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Abstract In this article, some new classes of multiplier ideal convergent triple sequence
spaces of fuzzy numbers defined by an Orlicz function and a multiplier sequence are introduced.
The multiplier problem is characterized.We also make an effort to prove some algebraic and
topological properties such as closed property, completeness, solid, monotone, symmetric, se-
quence algebra, convergence free etc. of these spaces. Moreover some inclusion relation between
these spaces are established.

1 Introduction

The fuzzy set theory extended the basic mathematical concept of a set. After the pioneering work
done on fuzzy set theory by Zadeh [35] in 1965, a huge number of research papers have been
appeared on fuzzy theory and its applications as well as fuzzy analogues of the classical theo-
ries. Fuzzy set theory is a powerful hand set for modeling, uncertainty and vagueness in various
problems arising in the field of science and engineering. Several mathematicians have discussed
various aspects of the theory and applications of fuzzy sets such as fuzzy topological spaces,
similarity relations and fuzzy orderings, fuzzy measures of fuzzy events, fuzzy mathematical
programming. In fact the fuzzy set theory has become an active area of research in science and
engineering for the last half century. While studying fuzzy topological spaces, we face many
situations where we need to deal with convergence of fuzzy numbers. Using the notion of fuzzy
real numbers, different types of fuzzy real-valued sequence spaces have been introduced and
studied by several mathematicians. Matloka [12] introduced bounded and convergent sequences
of fuzzy numbers and studied some of their properties. Nanda [13] studied the sequences of
fuzzy numbers and showed that the set of all convergent sequences of fuzzy numbers forms a
complete metric space.

The summability theory of multiple sequences was studied by Agnew [1] and he derived cer-
tain theorems for double sequences. At the initial stage, the different types of notions of triple
sequences were introduced and investigated by Sahiner et al. [20] and Sahiner and Tripathy
[21]. Recently statistical convergence of triple sequences on probabilistic normed space was in-
troduced by Savas and Esi [24]. Later on, Esi [5] has introduced statistical convergence of triple
sequences in topological groups. More works on triple sequences are found in Kumar et. al. [9],
Dutta et. al. [3], Tripathy and Goswami [28], Nath and Roy [14-16], Saha et. al. [18], Saha and
Roy [19] and so on.

The notion of ideal convergence depends on the structure of the ideal I of the subset of the
set of natural numbers. The concept of ideal convergence for single sequences was introduced
by Kostyrko, Salat and Wilczyaski [8] in 2000-2001. Later on it was further developed by Salat
et al. [22-23], Tripathy and Sen [32], Tripathy and Tripathy [34], Kumar et. al. [9], Das et al.
[2], Tripathy and Hazarika [29] and many others.

An Orlicz function M is a function M : [0,∞) → [0,∞) such that it is continuous, non-
decreasing and convex with M(0) = 0,M(x) > 0 for x > 0 and M(x) → ∞ as x → ∞.
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An Orlicz function may be bounded or unbounded. For example, M(x) = xp, (0 < p ≤ 1) is
unbounded and M(x) =

x

x+ 1
is bounded .

The scope for the studies on sequence spaces was extended by using the concept of Orlicz func-
tion. The study of Orlicz sequence spaces was initiated with certain specific purpose in Banach
space theory. Lindenstrauss and Tzafriri [11] used the idea of Orlicz function to construct the
sequence space, which becomes a Banach space, with the norm

||x|| = inf

{
ρ > 0 :

∞∑
k=1

M

(
|xk|
ρ

)
≤ 1

}
.

Parashar and Choudhary [17] have introduced and discussed some properties of the sequence
spaces defined by an Orlicz functionM which generalized the well-known Orlicz sequence space
`M . Some works on Orlicz sequence spaces can be found in ([4], [25], [27], [29], [31]).

The scope for the studies on sequence spaces was extended further by using the concept of
multiplier sequences. The notion of multiplier sequences was first studied by Goes and Goes
[7]. Goes and Goes defined the differentiated sequence space dE and integrated sequence space∫
E for a given sequence space E, by using multiplier sequences

(
k−1

)
and (k) respectively.

Tripathy and Sen [33], Tripathy and Mahanta [30] used a general multiplier sequence (λk) of
non-zero scalars for their studies on sequence spaces associated with multiplier sequences. Sen
and Roy [26] used a general multiplier sequence (λnk) of non-zero scalars on sequence spaces
associated with multiplier sequences. In this article we shall consider a general multiplier triple
sequence Λ = (λijk) of non-zero real numbers.

