A Comprehensive Subclass of Analytic and Bi-Univalent Functions Associated with Subordination

A. A. Amourah and Mohamed Illafe
Communicated by Fuad Kittaneh

MSC 2010 Classifications: 30C45.
Keywords and phrases: Faber polynomials, bi-univalent functions, subordination, upper bound.
The authors would like to thank the referee for his useful comments and suggestions to improve the original paper.

Abstract

In the present paper, we define a new general subclass of bi-univalent functions involving a differential operator in the open unit disk \mathbb{U} and determine estimates for the general Taylor-Maclaurin coefficients of the functions in this class. For this purpose, we use the Faber polynomial expansions. Several connections to some of the earlier known results are also pointed out.

1 Introduction

Let \mathcal{A} denote the class of all analytic functions f defined in the open unit disk $\mathbb{U}=\{z \in \mathbb{C}$: $|z|<1\}$ and normalized by the conditions $f(0)=0$ and $f^{\prime}(0)=1$. Thus each $f \in \mathcal{A}$ has a Taylor-Maclaurin series expansion of the form:

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}, \quad(z \in \mathbb{U}) \tag{1.1}
\end{equation*}
$$

Further, let \mathcal{S} denote the class of all functions $f \in \mathcal{A}$ which are univalent in \mathbb{U} (for details, see [10]; see also some of the recent investigations [3, 6, 7, 8, 23]). And let \mathcal{C} be the class of functions $\Phi(z)=1+\sum_{n=1}^{\infty} \Phi_{n} z^{n}$ that are analytic in \mathbb{U} and satisfy the condition $\operatorname{Re}(\Phi(z))>0$ in \mathbb{U}. By the Caratheodory's lemma (see [10]) we have $|\Phi(z)| \leq 2$.

Let the functions f, g be analytic in \mathbb{U}. If there exists a Schwarz function ϖ, which is analytic in \mathbb{U} under the conditions

$$
\varpi(0)=0,|\varpi(z)| \leq 1
$$

such that

$$
f(z)=g(\varpi(z)), z \in \mathbb{U}
$$

then, the function f is subordinate to g in \mathbb{U}, and we write $f(z) \prec g(z)$.
By the Koebe one-quarter theorem (for details, (see [10]), we know that the image of \mathbb{U} under every function $f \in \mathcal{A}$ contains a disk of radius $\frac{1}{4}$. According to this, every function $f \in \mathcal{A}$ has an inverse map f^{-1} that satisfies the following conditions:

$$
f^{-1}(f(z))=z \quad(z \in \mathbb{U}),
$$

and

$$
f\left(f^{-1}(w)\right)=w \quad\left(|w|<r_{0}(f) ; r_{0}(f) \geq \frac{1}{4}\right)
$$

In fact, the inverse function is given by

$$
\begin{equation*}
g(w)=f^{-1}(w)=w-a_{2} w^{2}+\left(2 a_{2}^{2}-a_{3}\right) w^{3}-\left(5 a_{2}^{3}-5 a_{2} a_{3}+a_{4}\right) w^{4}+\cdots . \tag{1.2}
\end{equation*}
$$

A function $f \in \mathcal{A}$ is said to be bi-univalent in \mathbb{U} if both $f(z)$ and $f^{-1}(z)$ are univalent in \mathbb{U}. Let Σ denote the class of bi-univalent functions in \mathbb{U} given by (1.1). Examples of functions in the class Σ are

$$
\frac{z}{1-z},-\log (1-z), \frac{1}{2} \log \left(\frac{1+z}{1-z}\right), \cdots .
$$

It is worth noting that the familiar Koebe function is not a member of Σ, since it maps the unit disk \mathbb{U} univalently onto the entire complex plane except the part of the negative real axis from $-1 / 4$ to $-\infty$. Thus, clearly, the image of the domain does not contain the unit disk \mathbb{U}. For a brief history and some intriguing examples of functions and characterization of the class Σ, see Srivastava et al. [20], Yousef et al. [24, 25, 26], and Frasin and Aouf [12].

