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Abstract Polyhedrons have been studied by mathematicians and geometers during many
years, because of their symmetries. The theory of convex sets is a vibrant and classical field
of modern mathematics with rich applications. The more geometric aspects of convex sets are
developed introducing some notions, but primarily polyhedra. A polyhedra, when it is convex,
is an extremely important special solid in Rn. Some examples of convex subsets of Euclidean 3-
dimensional space are Platonic Solids, Archimedean Solids and Archimedean Duals or Catalan
Solids. There are some relations between metrics and polyhedra. For example, it has been shown
that cube, octahedron, deltoidal icositetrahedron are maximum, taxicab, Chinese Checker’s unit
sphere, respectively. In this study, I introduce two new metrics, and show that the spheres of the
3-dimensional analytical space furnished by these metrics are rhombicuboctahedron and rhom-
bicosidodecahedron. Also some properties about these metrics are given.

1 Introduction

The history of man’s interest in symmetry goes back many centuries. Symmetry is the pri-
mary matter of aesthetic thus it has been worked on, in various fields, for example in physics,
chemistry, biology, art, architecture and of course in mathematics. Polyhedra have attracted the
attention because of their symmetries. Consequently, polyhedra take place in many studies with
respect to different fields. A polyhedron is a three-dimensional figure made up of polygons.
When discussing polyhedra one will use the terms faces, edges and vertices. Each polygonal
part of the polyhedron is called a face. A line segment along which two faces come together is
called an edge. A point where several edges and faces come together is called a vertex. That is, a
polyhedron is a solid in three dimensions with flat faces, straight edges and vertices. In the early
days of the study, the polyhedra involved to only convex polyhedra. If the line segment joining
any two points in the set is also in the set, the set is called a convex set. There are many thinkers
that have worked on convex polyhedra since the ancient Greeks. The Greek scientist defined
two classes of convex equilateral polyhedron with polyhedral symmetry, the Platonic and the
Archimedean. Johannes Kepler found a third class, the rhombic polyhedra and Eugène Catalan
discovered a fourth class. The Archimedean solids and their duals the Catalan solids are less
well known than the Platonic solids. Whereas the Platonic solids are composed of one shape,
these forms that Archimedes wrote about are made of at least two different shapes, all forming
identical vertices. They are thirteen polyhedra in this type. Since each solid has a ‘dual’ there
are also thirteen Catalan solids which is named after Belgian mathematician Eugène Catalan in
1865, these are made by placing a point in the middle of the faces of the Archimedean Solids
and joining the points together with straight lines. The Catalan solids are all convex.

As it is stated in [3] and [6], polyhedra have been used for explaining the world around
us in philosophical and scientific way. There are only five regular convex polyhedra known
as the Platonic solids. These regular polyhedra were known by the Ancient Greeks. They are
generally known as the "Platonic" or "cosmic" solids because Plato mentioned them in his dia-
logue Timeous, where each is associated with one of the five elements - the cube with earth, the
icosahedron with water, the octahedron with air, the tetrahedron with fire and the dodecahedron
with universe ( or with ether, the material of the heavens). The story of the rediscovery of the
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Archimedean polyhedra during the Renaissance is not that of the recovery of a ’lost’ classical
text. Rather, it concerns the rediscovery of actual mathematics, and there is a large component
of human muddle in what with hindsight might have been a purely rational process. The pattern
of publication indicates very clearly that we do not have a logical progress in which each sub-
sequent text contains all the Archimedean solids found by its author’s predecessors. In fact, as
far as we know, there was no classical text recovered by Archimedes. The Archimedean solids
have that name because in his Collection, Pappus stated that Archimedes had discovered thirteen
solids whose faces were regular polygons of more than one kind. Pappus then listed the numbers
and types of faces of each solid. Some of these polyhedra have been discovered many times.
According to Heron, the third solid on Pappus’ list, the cuboctahedron, was known to Plato.
During the Renaissance, and especially after the introduction of perspective into art, painters
and craftsmen made pictures of platonic solids. To vary their designs they sliced off the corners
and edges of these solids, naturally producing some of the Archimedean solids as a result. For
more detailed knowledge, see [3] and [6].

Minkowski geometry is non-Euclidean geometry in a finite number of dimensions. Here the
linear structure is the same as the Euclidean one but distance is not uniform in all directions.
That is, the points, lines and planes are the same, and the angles are measured in the same way,
but the distance function is different. Instead of the usual sphere in Euclidean space, the unit ball
is a general symmetric convex set [13].