2 PRELIMINARIES AND BACKGROUND

Throughout the article, N, R and C denote the sets of natural, real and complex numbers respec-
tively and w,c,c0, `∞ denote the spaces of all, convergent, null and bounded sequences respec-
tively.

Let X be a nonempty set. A non-void class I ⊆ 2x (power set of X) is said to be an ideal if I
satisfies the following conditions:
(i) A,B ∈ I ⇒ A ∪B ∈ I and (ii) A ∈ I and B ⊆ A⇒ B ∈ I.

A non-empty family of sets F ⊆ 2x is said to be a filter on X if
(i) ∅ /∈ F, (ii) A,B ∈ F ⇒ A ∩B ∈ F and (iii) A ∈ F and A ⊆ B ⇒ B ∈ F.

For any ideal I , there is a filter F (I) given by F (I) = {K ⊆ N : N/K ∈ I}.
An ideal I ⊆ 2x is said to be non− trivial if I 6= ∅ and X /∈ I .

A subset E of N × N × N is said to have density or asymptotic density δ3(E), if the limit
given by

δ3(E) = lim
p,q,r→∞

p∑
i=1

q∑
j=1

r∑
k=1

χE(i, j, k)

exists, where χE is the characteristic function of E.

The notion of the ideals of 2N×N are introduced by Tripathy and Tripathy [34]. Throughout
the article, the ideals of 2N×N×N will be denoted by I3.

Example 2.1. Let I3(P ) be the class of all subsets of N ×N ×N such that D ∈ I3(P ) implies
there exists n0, l0, k0 ∈ N such that

D ⊆ N ×N ×N − {(n, l, k) ∈ N ×N ×N : n ≥ n0, l ≥ l0, k ≥ k0}.

Then I3(P ) is an ideal of 2N×N×N .
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A fuzzy real number X is a fuzzy set on R i.e. a mapping X : R → L(= [0, 1]) associ-
ating each real number t ∈ R having grade of membership X(t). Every real number r can be
expressed as a fuzzy number r̄ as:

r̄(t) =

{
1, if t = r

0, otherwise

The α-level set of a fuzzy number X, 0 < α ≤ 1, is defined and denoted as

[X]α = {t ∈ R : X(t) ≥ α}.

A fuzzy number X is said to be convex if X(t) ≥ X(s) ∧ X(r) = min(X(s), X(r)), where
s < t < r.
A fuzzy number X is called normal if there exists t0 ∈ R such that X(t0) = 1.
If for each ε > 0, X−1[0, a+ ε)), for all a ∈ L is open in the usual topology of R, then a fuzzy
number X is called upper semi-continuous. The set of all upper semi continuous, normal, con-
vex fuzzy numbers is denoted by R(L), whose additive and multiplicative identities are 0̄ and 1̄
respectively.

If D denotes the set of all closed bounded intervals X = bXL, XRc on the real line R and if
d(X,Y ) = max(|XL −XR|, |Y L − Y R|) , then (D, d) is a complete metric space.
Also d̄ : R(L) × R(L) → R defined by d̄(X,Y ) = sup

0≤α≤1
d([X]α, [Y ]α), for X, Y ∈ R(L) is

also a metric on R(L).

Throughout 3(wF ),3 (`F∞),3 (c
F ),3 (cF0 ) denote the spaces of all, bounded, convergent in Pring-

sheim’s sense and null in Pringsheim’s sense fuzzy real-valued triple sequences respectively. A
triple sequence can be defined as a function x : N ×N ×N → R(C).

A fuzzy real-valued triple sequence X = 〈Xijk〉 is a triple infinite array of fuzzy real num-
bers Xijk for all i, j, k ∈ N and is denoted by 〈Xijk〉 where Xijk ∈ R(L).

A fuzzy real-valued triple sequence X = 〈Xijk〉 is said to be convergent in Pringsheim’s
sense to the fuzzy real number X , if for every ε > 0, there exist i0 = i0(ε), j0 = j0(ε), k0 =
k0(ε) ∈ N , such that d̄(Xijk, X) < ε for all i ≥ i0, j ≥ j0, k ≥ k0 .

A fuzzy real-valued triple sequence X = 〈Xijk〉 is said to be I3 − convergent to the fuzzy
number X0 , if for all ε > 0, {(n, l, k) ∈ N × N × N : d̄(Xnlk, X0) ≥ ε} ∈ I3 and we write
I3 − limXijk = X0.