In 1967, Lewin [18] investigated the bi-univalent function class Σ and showed that $\left|a_{2}\right|<$ 1.51. Subsequently, Brannan and Clunie [9] conjectured that $\left|a_{2}\right| \leq \sqrt{2}$. On the other hand, Netanyahu [19] showed that $\max _{f \in \Sigma}\left|a_{2}\right|=\frac{4}{3}$. The best known estimate for functions in Σ has been obtained in 1984 by Tan [21], that is, $\left|a_{2}\right|<1.485$. The coefficient estimate problem for each of the following Taylor-Maclaurin coefficients $\left|a_{n}\right|(n \in \mathbb{N} \backslash\{1,2\})$ for each $f \in \Sigma$ given by (1.1) is presumably still an open problem.

The Faber polynomials introduced by Faber [11] play an important role in various areas of mathematical sciences, especially in geometric function theory. The recent publications [13] and [14] applying the Faber polynomial expansions to meromorphic bi-univalent functions motivated us to apply this technique to classes of analytic bi-univalent functions. In the literature, there are only a few works determining the general coefficient bounds $\left|a_{n}\right|$ for the analytic bi-univalent functions given by (1.1) using Faber polynomial expansions (see for example, [15, 16, 17]). Hamidi and Jahangiri [15] considered the class of analytic bi-close-to-convex functions. Jahangiri and Hamidi [17] considered the class defined by Frasin and Aouf [12], and Jahangiri et al. [16] considered the class of analytic bi-univalent functions with positive real-part derivatives.

2 The class $\mathfrak{B}_{\Sigma}(\mu, \lambda, \Phi, \xi)$

Yousef et al. [25] have introduced and studied the following subclass of analytic bi-univalent functions:

Definition 2.1. For $\lambda \geq 1, \mu \geq 0, \delta \geq 0$ and $0 \leq \alpha<1$, a function $f \in \Sigma$ given by (1.1) is said to be in the class $\mathfrak{B}_{\Sigma}^{\mu}(\alpha, \lambda, \delta)$ if the following conditions hold for all $z, w \in \mathbb{U}$:

$$
\begin{equation*}
\operatorname{Re}\left((1-\lambda)\left(\frac{f(z)}{z}\right)^{\mu}+\lambda f^{\prime}(z)\left(\frac{f(z)}{z}\right)^{\mu-1}+\xi \delta z f^{\prime \prime}(z)\right)>\alpha \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{Re}\left((1-\lambda)\left(\frac{g(w)}{w}\right)^{\mu}+\lambda g^{\prime}(w)\left(\frac{g(w)}{w}\right)^{\mu-1}+\xi \delta w g^{\prime \prime}(w)\right)>\alpha \tag{2.2}
\end{equation*}
$$

where the function $g(w)=f^{-1}(w)$ is defined by (1.2) and $\xi=\frac{2 \lambda+\mu}{2 \lambda+1}$.
Using the Faber polynomial expansion of functions $f \in \mathcal{A}$ of the form (1.1), the coefficients of its inverse map $g=f^{-1}$ may be expressed as in [1]:

$$
\begin{equation*}
g(w)=f^{-1}(w)=w+\sum_{n=2}^{\infty} \frac{1}{n} K_{n-1}^{-n}\left(a_{2}, a_{3}, \ldots\right) w^{n} \tag{2.3}
\end{equation*}
$$

where

$$
\begin{align*}
K_{n-1}^{-n} & =\frac{(-n)!}{(-2 n+1)!(n-1)!} a_{2}^{n-1}+\frac{(-n)!}{(2(-n+1))!(n-3)!} a_{2}^{n-3} a_{3}+\frac{(-n)!}{(-2 n+3)!(n-4)!} a_{2}^{n-4} a_{4} \tag{2.4}\\
& +\frac{(-n)!}{(2(-n+2))!(n-5)!} a_{2}^{n-5}\left[a_{5}+(-n+2) a_{3}^{2}\right]+\frac{(-n)!}{(-2 n+5)!(n-6)!} a_{2}^{n-6} \\
& {\left[a_{6}+(-2 n+5) a_{3} a_{4}\right]+\sum_{j \geq 7} a_{2}^{n-j} V_{j} }
\end{align*}
$$

such that V_{j} with $7 \leq j \leq n$ is a homogeneous polynomial in the variables $a_{2}, a_{3}, \ldots, a_{n}$ [2].
In particular, the first three terms of K_{n-1}^{-n} are

$$
\begin{equation*}
K_{1}^{-2}=-2 a_{2}, K_{2}^{-3}=3\left(2 a_{2}^{2}-a_{3}\right), K_{3}^{-4}=-4\left(5 a_{2}^{3}-5 a_{2} a_{3}+a_{4}\right) \tag{2.5}
\end{equation*}
$$

