 · I2 + (α2 + β)z2 ·Esz

=

(
α(α2 + 2β)−D(α2 + β) B(α2 + β)

C(α2 + β) α(α2 + 2β)−A(α2 + β)

)
z3, (2.3)

so that M3 has anti-diagonals ratio B/C. Note that (from the above example) in terms of
A,B,C,D,

M3 =

(
A3 + 2ABC +BCD B(A2 +AD +BC +D2)

C(A2 +AD +BC +D2) D3 +ABC + 2BCD

)
(2.4)

which, as an aside, illustrates Remark 2.1 (because interchanging A and D in one diagonal term
generates the other; the variables α(A,D) and β(A,B,C,D) are both symmetric in A,D).

Similarly, collecting up the r.h.s. terms in z2 from (2.2) we find

(Mz)2 = (α2 + β)z2 · I2 + αz ·Esz

=

(
α2 + β −Dα Bα

Cα α2 + β −Aα

)
z2

=

(
A2 +BC B(A+D)

C(A+D) BC +D2

)
z2, (2.5)

with M2 having anti-diagonals ratio B/C and Remark 2.1 confirmed again.
It is seen that (2.2) offers trivially the self-consistent equation

Mz = αz · I2 + 1 ·Esz =

(
α−D B

C α−A

)
z =

(
A B

C D

)
z. (2.6)

Remark 2.2. It is of interest that the actual entries of the exponentiated matrix M can be deduced
(at low powers n, at least) from visual inspection of a (two vertex) graph, where A represents
a single path (self-loop) from vertex 1 to itself, B a path from vertex 1 to vertex 2, C a path
from vertex 2 to vertex 1, and D a loop from vertex 2 to itself. With n = 2, a 2-path route from
vertex 1 to itself is achieved by the ordered moves AA orBC whose sum A2+BC, when treated
algebraically, matches the (1, 1) entry in M2 (2.5). The (2, 1) entry in M3 (2.4) is the result of
algebraicising as a sum the 3-path options CAA, DCA, CBC or DDC from vertex 2 to vertex
1, giving the expression C(A2 +AD +BC +D2).
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2.2 Proof II

Proof. LetM2[F] be the set of 2×2 matrices with entries from a field F (the set forming a vector
space over F of dimension 22 = 4), and define G :M2[F]→ F to be the linear map

G(S) = S1,2 − tS2,1 (II.1)

acting on any matrix S ∈ M2[F], where Si,j is the row i, column j, element of S, and t =
B/C ∈ F. We seek to show that G(Mn) = 0 for n ≥ 1. Noting that

G(M1) = G(M) = M1,2 − tM2,1 = B − t · C = 0,

G(M2) = (M2)1,2 − t(M2)2,1 = B(A+D)− t · C(A+D) = 0, (II.2)

we assume the result holds for some arbitrary values of n = k, k − 1 (k ≥ 2)—in other words,
0 = G(Mk) = G(Mk−1). Our inductive step proceeds as follows, based on the familiar result
(Cayley-Hamilton) M2 = Tr{M}M− |M|I2 which reads

Mk+1 = Tr{M}Mk − |M|Mk−1 (II.3)

on multiplying throughout by Mk−1. Thus,

G(Mk+1) = G(Tr{M}Mk − |M|Mk−1)

= Tr{M}G(Mk)− |M|G(Mk−1) (II.4)

(by the linearity of G) = Tr{M} · 0− |M| · 0 (by assumption) = 0, as required.

Remark 2.3. It would seem appropriate to mention that the inductive approach deployed in Proof
II—which connects with Proof IV of [1] in appealing to (II.3)—lends itself to a proof strategy for
the corresponding version of Theorem 1.1 in the tri-diagonal matrix case [2] alluded to (where
such a matrix, of dimension n, has n−1 linear maps to consider, each associated with a different
anti-diagonals ratio that remains invariant w.r.t. matrix power); we leave the interested reader to
think about this as an exercise.

Theorem 1.1 continues to be a surprising result within linear algebra, and work continues on
new formulations. The authors are most grateful to Dr. Richard Pinch for suggesting, through
private communication, the two proofs presented here.
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