A fuzzy real-valued triple sequence X = 〈Xijk〉 is said to be I3 − bounded if there exists a
real number µ such that {(i, j, k) ∈ N ×N ×N : d̄(Xijk, 0̄) > µ} ∈ I3 .

A fuzzy real-valued triple sequence space EF is said to be solid or normal if 〈Yijk〉 ∈ EF
whenever 〈Xijk〉 ∈ EF and d̄(Yijk, 0̄) ≤ d̄(Xijk, 0̄) for all i, j, k ∈ N .

A K-step space of a fuzzy real valued triple sequence space EF is a sequence space
λE

F

K = {(Xinjnkn) ∈ 3(wF ) : (Xijk) ∈ EF } .

A canonical pre-image of a sequence (Xinjnkn) ∈ EF is a sequence 〈Yijk〉 ∈ 3(wF ) defined
by:

Yijk =

{
Xijk, if (i, j, k) ∈ K
0̄, otherwise

A canonical pre-image of a step space λE
F

K is a set of canonical pre-images of all elements
in λE

F

K , that is Y is in canonical pre-image λE
F

K if and only if Y is canonical pre-image of some
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X ∈ λEF

K .
A fuzzy real-valued triple sequence space EF is said to be monotone if EF contains the canoni-
cal pre-image of all its step spaces.
A fuzzy real-valued triple sequence space EF is said to be symmetric if 〈Xπ(ijk)〉 ∈ EF , when-
ever 〈Xijk〉 ∈ EF where π is a permutation on N ×N ×N .
A fuzzy real-valued triple sequence space EF is said to be sequence algebra if 〈Xijk

⊗
Yijk〉 ∈

EF , whenever 〈Xijk〉, 〈Yijk〉 ∈ EF .
A fuzzy real-valued triple sequence space EF is said to be convergence free if 〈Yijk〉 ∈ EF

whenever 〈Xijk〉 ∈ EF and Xijk = 0̄ implies Yijk = 0̄ .

Let 3l∞ denote the set of all bounded triple sequences of fuzzy numbers.

Let Λ = 〈λijk〉 be a triple sequence of non-zero scalars. For a fuzzy real-valued triple se-
quence space EF , the multiplier sequence space EF (Λ) associated with the multiplier double
sequence Λ is defined as EF (Λ) = {〈Xijk〉 : 〈λijkXijk〉 ∈ EF }.

A multiplier from a fuzzy real-valued double sequence space DF into another fuzzy-real val-
ued double sequence space EF is a real sequence u = 〈uijk〉 such that uX = 〈uijkXijk〉 ∈ EF
, whenever X = 〈Xijk〉 ∈ DF .

The linear space of all such multipliers will be denoted by m(DF , EF ). Bounded multipliers
will be denoted by M(DF , EF ). Hence M(DF , EF ) = 2(`F∞) ∩m(DF , EF ) .

Let Λ = 〈λijk〉 be a multiplier sequence and p = 〈pijk〉 be a triple sequence of bounded
strictly positive numbers. We introduce the following fuzzy I − convergent triple sequence
spaces:

3(cI(F ))(M,Λ, P ) =

{
X = 〈Xijk〉 : I3 − lim

[
M

(
d̄(λijkXijk, X0)

ρ

)]pijk
= 0, for some ρ > 0 and X0 ∈ R(L)

}
,

3(c
I(F )
0 )(M,Λ, P ) =

{
X = 〈Xijk〉 : I3 − lim

[
M

(
d̄(λijkXijk, 0̄)

ρ

)]pijk
<∞, for some ρ > 0

}
,

3(`
(F )
∞ )(M,Λ, P ) =

{
X = 〈Xijk〉 : sup

i,j,k

[
M

(
d̄(λijkXijk, 0̄)

ρ

)]pijk
<∞

}
,

3(`
I(F )
∞ )(M,Λ, P ) =


X = 〈Xijk〉 : there exists a real number µ > 0 such that{

(i, j, k) ∈ N ×N ×N :
[
M

(
d̄(λijkXijk, 0̄)