In general, for any $p \in \mathbb{N}:=\{1,2,3, \ldots\}$, an expansion of K_{n}^{p} is as in [1],

$$
\begin{equation*}
K_{n}^{p}=p a_{n}+\frac{p(p-1)}{2} D_{n}^{2}+\frac{p!}{(p-3)!3!} D_{n}^{3}+\cdots+\frac{p!}{(p-n)!n!} D_{n}^{n} \tag{2.6}
\end{equation*}
$$

where $D_{n}^{p}=D_{n}^{p}\left(a_{2}, a_{3}, \ldots\right)$, and by [22], $D_{n}^{m}\left(a_{1}, a_{2}, \ldots, a_{n}\right)=\sum_{n=1}^{\infty} \frac{m!}{i_{1}!\ldots i_{n}!} a_{1}^{i_{1}} \ldots a_{n}^{i_{n}}$ while $a_{1}=1$, and the sum is taken over all non-negative integers i_{1}, \ldots, i_{n} satisfying $i_{1}+i_{2}+\cdots+i_{n}=m$, $i_{1}+2 i_{2}+\cdots+n i_{n}=n$, it is clear that $D_{n}^{m}\left(a_{1}, a_{2}, \ldots, a_{n}\right)=a_{1}^{n}$.

Now, we are ready to establish a new subclass of analytic and bi-univalent functions based on subordination.

Definition 2.2. For $\lambda \geq 1, \mu \geq 0$, and $\delta \geq 0$, A function $f \in \Sigma$ is said to be in the class $\mathfrak{B}_{\Sigma}(\mu, \lambda, \Phi, \xi)$, if the following subordinations are satisfied:

$$
\begin{equation*}
(1-\lambda)\left(\frac{f(z)}{z}\right)^{\mu}+\lambda f^{\prime}(z)\left(\frac{f(z)}{z}\right)^{\mu-1}+\xi \delta z f^{\prime \prime}(z) \prec \Phi(z) \tag{2.7}
\end{equation*}
$$

and

$$
\begin{equation*}
(1-\lambda)\left(\frac{g(w)}{w}\right)^{\mu}+\lambda g^{\prime}(w)\left(\frac{g(w)}{w}\right)^{\mu-1}+\xi \delta w g^{\prime \prime}(w) \prec \Phi(w) \tag{2.8}
\end{equation*}
$$

where the function $g(w)=f^{-1}(w)$ is defined by (1.2) and $\xi=\frac{2 \lambda+\mu}{2 \lambda+1}$.

3 Coefficient bounds for the function class $\mathfrak{B}_{\Sigma}(\boldsymbol{\mu}, \boldsymbol{\lambda}, \Phi, \boldsymbol{\xi})$

Theorem 3.1. For $\lambda \geq 1, \mu \geq 0$, and $\delta \geq 0$, let the function $f \in \mathfrak{B}_{\Sigma}(\mu, \lambda, \Phi, \xi)$ be given by (1.1). Then

$$
\left|a_{2}\right| \leq \min \left\{\frac{2}{\mu+\lambda+2 \xi \delta}, \sqrt{\frac{8}{(\mu+2 \lambda)\left(\mu+1+\frac{12 \delta}{2 \lambda+1}\right)}}\right\}
$$

and

$$
\left|a_{3}\right| \leq \min \left\{\frac{4}{(\mu+\lambda+2 \xi \delta)^{2}}, \frac{8}{(\mu+2 \lambda)\left(\mu+1+\frac{12 \delta}{2 \lambda+1}\right)}\right\}+\frac{2}{(\mu+2 \lambda)\left(1+\frac{6 \delta}{2 \lambda+1}\right)}
$$