Some mathematicians have studied and improved metric space geometry. According to men-
tioned researches it is found that unit spheres of these metrics are associated with convex solids.
For example, unit sphere of maximum metric is a cube which is a Platonic Solid. Taxicab met-
ric’s unit sphere is an octahedron, another Platonic Solid. In [1, 2, 4, 5, 7, 8, 9, 10, 11] the
authors give some metrics which the spheres of the 3-dimensional analytical space furnished
by these metrics are some of Platonic solids, Archimedian solids and Catalan solids. So there
are some metrics which unit spheres are convex polyhedrons. That is, convex polyhedrons are
associated with some metrics. When a metric is given, we can find its unit sphere in related
space geometry. This enforce us to the question "Are there some metrics whose unit sphere is a
convex polyhedron?". For this goal, firstly, the related polyhedra are placed in the 3-dimensional
space in such a way that they are symmetric with respect to the origin. And then the coordinates
of vertices are found. Later one can obtain metric which always supply plane equation related
with solid’s surface. In this study, two new metrics are introduced, and showed that the spheres
of the 3-dimensional analytical space furnished by these metrics are rhombicuboctahedron and
rhombicosidodecahedron. Also some properties about these metrics are given.

2 Rhombicuboctahedron Metric and Some Properties

It has been stated in [14], an Archimedean solid is a symmetric, semiregular convex polyhedron
composed of two or more types of regular polygons meeting in identical vertices. A polyhedron
is called semiregular if its faces are all regular polygons and its corners are alike. And, identical
vertices are usually means that for two taken vertices there must be an isometry of the entire
solid that transforms one vertex to the other.

The Archimedean solids are the only 13 polyhedra that are convex, have identical vertices,
and their faces are regular polygons (although not equal as in the Platonic solids).

Five Archimedean solids are derived from the Platonic solids by truncating (cutting off the
corners) a percentage less than 1/2.

Two special Archimedean solids can be obtained by full truncating (percentage 1/2) either
of two dual Platonic solids: the Cuboctahedron, which comes from trucating either a Cube, or
its dual an Octahedron. And the Icosidodecahedron, which comes from truncating either an
Icosahedron, or its dual a Dodecahedron. Hence their "double name".

The next two solids, the Truncated Cuboctahedron (also called Great Rhombicuboctahedron)
and the Truncated Icosidodecahedron (also called Great Rhombicosidodecahedron) apparently
seem to be derived from truncating the two preceding ones. However, it is apparent from the
above discussion on the percentage of truncation that one cannot truncate a solid with unequally
shaped faces and end up with regular polygons as faces. Therefore, these two solids need be
constructed with another technique. Actually, the can be built from the original platonic solids
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by a process called expansion. It consists on separating apart the faces of the original polyhedron
with spherical symmetry, up to a point where they can be linked through new faces which are
regular polygons. The name of the Truncated Cuboctahedron (also called Great Rhombicuboc-
tahedron) and of the Truncated Icosidodecahedron (also called Great Rhombicosidodecahedron)
again seem to indicate that they can be derived from truncating the Cuboctahedron and the Icosi-
dodecahedron. But, as reasoned above, this is not possible.

Finally, there are two special solids which have two chiral (specular symmetric) variations:
the Snub Cube and the Snub Dodecahedron. These solids can be constructed as an alternation
of another Archimedean solid. This process consists on deleting alternated vertices and creating
new triangles at the deleted vertices.

One of the Archimedean solids is the rhombicuboctahedron. It has 8 triangular and 18 square
faces, 24 vertices and 48 edges (See figure 1(a)). The large polyhedron in the 1495 portrait
of Luca Pacioli, traditionally though controversially attributed to Jacopo de’ Barbari, is a glass
rhombicuboctahedron half-filled with water. The first printed version of the rhombicuboctahe-
dron was by Leonardo da Vinci and appeared in his 1509 Divina Proportione. [15] (See figure
1(c),(d)). In figure 1(b) it is seen that the progresing of the expansion of cube and octahedron.