ρ

)]pijk
> µ

}
∈ I3, for some ρ > 0



Also we define

3(m
I(F ))(M,Λ, p) =3 (c

I(F ))(M,Λ, p) ∩ 3(`
(F )
∞ )(M,Λ, p)

and
3(m

I(F )
0 )(M,Λ, p) =3 (c

I(F )
0 )(M,Λ, p) ∩ 3(`

(F )
∞ )(M,Λ, p).
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Let Z denote any one of 3(cI(F )), 3(c
I(F )
0 ) and 3(`

I(F )
∞ ). On giving particular values to M and p

, we get the following sequence spaces from the above sequence spaces :
(i) If pijk = 1, for all i, j, k ∈ N , then we obtain Z(M,Λ) instead of Z(M,Λ, p).
(ii) If M(x) = x, then Z(M,Λ, p) becomes Z(Λ, p).
(iii)If M(x) = x, pijk = 1, for all i, j, k ∈ N , we obtain Z(Λ) instead of Z(M,Λ, p).

Let 〈Xijk〉 and 〈Yijk〉 be two fuzzy real valued triple sequences. Then we say thatXijk = Yijk
for almost all i, j and k relative to I3 (in short a.a. i, j and k r. I3) if the set
{(i, j, k) ∈ N ×N ×N : Xijk 6= Yijk} ∈ I3 .

Note: Let p = 〈pijk〉 be a triple sequence of bounded positive numbers and
H = sup

i,j,k

pijk < ∞. Then for sequences 〈aijk〉 and 〈bijk〉 of complex numbers, we have the

following inequality:

|aijk + bijk|pnkl ≤ D (|aijk|pijk + |bijk|pijk) , where D = max(1, 2H−1).

To prove some results in the paper, the following existing result will be used.

Remark 2.2. Every normal sequence space is monotone.

3 MAIN RESULTS

Theorem 3.1. Let p = 〈pijk〉 be a triple sequence of bounded positive real numbers. If Λ =
〈λijk〉 is a given multiplier sequence and M is an Orlicz function, then the classes of sequences

3(mI(F ))(M,Λ, p) and 3(m
I(F )
0 )(M,Λ, p) are closed under the operations of addition and

scalar multiplication.

Proof. We prove the result for the space 3(m
I(F )
0 )(M,Λ, p) and the result for the other space can

be established in a similar manner.
Let 〈Xnlk〉, 〈Ynlk〉 ∈ 3(m

I(F )
0 )(M,Λ, p).

Then there exist positive numbers ρ1 and ρ2 such that the sets

A =

{
(i, j, k) ∈ N ×N ×N :

[
M

(
d̄(λijkXijk, 0̄)

ρ1

)]pijk
≥ ε

2

}
∈ I3

and

B =

{
(i, j, k) ∈ N ×N ×N :

[
M

(
d̄(λijkYijk, 0̄)

ρ2

)]pijk
≥ ε

2

}
∈ I3.

Let α, β be two scalars and let ρ = max(2|α|ρ1, 2|β|ρ2). M, being continuous we have the
following inequality :

[
M

(
d̄(αλijkXnlk + βλijkYnlk, 0̄)

ρ

)]pijk
≤ D

{[
M

(
d̄(λijkXnlk, 0̄)

ρ1

)]pijk
+

[
M

(
d̄(λijkYnlk, 0̄)

ρ2

)]pijk}
,

where D = max(1, 2H−1), H = sup
i,j,k

pijk <∞.

From the above inequality, we obtained:
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{
(i, j, k) ∈ N ×N ×N :

[
M

(
d̄(αλijkXijk + βλijkYijk, 0̄)

ρ

)]pijk
≥ ε

2

}
⊆

{
(i, j, k) ∈ N ×N ×N : D

[
M

(
d̄(λijkXijk, 0̄)

ρ1

)]pijk
≥ ε

2

}
∪

{
(i, j, k) ∈ N ×N ×N : D

[
M

(
d̄(λijkYijk, 0̄)

ρ2

)]pijk
≥ ε

2

}
∈ I3.

∴ (αXijk+βYijk
) ∈ 3(m

I(F )
0 )(M,Λ, p).

This completes the proof.

Theorem 3.2. Let sup
i,j,k

pijk <∞. Then the following statements are equivalent:

(i) 〈Xijk〉 ∈ 3(cI(F ))(M,Λ, p).
(ii) There exists a sequence 〈Yijk〉 ∈ 3(c(F ))(M,Λ, p) such that Xijk = Yijk for a.a. i,j and k r.
I3.
(iii) There exists a subset P = {(in, jm, kl) ∈ N ×N ×N : n,m, l ∈ N} of N × N × N such
that P ∈ F (I3) and (Xinjmkl) ∈ 3(c(F ))(M,Λ, p).