Proof. Let $f \in \mathfrak{B}_{\Sigma}(\mu, \lambda, \Phi, \xi)$.The inequalities (2.7) and (2.8) imply the existence of two positive real part functions

$$
\varpi(z)=1+\sum_{n=1}^{\infty} t_{n} z^{n}
$$

and

$$
\varphi(w)=1+\sum_{n=1}^{\infty} s_{n} z^{n}
$$

where $\operatorname{Re}(\varpi(z))>0$ and $\operatorname{Re}(\varphi(w))>0$ in \mathcal{C} so that

$$
\begin{align*}
& (1-\lambda)\left(\frac{f(z)}{z}\right)^{\mu}+\lambda f^{\prime}(z)\left(\frac{f(z)}{z}\right)^{\mu-1}+\xi \delta z f^{\prime \prime}(z)=\Phi(\varpi(z)) \tag{3.1}\\
& (1-\lambda)\left(\frac{g(w)}{w}\right)^{\mu}+\lambda g^{\prime}(w)\left(\frac{g(w)}{w}\right)^{\mu-1}+\xi \delta w g^{\prime \prime}(w)=\Phi(\varphi(w)) \tag{3.2}
\end{align*}
$$

It follows from (3.1) and (3.2) that

$$
\begin{gather*}
(\mu+\lambda+2 \xi \delta) a_{2}=\Phi_{1} t_{1} \tag{3.3}\\
(\mu+2 \lambda)\left[\frac{\mu-1}{2} a_{2}^{2}+\left(1+\frac{6 \delta}{2 \lambda+1}\right) a_{3}\right]=\Phi_{1} t_{2}+\Phi_{2} t_{1}^{2} \tag{3.4}
\end{gather*}
$$

and

$$
\begin{equation*}
-(\mu+\lambda+2 \xi \delta) a_{2}=\Phi_{1} s_{1} \tag{3.5}
\end{equation*}
$$

$$
\begin{equation*}
(\mu+2 \lambda)\left[\left(\frac{\mu+3}{2}+\frac{12 \delta}{2 \lambda+1}\right) a_{2}^{2}-\left(1+\frac{6 \delta}{2 \lambda+1}\right) a_{3}\right]=\Phi_{1} s_{2}+\Phi_{2} s_{1}^{2} \tag{3.6}
\end{equation*}
$$

From (3.3) and (3.5), we find

$$
\begin{equation*}
\left|a_{2}\right| \leq \frac{\left|\Phi_{1} t_{1}\right|}{\mu+\lambda+2 \xi \delta}=\frac{\left|\Phi_{1} s_{1}\right|}{\mu+\lambda+2 \xi \delta} \leq \frac{2}{\mu+\lambda+2 \xi \delta} \tag{3.7}
\end{equation*}
$$

From (3.4) and (3.6), we get

$$
(\mu+2 \lambda)\left(\mu+1+\frac{12 \delta}{2 \lambda+1}\right) a_{2}^{2}=\Phi_{1}\left(t_{2}+s_{2}\right)+\Phi_{2}\left(t_{1}^{2}+s_{1}^{2}\right)
$$

or, equivalently

$$
\begin{equation*}
\left|a_{2}\right| \leq \sqrt{\frac{8}{(\mu+2 \lambda)\left(\mu+1+\frac{12 \delta}{2 \lambda+1}\right)}} \tag{3.8}
\end{equation*}
$$

Next, in order to find the bound on the coefficient $\left|a_{3}\right|$, we subtract (3.6) from (3.4). We thus get

$$
\begin{equation*}
2(\mu+2 \lambda)\left(1+\frac{6 \delta}{2 \lambda+1}\right)\left(a_{3}-a_{2}^{2}\right)=\Phi_{1}\left(t_{2}-s_{2}\right)+\Phi_{2}\left(t_{1}^{2}-s_{1}^{2}\right) \tag{3.9}
\end{equation*}
$$

or

$$
\begin{align*}
\left|a_{3}\right| & \leq\left|a_{2}\right|^{2}+\frac{\left|\Phi_{1}\left(t_{2}-s_{2}\right)\right|}{2(\mu+2 \lambda)\left(1+\frac{6 \delta}{2 \lambda+1}\right)} \tag{3.10}\\
& =\left|a_{2}\right|^{2}+\frac{2}{(\mu+2 \lambda)\left(1+\frac{6 \delta}{2 \lambda+1}\right)}
\end{align*}
$$