Figure 1(a) Rhombicuboctahedron Figure 1(b) Expansion of cube and octahedron

Figure 1(c) Portrait of Luca Pacioli Figure 1(d) Divina Proportione

The metric that unit sphere is rhombicuboctahedron is described as following:

Definition 2.1. Let P1 = (x1, y1, z1) and P2 = (x2, y2, z2) be two points in R3.The distance
function dRC : R3 × R3 → [0,∞) rhombicuboctahedron distance between P1 and P2 is defined
by
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where X12 = |x1 − x2|, Y12 = |y1 − y2|, Z12 = |z1 − z2|.
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According to rhombicuboctahedron distance, there are three different paths from P1 to P2.
These paths are

i) a line segment which is parallel to a coordinate axis.
ii) union of three line segments each of which is parallel to a coordinate axis.
iii) union of two line segments each of which is parallel to a coordinate axis.
Thus rhombicuboctahedron distance between P1 and P2 is for (i) Euclidean lengths of line

segment, for (ii)
√

2+1
7 times the sum of Euclidean lengths of mentioned three line segments, and

for (iii)
√

2
2 times the sum of Euclidean lengths of mentioned two line segments.

Figure 2 illustrates rhombicuboctahedron way from P1 to P2 if maximum value is |y1 − y2| ,√
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√
2
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2
2 (|y1 − y2|+ |z1 − z2|) .

Figure 2: RC way from P1 to P2

Lemma 2.2. Let P1 = (x1, y1, z1) and P2 = (x2, y2, z2) be distinct two points in R3. X12, Y12,
Z12 denote |x1 − x2| , |y1 − y2| , |z1 − z2| , respectively. Then
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Proof. Proof is trivial by the definition of maximum function.

Theorem 2.3. The distance function dRC is a metric. Also according to dRC , the unit sphere is
an rhombicuboctahedron in R3.

Proof. Let dRC : R3×R3 → [0,∞) be the rhombicuboctahedron distance function and P1=(x1, y1, z1)
, P2=(x2, y2, z2) and P3=(x3, y3, z3) are distinct three points in R3. X12, Y12, Z12 denote |x1 − x2| ,
|y1 − y2| , |z1 − z2| , respectively. To show that dRC is a metric in R3, the following axioms hold
true for all P1, P2 and P3 ∈ R3.
M1) dRC(P1, P2) ≥ 0 and dRC(P1, P2) = 0 iff P1 = P2
M2) dRC(P1, P2) = dRC(P2, P1)
M3) dRC(P1, P3) ≤ dRC(P1, P2) + dRC(P2, P3).

Since absolute values is always nonnegative value dRC(P1, P2) ≥ 0 . If dRC(P1, P2) = 0
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Case I: If
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⇔ x1 = x2, y1 = y2, z1 = z2

⇔ (x1, y1, z1) = (x2, y2, z2)

⇔ P1 = P2

The other cases can be shown by similar way in Case I. Thus it is obtained that dRC(P1, P2) = 0
iff P1 = P2.

Since |x1 − x2| = |x2 − x1| , |y1 − y2|=|y2 − y1| and |z1 − z2| = |z2 − z1|, obviously dRC(P1, P2) =
dRC(P2, P1). That is, dRC is symmetric.

X13, Y13, Z13, X23, Y23, Z23 denote |x1 − x3| , |y1 − y3| , |z1 − z3| , |x2 − x3| , |y2 − y3| ,
|z2 − z3|, respectively.
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Therefore one can easily find that I ≤ dRC(P1, P2) + dRC(P2, P3) from Lemma 2.2. So
dRC(P1, P3) ≤ dRC(P1, P2) + dRC(P2, P3). Consequently, rhombicuboctahedron distance is
a metric in 3-dimensional analytical space.
Finally, the set of all points X = (x, y, z) ∈ R3 that rhombicuboctahedron distance is 1 from
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Thus the graph of SRC is as in the figure 3:

Figure 3 The unit sphere in terms of dRC : Rhombicuboctahedron

Corollary 2.4. The equation of the rhombicuboctahedron with center (x0, y0, z0) and radius r is
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which is a polyhedron which has 26 faces and 24 vertices. Coordinates of the vertices are
translation to (x0, y0, z0) all permutations of the three axis components and all possible +/- sign
changes of each axis component of
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Lemma 2.5. Let l be the line through the points P1=(x1, y1, z1) and P2=(x2, y2, z2) in the
analytical 3-dimensional space and dE denote the Euclidean metric. If l has direction vector
(p, q, r), then
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Proof. Equation of l gives us x1−x2 = λp, y1−y2 = λq, z1−z2 = λr, r ∈ R. Thus, dRC(P1, P2)
is equal to

|λ|
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and dE(A,B) = |λ|

√
p2 + q2 + r2 which implies the required result.