Proof. (i)⇒ (ii). Let 〈Xijk〉 ∈ 3(cI(F ))(M,Λ, p).
Then there exists some ρ > 0 and X0 ∈ R(L) such that

I3 − lim
[
M

(
d̄(λijkXijk, X0)

ρ

)]pijk
= 0

So for a given ε > 0, we have the set{
(i, j, k) ∈ N ×N ×N :

[
M

(
d̄(λijkXijk, X0)

ρ

)]pijk
≥ ε

}
∈ I3.

Let us consider the increasing sequences (Sm), (Tm) and (Um) of natural numbers such that if
p > Sm, q > Tm and r > Um, then the set{

(i, j, k) ∈ N ×N ×N : i ≤ p, j ≤ q, k ≤ r and
[
M

(
d̄(λijkXijk, X0)

ρ

)]pijk
≥ 1
m

}
∈ I3.

We define the sequence 〈Yijk〉 as follows:

Yijk = Xijk, if i ≤ S1 or j ≤ T1 or k ≤ U1.

Also for all (i, j, k) with Sm < i ≤ Sm+1 or Tm < j ≤ Tm+1 or Um < k ≤ Um+1 , let

Yijk = Xijk, if

[
M

(
d̄(λijkXijk, X0)

ρ

)]pijk
<

1
m
,

otherwise Yijk = λ−1
ijkX0.

We show that 〈Yijk〉 ∈ 3(c(F ))(M,Λ, p).
Let ε > 0 and m be chosen such that ε > 1

m .
We see. for i > Sm, j > Tm and k > Um,[

M

(
d̄(λijkXijk, X0)

ρ

)]pijk
< ε.
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Hence 〈Yijk〉 ∈ 3(c(F ))(Λ, p).
Suppose that Sm < i ≤ Sm+1 , Tm < j ≤ Tm+1 and Um < k ≤ Um+1, then the set

A = {(i, j, k) ∈ N ×N ×N : Xijk 6= Yijk} ⊆
{
(i, j, k) ∈ N ×N ×N :

[
M
(
d̄(λijkXijk,X0)

ρ

)]pijk
≥ 1

m

}
∈ I3.

Hence A ∈ I3 and so Xijk = Yijk for a.a. i,j and k ∈ I3.
(ii) ⇒ (iii). Suppose there exists a sequence 〈Yijk〉 ∈ 3(c(F ))(M,Λ, p) such that Xijk = Yijk
for a.a. i,j and k∈ I3.
Let P = {(i, j, k) ∈ N ×N ×N : Xijk = Yijk}.
Then P ∈ F (I3).
P can be enumerated as P = {(in, jm, kl) ∈ N ×N ×N : n,m, l ∈ N}, on neglecting the rows
and columns those contain finite number of elements.
Then (Xinjmkl) ∈ 3(c(F ))(M,Λ, p).
(iii)⇒ (i). The result (i) follows immediately from (iii).

Proposition 3.3. Let the double sequence p = 〈pijk〉 be bounded. Then

3(c
I(F )
0 )(M,Λ, p) ⊂ 3(cI(F ))(M,Λ, p) ⊂ 3(`

I(F )
∞ )(M,Λ, p) and the inclusions are strict.

Proof. The inclusion 3(c
I(F )
0 )(M,Λ, p) ⊂ 3(cI(F ))(M,Λ, p) ⊂ 3(`

I(F )
∞ )(M,Λ, p) is obvious.

In order to show that the inclusion 3(cI(F ))(M,Λ, p) ⊂ 3(`
I(F )
∞ )(M,Λ, p) is strict, we consider

the following example.

Example 3.4. Let I3(P ) denote the class of all subsets of N × N × N such that A ∈ I3(P )
implies there exits i0, j0, k0 ∈ N such that

A ⊆ N ×N ×N − {(i, j, k) ∈ N ×N ×N : i ≥ i0, j ≥ j0, k ≥ k0} .