Upon substituting the value of a_{2}^{2} from (3.7) and (3.8) into (3.10), it follows that

$$
\left|a_{3}\right| \leq \frac{4}{(\mu+\lambda+2 \xi \delta)^{2}}+\frac{2}{(\mu+2 \lambda)\left(1+\frac{6 \delta}{2 \lambda+1}\right)}
$$

and

$$
\left|a_{3}\right| \leq \frac{8}{(\mu+2 \lambda)\left(\mu+1+\frac{12 \delta}{2 \lambda+1}\right)}+\frac{2}{(\mu+2 \lambda)\left(1+\frac{6 \delta}{2 \lambda+1}\right)}
$$

Which completes the proof of Theorem 3.1.

Theorem 3.2. Let $f \in \mathfrak{B}_{\Sigma}(\mu, \lambda, \Phi, \xi)$. If $a_{m}=0$ with $2 \leq m \leq n-1$, then

$$
\begin{equation*}
\left|a_{n}\right| \leq \frac{2}{\mu+(n-1) \lambda+n(n-1) \xi \delta}(n \geq 4) \tag{3.11}
\end{equation*}
$$

Proof. By using the Faber polynomial expansion of functions $f \in \mathcal{A}$ of the form (1.1) and its inverse map $g=f^{-1}$, we can write

$$
\begin{equation*}
(1-\lambda)\left(\frac{f(z)}{z}\right)^{\mu}+\lambda f^{\prime}(z)\left(\frac{f(z)}{z}\right)^{\mu-1}+\xi \delta z f^{\prime \prime}(z)=1+\sum_{n=2}^{\infty} F_{n-1}\left(a_{2}, a_{3}, \ldots, a_{n}\right) z^{n-1} \tag{3.12}
\end{equation*}
$$

and

$$
\begin{equation*}
(1-\lambda)\left(\frac{g(w)}{w}\right)^{\mu}+\lambda g^{\prime}(w)\left(\frac{g(w)}{w}\right)^{\mu-1}+\xi \delta w g^{\prime \prime}(w)=1+\sum_{n=2}^{\infty} F_{n-1}\left(A_{2}, A_{3}, \ldots, A_{n}\right) w^{n-1} \tag{3.13}
\end{equation*}
$$

where

$$
\begin{equation*}
F_{1}=(\mu+\lambda+2 \xi \delta) a_{2}, F_{2}=(\mu+2 \lambda)\left[\frac{\mu-1}{2} a_{2}^{2}+\left(1+\frac{6 \delta}{2 \lambda+1}\right) a_{3}\right] \tag{3.14}
\end{equation*}
$$

and, in general (see [5])

$$
\begin{aligned}
& F_{n-1}\left(a_{2}, a_{3}, \ldots, a_{n}\right)= {[\mu+(n-1) \lambda+n(n-1) \xi \delta] \times[(\mu-1)!] } \\
& \times \sum_{i_{1}+2 i_{2}+\cdots+(n-1) i_{n-1}=n-1}^{\infty}\left(\frac{\mu+n \lambda}{\mu+n \lambda+n(n+1) \xi \delta}\right)^{1-i_{n-1}}
\end{aligned} \quad .
$$

Next, by using the Faber polynomial expansion of functions $\varpi, \varphi \in \mathcal{C}$, we also obtain

$$
\begin{equation*}
\Phi(\varpi(z))=1+\sum_{n=1}^{\infty} \sum_{k=1}^{\infty} \Phi_{k} F_{n}^{k}\left(t_{1}, t_{2}, \ldots, t_{n}\right) z^{n} \tag{3.15}
\end{equation*}
$$

and

$$
\begin{equation*}
\Phi(\varphi(z))=1+\sum_{n=1}^{\infty} \sum_{k=1}^{\infty} \Phi_{k} F_{n}^{k}\left(s_{1}, s_{2}, \ldots, s_{n}\right) w^{n} \tag{3.16}
\end{equation*}
$$