The above lemma says that dRC-distance along any line is some positive constant multiple of
Euclidean distance along same line. Thus, one can immediately state the following corollaries:

Corollary 2.6. If P1, P2 and X are any three collinear points in R3, then
dE(P1, X) = dE(P2, X) if and only if dRC(P1, X) = dRC(P2, X) .

Corollary 2.7. If P1, P2 and X are any three distinct collinear points in the real 3-dimensional
space, then

dRC(X,P1) / dRC(X,P2) = dE(X,P1) / dE(X,P2) .

That is, the ratios of the Euclidean and dRC−distances along a line are the same.

3 Rhombicosadodecahedron Metric and Some Properties

The rhombicosidodecahedron is an Archimedean solid. It has 20 regular triangular faces, 30
square faces, 12 regular pentagonal faces, 60 vertices and 120 edges [16] (See Figure 4(a)). It is
seen that progresing of expansion of dodecahedron and icosahedron in figure 4(b).

Figure 4(a)rhombicosidodecahedron Figure 4(b) Expansion of dodecahedron and icosahedron

The metric that unit sphere is rhombicosidodecahedron is described as following:

Definition 3.1. Let P1 = (x1, y1, z1) and P2 = (x2, y2, z2) be two points in R3.The distance
function dRI : R3 × R3 → [0,∞) rhombicosidodecahedron distance between P1 and P2 is
defined by
dRI(P1, P2) =

4+
√

5
11 max



X12+ 3
√

5−5
4 max

{
4
√

5
5 X12,

√
5+5
5 (X12 + Z12) ,

3
√

5+5
5 (Y12 + Z12) ,

4
√

5+10
15 X12 +

6
√

5+20
15 Y12, X12 +

7
√

5+5
10 Z12 +

15−
√

5
10 Y12

}
,

Y12+ 3
√

5−5
4 max

{
4
√

5
5 Y12,

√
5+5
5 (X12 + Y12) ,

3
√

5+5
5 (X12 + Z12) ,

4
√

5+10
15 Y12 +

6
√

5+20
15 Z12, Y12 +

7
√

5+5
10 X12 +

15−
√

5
10 Z12

}
,

Z12+ 3
√

5−5
4 max

{
4
√

5
5 Z12,

√
5+5
5 (Y12 + Z12) ,

3
√

5+5
5 (X12 + Y12) ,

4
√

5+10
15 Z12 +

6
√

5+20
15 X12, Z12 +

7
√

5+5
10 Y12 +

15−
√

5
10 X12

}
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where X12 = |x1 − x2|, Y12 = |y1 − y2|, Z12 = |z1 − z2|.

According to rhombicosidodecahedron distance, there are five different paths from P1 to P2.
These paths are

i) a line segment which is parallel to a coordinate axis,
ii) union of two line segments which one is parallel to a coordinate axis and other line seg-

ment makes arctan(
√

5
2 ) angle with another coordinate axis,

iii) union of two line segments which one is parallel to a coordinate axis and other line
segment makes arctan( 133−45

√
5

341 ) angle with another coordinate axis,
iv) union of three line segments which one is parallel to a coordinate axis and other line

segments makes arctan( 1
2 ) and arctan(

√
5

2 ) angle with one of other coordinate axis,
v) union of three line segments each of which is parallel to a coordinate axis.
Thus rhombicuboctahedron distance between P1 and P2 is for (i) Euclidean length of line seg-

ment, for (ii) 5
√

5+9
22 times the sum of Euclidean lengths of mentioned two line segments, for (iii)

11
√

5+27
66 times the sum of Euclidean lengths of two line segments, for (iv)

√
5+1
4 times the sum of

Euclidean lengths of three line segments, and for (v)
√

5+4
11 times the sum of Euclidean lengths

of three line segments. Figure 5 shows that the path between P1 and P2 in case of the maximum is
|y1 − y2| , 5

√
5+9

22

(
|y1 − y2|+ 3−

√
5

2 |x1 − x2|
)
,
√

5+1
4

(
|y1 − y2|+

√
5−1
2 |x1 − x2|+ 3−

√
5

2 |z1 − z2|
)

,
11
√

5+27
66

(
|y1 − y2|+ 44

√
5−77

31 |z1 − z2|
)

or 4+
√

5
11 (|x1 − x2|+ |y1 − y2|+ |z1 − z2|) .