Let M(x) = x2 and i0, j0, k0 ∈ N be fixed such that

pijk =

{
1
2 , for 1 ≤ i ≤ i0, 1 ≤ j ≤ j0, 1 ≤ k ≤ k0

2, otherwise

Consider the sequence 〈Xijk〉 defined by :
Xijk = 1̄, for 1 ≤ i ≤ i0, 1 ≤ j ≤ j0, 1 ≤ k ≤ k0.
For i > i0, j > j0, k > k0 and (i+ j + k) even,

Xijk(t) =


it−2i+1
i+1 , for 2− i−1 ≤ t ≤ 3

4− t, for 3 < t ≤ 4
0, otherwise

Otherwise

Xijk(t) =


it−1
2i−1 , for i−1 ≤ t ≤ 2
3− t, for 2 < t ≤ 3
0, otherwise

Then taking λijk = 1
i , for all i, j, k ∈ N , we have 〈Xijk〉 ∈ 3(`

I(F )
∞ )(M,Λ, p) but

〈Xijk〉 /∈ 3(cI(F ))(M,Λ, p).
Hence the inclusion 3(cI(F ))(M,Λ, p) ⊂ 3(`

I(F )
∞ )(M,Λ, p) is strict.

We state the following result without proof, since it can be established writing standard tech-
nique.
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Theorem 3.5. If H = sup
i,j,k

pijk < ∞,then the classes of sequences 3(mI(F ))(M,Λ, p) and

3(m
I(F )
0 )(M,Λ, p) are complete metric spaces with respect to the metric τ defined by

τ(X,Y ) = inf

{
ρ

pijk
J > 0 : sup

i,j,k

[
M

(
d̄ (λijkXijk, λijkYijk)

ρ

)]
≤ 1, ρ > 0

}
,

where
J = max(1, H).

Theorem 3.6. Let M1 and M2 be two Orlicz functions and Λ = 〈λijk〉 be a given multiplier
sequence, then
(i) Z(M1,Λ, p) ∩ Z(M2,Λ, p) ⊆ Z(M1 +M2,Λ, p)

(ii)Z(M2,Λ, p) ⊆ Z(M1 ◦M2,Λ, p), for Z = 3(c
I(F )
0 ), 3(cI(F )), 3(`

I(F )
∞ ).

Proof. We prove the result for the case Z = 3(C
I(F )
0 ).

(i) Let 〈Xijk〉 ∈ 3(c
I(F )
0 )(M1,Λ, p) ∩ 3(c

I(F )
0 )(M2,Λ, p).

Then ∃ ρ1, ρ2 > 0 such that the sets

A =

{
(i, j, k) ∈ N ×N ×N :

[
M1

(
d̄(λijkXijk, 0̄)

ρ1

)]pijk
≥ ε

2

}
∈ I3

and

B =

{
(i, j, k) ∈ N ×N ×N :

[
M2

(
d̄(λijkXijk, 0̄)

ρ2

)]pijk
≥ ε

2

}
∈ I3.

Let ρ = ρ1 + ρ2. Since M is continuous, we have the following inequality:

[
(M1 +M2)

(
d̄(λijkXijk, 0̄)

ρ

)]pijk
≤ D

[
ρ1

ρ1 + ρ2
M1

(
d̄(λijkXijk, 0̄)

ρ1

)]pijk
+D

[
ρ2

ρ1 + ρ2
M2

(
d̄(λijkXijk, 0̄)

ρ2

)]pijk
,

where D = max(1, 2H−1), H = sup
i,j,k

pijk.

From the above relation, we obtain{
(i, j, k) ∈ N ×N ×N :

[
(M1 +M2)

(
d̄(λijkXijk, 0̄)

ρ

)]pijk
≥ ε

2

}
⊆

{
(i, j, k) ∈ N ×N ×N : D

[
ρM1

(
d̄(λijkXijk, 0̄)

ρ1

)]pijk
≥ ε

2

}
∪

{
(i, j, k) ∈ N ×N ×N : D

[
ρM2

(
d̄(λijkXijk, 0̄)

ρ2

)]pijk
≥ ε

2

}
∈ I3.

Thus 〈Xijk〉 ∈ 3(c
I(F )
0 )(M1 +M2,Λ, p).

Similarly we can establish the other cases.

(ii)Let ε > 0 be given. Since M1 is continuous, so there exists η > 0 such that M1(η) = ε.
Let 〈Xijk〉 ∈ 3(m

I(F )
0 )(M2,Λ, p). So there exists ρ > 0 such that

I3 − lim
[
M2

(
d̄(λijkXijk, 0̄)

ρ

)]pijk
= 0.
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Then there exists i0, j0, k0 ∈ N such that[
M2

(
d̄(λijkXijk, 0̄)

ρ

)]pijk
< η, for all i ≥ i0, j ≥ j0, k ≥ k0.