Comparing the corresponding coefficients yields

$$
[\mu+(n-1) \lambda+n(n-1) \xi \delta] a_{n}=\sum_{k=1}^{n-1} \Phi_{k} F_{n-1}^{k}\left(t_{1}, t_{2}, \ldots, t_{n-1}\right)(n \geq 2)
$$

and

$$
\begin{equation*}
[\mu+(n-1) \lambda+n(n-1) \xi \delta] A_{n}=\sum_{k=1}^{n-1} \Phi_{k} F_{n-1}^{k}\left(s_{1}, s_{2}, \ldots, s_{n-1}\right)(n \geq 2) \tag{3.17}
\end{equation*}
$$

Note that for $a_{m}=0,2 \leq m \leq n-1$, we have $A_{n}=-a_{n}$ and so

$$
\begin{gather*}
{[\mu+(n-1) \lambda+n(n-1) \xi \delta] a_{n}=\Phi_{1} t_{n-1}} \\
-[\mu+(n-1) \lambda+n(n-1) \xi \delta] a_{n}=\Phi_{1} s_{n-1} \tag{3.18}
\end{gather*}
$$

Now taking the absolute values of either of the above two equations and using the facts that $\left|\Phi_{1}\right| \leq 2,\left|t_{n-1}\right| \leq 1$, and $\left|s_{n-1}\right| \leq 1$, we obtain

$$
\begin{align*}
\left|a_{n}\right| & \leq \frac{\left|\Phi_{1} t_{n-1}\right|}{\mu+(n-1) \lambda+n(n-1) \xi \delta}=\frac{\left|\Phi_{1} s_{n-1}\right|}{\mu+(n-1) \lambda+n(n-1) \xi \delta} \tag{3.19}\\
& \leq \frac{2}{\mu+(n-1) \lambda+n(n-1) \xi \delta} \tag{3.20}
\end{align*}
$$

This evidently completes the proof of Theorem 3.2.

Remark 3.3. As a final remark, for $\delta=0$ in
(i) Theorem 3.1 we obtain Theorem 1 in [4].
(ii) Theorem 3.2 we obtain Theorem 2 in [4].