Figure 5: RI way from P1 to P2

Lemma 3.2. Let P1 = (x1, y1, z1) and P2 = (x2, y2, z2) be distinct two points in R3. Then

dRI(P1, P2) ≥

4+
√

5
11

(
X12+ 3

√
5−5
4 max

{
4
√

5
5 X12,

√
5+5
5 (X12 + Z12) ,

3
√

5+5
5 (Y12 + Z12) ,

4
√

5+10
15 X12 +

6
√

5+20
15 Y12, X12 +

7
√

5+5
10 Z12 +

15−
√

5
10 Y12

})
dRI(P1, P2) ≥

4+
√

5
11

(
Y12+ 3

√
5−5
4 max

{
4
√

5
5 Y12,

√
5+5
5 (X12 + Y12) ,

3
√

5+5
5 (X12 + Z12) ,

4
√

5+10
15 Y12 +

6
√

5+20
15 Z12, Y12 +

7
√

5+5
10 X12 +

15−
√

5
10 Z12

})
dRI(P1, P2) ≥

4+
√

5
11

(
Z12+ 3

√
5−5
4 max

{
4
√

5
5 Z12,

√
5+5
5 (Y12 + Z12) ,

3
√

5+5
5 (X12 + Y12) ,

4
√

5+10
15 Z12 +

6
√

5+20
15 X12, Z12 +

7
√

5+5
10 Y12 +

15−
√

5
10 X12

})
.

where X12=|x1 − x2|, Y12=|y1 − y2|, Z12=|z1 − z2|.

Proof. Proof is trivial by the definition of maximum function.

Theorem 3.3. The distance function dRI is a metric. Also according to dRI , unit sphere is a
rhombicosidodecahedron in R3.
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Proof. One can easily show that the rhombicosidodecahedron distance function satisfies the met-
ric axioms by similar way in Theorem 2.3.

Consequently, the set of all points X = (x, y, z) ∈ R3 that rhombicosidodecahedron distance
is 1 from O = (0, 0, 0) is SRI =

(x, y, z): 4+
√

5
11 max



|x|+ 3
√

5−5
4 max


√

5+5
5 (|x|+ |z|) , 3

√
5+5
5 (|y|+ |z|) ,

4
√

5
5 |x| ,

4
√

5+10
15 |x|+ 6

√
5+20
15 |y| ,

|x|+ 7
√

5+5
10 |z|+ 15−

√
5

10 |y|

 ,

|y|+ 3
√

5−5
4 max


√

5+5
5 (|x|+ |y|) , 3

√
5+5
5 (|x|+ |z|) ,

4
√

5
5 |y| ,

4
√

5+10
15 |y|+ 6

√
5+20
15 |z| ,

|y|+ 7
√

5+5
10 |x|+ 15−

√
5

10 |z|

 ,

|z|+ 3
√

5−5
4 max


√

5+5
5 (|y|+ |z|) , 3

√
5+5
5 (|x|+ |y|) ,

4
√

5
5 |z| ,

4
√

5+10
15 |z|+ 6

√
5+20
15 |x| ,

|z|+ 7
√

5+5
10 |y|+ 15−

√
5

10 |x|





=1



.

Thus the graph of SRI is as in the figure 6:

Figure 6 The unit sphere in terms of dRI : Rhombicosidodecahedron

Corollary 3.4. The equation of the rhombicosidodecahedron with center (x0, y0, z0) and radius
r is

4+
√

5
11 max



|x− x0|+ 3
√

5−5
4 max


√

5+5
5 (|x− x0|+ |z − z0|) , 3

√
5+5
5 (|y − y0|+ |z − z0|) ,

4
√

5
5 |x− x0| , 4

√
5+10
15 |x− x0|+ 6

√
5+20
15 |y − y0| ,

|x− x0|+ 7
√

5+5
10 |z − z0|+ 15−

√
5

10 |y − y0|

 ,

|y − y0|+ 3
√

5−5
4 max


√

5+5
5 (|x− x0|+ |y − y0|) , 3

√
5+5
5 (|x− x0|+ |z − z0|) ,

4
√

5
5 |y − y0| , 4

√
5+10
15 |y − y0|+ 6

√
5+20
15 |z − z0| ,

|y − y0|+ 7
√

5+5
10 |x− x0|+ 15−

√
5

10 |z − z0|

 ,

|z − z0|+ 3
√

5−5
4 max


√

5+5
5 (|y − y0|+ |z − z0|) , 3

√
5+5
5 (|x− x0|+ |y − y0|) ,

4
√

5
5 |z − z0| , 4

√
5+10
15 |z − z0|+ 6

√
5+20
15 |x− x0| ,

|z − z0|+ 7
√

5+5
10 |y − y0|+ 15−

√
5

10 |x− x0|





=r.