⇒
[
(M1 ◦M2)

(
d̄(λijkXijk, 0̄)

ρ

)]pijk
< ε, for all i ≥ i0, j ≥ j0, k ≥ k0.

∴ I3 − lim
[
(M1 ◦M2)

(
d̄(λijkXijk, 0̄)

ρ

)]pijk
= 0.

⇒ 〈Xijk〉 ∈ 3(m
I(F )
0 )(M1 ◦M2, p).

Similarly the other cases can be established.

Following standard techniques, one can easily prove the following result.

Theorem 3.7. If M1(x) ≤M2(x) for all x ∈ [0,∞), then Z(M2, p) ⊆ Z(M1, p) for
Z = 3(c

I(F )
0 ), 3(cI(F )), 3(`

I(F )
∞ ).

Theorem 3.8. The class of sequences 3(m
I(F )
0 )(M,Λ, p) is normal and monotone.

Proof. Let 〈Xijk〉 ∈ 3(m
I(F )
0 )(M,Λ, p) and 〈Yijk〉 be such that d̄(Yijk, 0̄) ≤ d̄(Xijk, 0̄), for all

i, j, k ∈ N .
Let ε > 0 be given. Then the normality of 3(m

I(F )
0 )(M,Λ, p) follows from the following inclu-

sion relation :{
(i, j, k) ∈ N ×N ×N :

[
M
(
d̄(λijkXijk,0̄)

ρ

)]pijk
≥ ε
}
⊇{

(i, j, k) ∈ N ×N ×N :
[
M
(
d̄(λijkYijk,0̄)

ρ

)]pijk
≥ ε
}

.

Also by Remark 2.1, it follows that the space 3(m
I(F )
0 )(M,Λ, p) is monotone.

Proposition 3.9. The class of sequences 3(mI(F ))(M,Λ, p) is neither monotone nor solid.

Proof. The result follows from the following example.

Example 3.10. Let I3(ρ) ⊂ 2N×N×N denote the class of all subsets of N × N × N of zero
natural density.
Let I3 = I3(ρ), A ∈ I3, pijk = 1,for all i, j, k ∈ N and M(x) = x2.
Consider the sequence 〈Xijk〉) defined by :
For all (i, j, k) /∈ A,

Xijk(t) =


1 + 2(i+ j + k)(t− 1), for 1− 1

2(i+j+k) ≤ t ≤ 1
1− 2(i+ j + k)(t− 1), for 1 < t ≤ 1 + 1

2(i+j+k)

0, otherwise

Otherwise Xijk = 1̄.
Then taking λijk = 1

i+j+k , for all i, j, k ∈ N , we have 〈Xijk〉) ∈ 3(mI(F ))(M,Λ, p).
Let K = {2n : n ∈ N}.
Consider the sequence 〈Yijk〉 defined by:

Yijk =

{
Xijk, if (i, j, k) ∈ K
0̄, otherwise

Then 〈Yijk〉 belongs to the canonical pre-image of K step space of 3(mI(F ))(M,Λ, p).
But 〈Yijk〉 /∈ 3(mI(F ))(M,Λ, p).
Hence the class of sequences 3(mI(F ))(M,Λ, p) is not monotone and not solid.

Proposition 3.11. The class of sequences 3(mI(F ))(M,Λ, p) and 3(m
I(F )
0 )(M,Λ, p) are not sym-

metric in general.
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Proof. The result follows from the following example.

Example 3.12. Let A ∈ I3, M(x) = x2 and for all x ∈ [0,∞) ,

pijk =

{
1, for i even and all j, k ∈ N
2, otherwise

Consider the sequence 〈Xijk〉 defined by :
For i = n2, n ∈ N and for all j, k ∈ N ,

Xijk(t) =


1 + t

2
√
i−1

, for 1− 2
√
i ≤ t ≤ 0

1− t
2
√
i−1

, for 0 < t ≤ 2
√
i− 1

0, otherwise

Otherwise Xijk = 0̄.
Then taking λijk = 1

i , for all i, j, k ∈ N ,
〈Xijk〉 ∈ Z(M,Λ, p), for Z = 3(m

I(F )
0 ), 3(mI(F )).

