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Abstract In this sequel, the Haar wavelet is applied to acquire approximate solutions of
nonlinear multi-order fractional differential equations (M-FDEs). The fractional derivative is
described in the Caputo sense. Numerical example is stated to find out the efficiency and ac-
curacy of the proposed technique. The results reveal that the method is accurate and easy to
use.

1 Introduction

Many phenomena in engineering physics, chemistry, and other sciences can be described very
successfully by models that utilize mathematical tools of fractional calculus, i.e. the theory of
derivatives and integrals of non-integer order. For example, they have been successfully used
in modeling frequency dependent damping behavior of many viscoelastic materials. There are
numerous research which demonstrate the applications of fractional derivatives in the areas of
electrochemical processes [3]. The organization of this study is classified as follows: In Section
2, Basic Preliminaries is stated. Properties of the Haar basis is introduced in 3. An numerical
example is solved in Section 4. Finally, Section 5 will give a conclusion briefly.

2 Basic Preliminaries

Definition 2.1. Let x : [a, b] → R be a function, α > 0 a real number, and n = α, where α
denotes the smallest integer greater than or equal to α (see [2]). The left (left RLFI) and right
(right RLFI) Riemann-Liouville fractional integrals are defined by

aI
α
t x(t) =

1
Γ(α)

∫ t

a

(t− τ)α−1x(τ) dτ, (left RLFI),

tI
α
b x(t) =

1
Γ(α)

∫ b

t

(τ − t)α−1x(τ) dτ, (right RLFI),

The left (left RLFD) and right (right RLFD) Riemann-Liouville fractional derivatives are given
according to

aD
α
t x(t) =

1
Γ(n− α)

dn

dtn

∫ t

a

(t− τ)n−α−1x(τ) dτ, (left RLFD),

tD
α
b x(t) =

(−1)n

Γ(n− α)
dn

dtn

∫ b

t

(τ − t)n−α−1x(τ) dτ, (right RLFD), (2.1)
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Moreover, the left (left CFD) and right (right CFD) Caputo fractional derivatives are defined by
means of

C
aD

α
t x(t) =

1
Γ(n− α)

∫ t

a

(t− τ)n−α−1x(n)(τ) dτ, (left CFD),

C
t D

α
b x(t) =

(−1)n

Γ(n− α)

∫ b

t

(τ − t)n−α−1x(n)(τ) dτ, (right CFD), (2.2)

The relation between the right RLFD and the right CFD is as follows:

C
t D

α
b x(t) = tD

α
b x(t)−

n−1∑
k=0

x(k)(b)

Γ(k − α+ 1)
(b− t)k−α, (2.3)

Further, it holds

C
0 D

α
t c = 0, (2.4)

where c is a constant, and

C
0 D

α
t t
n =

{
0, for n ∈ N0, and n < dαe

Γ(n+1)
Γ(n+1−α) t

n−α, for n ∈ N0 and n ≥ dαe
(2.5)

where N0 = {0, 1, 2, . . .}. We recall that for α ∈ N the Caputo differential operator coincides
with the usual differential operator of integer order.
In this paper, the following fractional differential equation was studied

Dαx(t) = a(t)x(t) +
l∑

r=1

br(t)D
αrx(qrt), m− 1 < α ≤ m, t ∈ [0, b],

x(i)(t) = µi, i = 0, 1, . . . ,m− 1.

Here, 0 < qr < 1, 0 ≤ αr < α ≤ m, r = 1, 2, . . . , l; x is an unknown function; a(t) and br(t),
r = 1, 2, . . . , l, are the known functions defined in [0, b].

3 Properties of the Haar basis

The RH functions RH(r, t), r = 1, 2, . . ., are composed of three values +1, −1, 0 and can be
defined on the interval [0, 1) by [1] as

RH(r, t) =


1, J1 ≤ t ≤ J 1

2

−1, J 1
2
≤ t ≤ J0

0, otherwise

where

Ju =
j − u

2i
, u = 0,

1
2
, 1, (3.1)

r = 2i + j − 1, i = 0, 1, 2, 3, . . . , j = 1, 2, 3, . . . , 2i.

RH(0, t) is defined for i = j = 0 and is given by

RH(0, t) = 1, 0 ≤ t ≤ 1. (3.2)

A set of the there RH functions is exhibited in Figs. 1,2, and 3, where r = 3, 4, 5. A set of
there RH functions is shown in Figs. 1,2, and 3, where, r = 3, 4, 5. The following orthogonality
property is given by ∫ 1

0
RH(r, t)RH(v, t) dt =

{
2−i, r = v,

0, r 6= v,
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Figure 1. The graph of RH function

Figure 2. The graph of RH function

Figure 3. The graph of RH function

4 Numerical example

In this section, a numerical example is stated to solve the fractional neutral pantograph differen-
tial equation.

Example 4.1. Consider the fractional neutral pantograph differential equation (see [2])

Dγx(t) =
3
4
x(t) + x(

1
2
t) +Dγ1x(

1
2
t) +

1
2
Dγx(

1
2
t)− t2 − t+ 1, 0 < γ1 < γ ≤ 2,

x(0) = x′(0) = 0

the graphs of approximated and exact solution x(t) are plotted in Fig. 4.
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Figure 4. The graphs of approximated and exact solution x(t) for Example 4.1

5 Conclusions

Fractional calculus has been used to model physical and engineering processes that are found to
be best described by fractional differential equations. For that reason one may need a reliable
and efficient technique for the solution of fractional differential equations. This paper deals with
the approximate solution of a class of multi-order fractional differential equations. The frac-
tional derivatives are described in the Caputo sense. Our main aim is to evaluation of fractional
derivative utilizing Haar wavelet collocation method and implementing it to solve the nonlinear
multi-order fractional differential equations. Illustrative example is included to demonstrate the
validity and applicability of the technique.
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