which is a polyhedron which has 62 faces and 60 vertices. Coordinates of the vertices are trans-
lation to (x0, y0, z0) all posible +/- sign components of the points

((√
5− 2

)
r,
(√

5− 2
)
r, r
)
,(

r,
(√

5− 2
)
r,
(√

5− 2
)
r
)
,
((√

5− 2
)
r, r,

(√
5− 2

)
r
)
,
(

0,
√

5−1
2 r, 3

√
5−5
2 r

)
,
(

3
√

5−5
2 r, 0,

√
5−1
2 r

)
,(√

5−1
2 r, 3

√
5−5
2 r, 0

)
,
(√

5−1
2 r, 3−

√
5

2 r,
(

3−
√

5
)
r
)
,
((

3−
√

5
)
r,
√

5−1
2 r, 3−

√
5

2 r
)

and
(

3−
√

5
2 r,

(
3−
√

5
)
r,
√

5−1
2 r

)
.

Lemma 3.5. Let l be the line through the points P1=(x1, y1, z1) and P2=(x2, y2, z2) in the
analytical 3-dimensional space and dE denote the Euclidean metric. If l has direction vector
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(p, q, r), then
dRI(P1, P2) = µ(P1P2)dE(P1, P2)

where

µ(P1P2) =

4+
√

5
11 max



|p|+ 3
√

5−5
4 max


√

5+5
5 (|p|+ |r|) , 3

√
5+5
5 (|q|+ |r|) ,

4
√

5
5 |p| ,

4
√

5+10
15 |p|+ 6

√
5+20
15 |q| ,

|p|+ 7
√

5+5
10 |r|+ 15−

√
5

10 |q|

 ,

|q|+ 3
√

5−5
4 max


√

5+5
5 (|p|+ |q|) , 3

√
5+5
5 (|p|+ |r|) ,

4
√

5
5 |q| ,

4
√

5+10
15 |q|+ 6

√
5+20
15 |r| ,

|q|+ 7
√

5+5
10 |p|+ 15−

√
5

10 |r|

 ,

|r|+ 3
√

5−5
4 max


√

5+5
5 (|q|+ |r|) , 3

√
5+5
5 (|p|+ |q|) ,

4
√

5
5 |r| ,

4
√

5+10
15 |r|+ 6

√
5+20
15 |p| ,

|r|+ 7
√

5+5
10 |q|+ 15−

√
5

10 |p|



√
p2 + q2 + r2

.

Proof. Equation of l gives us x1 − x2 = λp, y1 − y2 = λq, z1 − z2 = λr, r ∈ R. Thus,

dRI(P1, P2) = |λ| 4+
√

5
11 max



|p|+ 3
√

5−5
4 max


√

5+5
5 (|p|+ |r|) , 3

√
5+5
5 (|q|+ |r|) ,

4
√

5
5 |p| ,

4
√

5+10
15 |p|+ 6

√
5+20
15 |q| ,

|p|+ 7
√

5+5
10 |r|+ 15−

√
5

10 |q|

 ,

|q|+ 3
√

5−5
4 max


√

5+5
5 (|p|+ |q|) , 3

√
5+5
5 (|p|+ |r|) ,

4
√

5
5 |q| ,

4
√

5+10
15 |q|+ 6

√
5+20
15 |r| ,

|q|+ 7
√

5+5
10 |p|+ 15−

√
5

10 |r|

 ,

|r|+ 3
√

5−5
4 max


√

5+5
5 (|q|+ |r|) , 3

√
5+5
5 (|p|+ |q|) ,

4
√

5
5 |r| ,

4
√

5+10
15 |r|+ 6

√
5+20
15 |p| ,

|r|+ 7
√

5+5
10 |q|+ 15−

√
5

10 |p|




and dE(A,B) = |λ|

√
p2 + q2 + r2 which implies the required result.

The above lemma says that dRI -distance along any line is some positive constant multiple of
Euclidean distance along same line. Thus, one can immediately state the following corollaries:

Corollary 3.6. If P1, P2 and X are any three collinear points in R3, then
dE(P1, X) = dE(P2, X) if and only if dRI(P1, X) = dRI(P2, X) .

Corollary 3.7. If P1, P2 and X are any three distinct collinear points in the real 3-dimensional
space, then

dRI(X,P1) / dRI(X,P2) = dE(X,P1) / dE(X,P2) .

That is, the ratios of the Euclidean and dRI−distances along a line are the same.
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