References

[1] H. Airault; A. Bouali, Differential calculuson the Faber polynomials, Bull. Sci. Math. 130 (3) (2006) 179-222.
[2] H. Airault; J. Ren, An algebra of differential operators and generating functionson the set of univalent functions, Bull. Sci. Math. 126 (5) (2002) 343-367.
[3] T. Al-Hawary; B.A. Frasin; F. Yousef, Coefficients estimates for certain classes of analytic functions of complex order, Afrika Matematika 29(7-8) (2018), 1265-1271.
[4] S. Altinkaya; S. Y. Tokgöz, On the bounds of general subclasses of analytic and bi-univalent functions associated with subordination, In 4th International Conference on Analysis and its Applications, September 11-14, 2018, Kirsehir/Turkey, p. 135.
[5] A. Amourah, Faber polynomial coefficient estimates for a class of analytic bi-univalent functions, arXiv preprint arXiv:1810.07018 (2018).
[6] A.A. Amourah; F. Yousef, Some properties of a class of analytic functions involving a new generalized differential operator, Boletim da Sociedade Paranaense de Matemática, In press.
[7] A.A. Amourah; F. Yousef; T. Al-Hawary, M. Darus, A certain fractional derivative operator for p-valent functions and new class of analytic functions with negative coefficients, Far East Journal of Mathematical Sciences 99(1) (2016) 75-87.
[8] A.A. Amourah; F. Yousef; T. Al-Hawary; M. Darus, On $\mathrm{H}_{3}(p)$ Hankel determinant for certain subclass of p-valent functions, Ital. J. Pure Appl. Math 37 (2017) 611-618.
[9] D.A. Brannan; J.G. Clunie, Aspects of contemporary complex analysis (Proceedings of the NATO Advanced Study Institute held at the University of Durham, Durham; July 120, 1979), Academic Press, New York and London, 1980.
[10] P.L. Duren, Univalent Functions, Grundlehren der Mathematischen Wissenschaften, Band 259, SpringerVerlag, New York, Berlin, Heidelberg and Tokyo, 1983.
[11] G. Faber, Über polynomische entwickelungen, Mathematische Annalen 57(3) (1903) 389-408.
[12] B.A. Frasin; M.K. Aouf, New subclasses of bi-univalent functions, Appl. Math. Lett. 24(9) (2011) 15691573.
[13] S.G. Hamidi; S.A. Halim; J.M. Jahangiri, Coefficient estimates for a class of meromorphic bi-univalent functions, C. R. Acad. Sci. Paris, Ser. I 351 (9-10) (2013) 349-352.
[14] S.G. Hamidi; T. Janani; G. Murugusundaramoorthy, J.M. Jahangiri, Coefficient estimates for certain classes of meromorphic bi-univalent functions, C. R. Acad. Sci. Paris, Ser. I 352 (4) (2014) 277-282.
[15] S.G. Hamidi; J.M. Jahangiri, Faber polynomial coefficient estimates for analytic bi-close-to-convex functions, C. R. Acad. Sci. Paris, Ser. I 352 (1) (2014) 17-20.
[16] J.M. Jahangiri; S.G. Hamidi; S.A. Halim, Coefficients of bi-univalent functions with positive real part derivatives, Bull. Malays. Math. Soc., in press, http://math.usm.my/bulletin/pdf/acceptedpapers/2013-04-050-R1.pdf.
[17] J.M. Jahangiri; S.G. Hamidi, Coefficient estimates for certain classes of bi-univalent functions, Int. J. Math. Math. Sci. (2013), Article ID 190560, 4 p.
[18] M. Lewin, On a coefficient problem for bi-univalent functions, Proc. Amer. Math. Soc. 18 (1967) 63-68.
[19] E. Netanyahu, The minimal distance of the image boundary from the origin and the second coefficient of a univalent function in $|z|<1$, Arch. Rational Mech. Anal. 32 (1969) 100-112.
[20] H.M. Srivastava; A.K. Mishra; P. Gochhayat, Certain subclasses of analytic and bi-univalent functions, Appl. Math. Lett. 23(10) (2010) 1188-1192.
[21] D.L. Tan, Coefficicent estimates for bi-univalent functions, Chin. Ann. Math. Ser. A 5 (1984) 559-568.
[22] P.G. Todorov, On the Faber polynomials of the univalent functions of class Σ, J. Math. Anal. Appl. 162 (1) (1991) 268-276.
[23] F. Yousef; A.A. Amourah; M. Darus, Differential sandwich theorems for p-valent functions associated with a certain generalized differential operator and integral operator, Italian Journal of Pure and Applied Mathematics 36 (2016) 543-556.
[24] F. Yousef; B.A. Frasin; T. Al-Hawary, Fekete-Szegö Inequality for Analytic and Bi-univalent Functions Subordinate to Chebyshev Polynomials, Filomat 32(9) (2018) 3229-3236.
[25] F. Yousef; S. Alroud; M. Illafe, New subclasses of analytic and bi-univalent functions endowed with coefficient estimate problems, arXiv preprint arXiv:1808.06514 (2018).
[26] F. Yousef; S. Alroud; M. Illafe, A Comprehensive Subclass of Bi-Univalent Functions Associated with Chebyshev Polynomials of the Second Kind, arXiv preprint arXiv:1809.09365 (2018).

Author information

A. A. Amourah, A. A. Amourah: Department of Mathematics, Faculty of Science and Technology, Irbid National University, Irbid, Jordan.
E-mail: alaammour@yahoo.com
Mohamed Illafe, Mohamed Illafe: School of Engineering, Math, \& Technology, Navajo Technical University, Crownpoint, NM 87313, USA.
E-mail: millafe@navajotech.edu
Received: October 10, 2018.
Accepted: December 26, 2018.