Next we consider the rearrangement 〈Yijk〉 of 〈Xijk〉 defined by :
For k odd and for all i, j ∈ N ,

Yijk(t) =


1 + t

2i−1 , for 1− 2i ≤ t ≤ 0
1− t

2i−1 , for 0 < t ≤ 2i− 1
0, otherwise

Otherwise Yijk = 0̄.
Then 〈Yijk〉 /∈ Z(M,Λ, p), for Z = 3(m

I(F )
0 ), 3(mI(F )).

Hence the classes of sequences 3(mI(F ))(M,Λ, p) and 3(m
I(F )
0 )(M,Λ, p) are not symmetric.

Proposition 3.13. The class of sequences 3(mI(F ))(M,Λ, p) and 3(m
I(F )
0 )(M,Λ, p) are not se-

quence algebras.

Proof. The result follows from the following example.

Example 3.14. Let A ∈ I3, M(x) = x2 and for all x ∈ [0,∞) ,

pijk =

{
1
3 , for (i, j, k) ∈ A
1, otherwise

Consider the sequence 〈Xijk〉 and 〈Yijk〉 defined by :
For all (i, j, k) /∈ A,

Xijk(t) =


1 + t

2(i+j+k)2 , for −2(i+ j + k)2 ≤ t ≤ 0
1− t

2(i+j+k)2 , for 0 < t ≤ 2(i+ j + k)2

0, otherwise

Otherwise Xijk = 0̄.
For all (i, j, k) /∈ A,

Yijk(t) =


1 + t−1

2(i+j+k)2 , for 1− 2(i+ j + k)2 ≤ t ≤ 1
1− t−1

2(i+j+k)2 , for 1 < t ≤ 1 + 2(i+ j + k)2

0, otherwise

Otherwise Yijk = 0̄.
Then taking λijk = 1

(i+j+k)3 , for all i, j, k ∈ N , we have 〈Xijk〉, 〈Yijk〉 ∈ Z(M,Λ, p),
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for Z = 3(m
I(F )
0 ), 3(mI(F )).

But (Xnk

⊗
Ynk) /∈ Z(M,Λ, p), Z = 3(m

I(F )
0 ), 3(mI(F )).

Hence the classes of sequences 3(mI(F ))(M,Λ, p) and 3(m
I(F )
0 )(M,Λ, p) are not sequence alge-

bras.

Proposition 3.15. The class of sequences 3(mI(F ))(M,Λ, p) and 3(m
I(F )
0 )(M,Λ, p) are not con-

vergence free.

Proof. The result follows from the following example.

Example 3.16. Let A ∈ I3, M(x) = x and for all x ∈ [0,∞) ,

pijk =

{
1
3 , for (i, j, k) ∈ A
3, otherwise

Consider the sequence 〈Xijk〉 defined by :
For all (i, j, k) /∈ A,

Xijk(t) =


1 + 3(i+ j + k)(t− 1), for 1− 1

3(i+j+k) ≤ t ≤ 1
1− 3(i+ j + k)(t− 1), for 1 < t ≤ 1 + 1

3(i+j+k)

0, otherwise

Otherwise Xijk = 0̄.
Then taking λijk = 1

i+j+k , for all i+ j + k ∈ N , we have 〈Xijk〉 ∈ Z(M,Λ, p),

for Z = 3(m
I(F )
0 ), 3(mI(F )).

Consider the sequence 〈Yijk〉 defined by :
For all (i, j, k) /∈ A,

Yijk(t) =


1 + t−1

3(i+j+k)3 , for 1− 3(i+ j + k)3 ≤ t ≤ 1
1− t−1

3(i+j+k)3 , for 1 < t ≤ 1 + 3(i+ j + k)3

0, otherwise

Otherwise Yijk = 0̄.
Then 〈Yijk〉 /∈ Z(M,Λ, p), for Z = 3(m

I(F )
0 ), 3(mI(F )).

Hence 3(mI(F ))(M,Λ, p) and 3(m
I(F )
0 )(M,Λ, p) are not convergence free.

4 CONCLUSION

Convergence theory can be applied as a basic tool in measure spaces, sequences of random vari-
ables, information theory and so on. In this research article, we have introduced and studied
some multiplier ideal convergent triple sequence spaces of fuzzy numbers defined by an Orlicz
function. Some basic algebraic and topological properties of these introduced sequence spaces
are established and some inclusion relations between these spaces are obtained. Also the mul-
tiplier problem is characterized. The introduced notion can be applied for further investigations
from different aspects.
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