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Abstract In the present paper, we define a new general subclass of bi-univalent functions
involving a differential operator in the open unit disk U and determine estimates for the general
Taylor-Maclaurin coefficients of the functions in this class. For this purpose, we use the Faber
polynomial expansions. Several connections to some of the earlier known results are also pointed
out.

1 Introduction

Let A denote the class of all analytic functions f defined in the open unit disk U = {z ∈ C :
|z| < 1} and normalized by the conditions f(0) = 0 and f ′(0) = 1. Thus each f ∈ A has a
Taylor-Maclaurin series expansion of the form:

f(z) = z +
∞∑
n=2

anz
n, (z ∈ U). (1.1)

Further, let S denote the class of all functions f ∈ A which are univalent in U (for details,
see [10]; see also some of the recent investigations [3, 6, 7, 8, 23]). And let C be the class of

functions Φ(z) = 1+
∞∑
n=1

Φnz
n that are analytic in U and satisfy the condition Re(Φ(z)) > 0 in

U. By the Caratheodory’s lemma (see [10]) we have |Φ(z)| ≤ 2.

Let the functions f, g be analytic in U. If there exists a Schwarz function$, which is analytic
in U under the conditions

$(0) = 0, |$(z)| ≤ 1,

such that
f(z) = g($(z)), z ∈ U,

then, the function f is subordinate to g in U, and we write f(z) ≺ g(z).

By the Koebe one-quarter theorem (for details, (see [10]), we know that the image of U under
every function f ∈ A contains a disk of radius 1

4 . According to this, every function f ∈ A has
an inverse map f−1 that satisfies the following conditions:

f−1(f(z)) = z (z ∈ U),

and

f
(
f−1(w)

)
= w

(
|w| < r0(f); r0(f) ≥

1
4

)
.
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In fact, the inverse function is given by

g(w) = f−1(w) = w − a2w
2 + (2a2

2 − a3)w
3 − (5a3

2 − 5a2a3 + a4)w
4 + · · · . (1.2)

A function f ∈ A is said to be bi-univalent in U if both f(z) and f−1(z) are univalent in U.
Let Σ denote the class of bi-univalent functions in U given by (1.1). Examples of functions in
the class Σ are

z

1− z
, − log(1− z), 1

2
log
(

1 + z

1− z

)
, · · · .

It is worth noting that the familiar Koebe function is not a member of Σ, since it maps the
unit disk U univalently onto the entire complex plane except the part of the negative real axis
from −1/4 to −∞. Thus, clearly, the image of the domain does not contain the unit disk U. For
a brief history and some intriguing examples of functions and characterization of the class Σ, see
Srivastava et al. [20], Yousef et al. [24, 25, 26], and Frasin and Aouf [12].

In 1967, Lewin [18] investigated the bi-univalent function class Σ and showed that |a2| <
1.51. Subsequently, Brannan and Clunie [9] conjectured that |a2| ≤

√
2. On the other hand,

Netanyahu [19] showed that max
f∈Σ
|a2| = 4

3 . The best known estimate for functions in Σ has been

obtained in 1984 by Tan [21], that is, |a2| < 1.485. The coefficient estimate problem for each of
the following Taylor-Maclaurin coefficients |an| (n ∈ N\{1, 2}) for each f ∈ Σ given by (1.1) is
presumably still an open problem.

The Faber polynomials introduced by Faber [11] play an important role in various areas of
mathematical sciences, especially in geometric function theory. The recent publications [13] and
[14] applying the Faber polynomial expansions to meromorphic bi-univalent functions motivated
us to apply this technique to classes of analytic bi-univalent functions. In the literature, there are
only a few works determining the general coefficient bounds |an| for the analytic bi-univalent
functions given by (1.1) using Faber polynomial expansions (see for example, [15, 16, 17]).
Hamidi and Jahangiri [15] considered the class of analytic bi-close-to-convex functions. Ja-
hangiri and Hamidi [17] considered the class defined by Frasin and Aouf [12], and Jahangiri et
al. [16] considered the class of analytic bi-univalent functions with positive real-part derivatives.

2 The class BΣ(µ, λ,Φ, ξ)

Yousef et al. [25] have introduced and studied the following subclass of analytic bi-univalent
functions:

Definition 2.1. For λ ≥ 1, µ ≥ 0, δ ≥ 0 and 0 ≤ α < 1, a function f ∈ Σ given by (1.1) is said
to be in the class Bµ

Σ
(α, λ, δ) if the following conditions hold for all z, w ∈ U:

Re

(
(1− λ)

(
f(z)

z

)µ
+ λf ′(z)

(
f(z)

z

)µ−1

+ ξδzf ′′(z)

)
> α (2.1)

and

Re

(
(1− λ)

(
g(w)

w

)µ
+ λg′(w)

(
g(w)

w

)µ−1

+ ξδwg′′(w)

)
> α, (2.2)

where the function g(w) = f−1(w) is defined by (1.2) and ξ = 2λ+µ
2λ+1 .

Using the Faber polynomial expansion of functions f ∈ A of the form (1.1), the coefficients
of its inverse map g = f−1 may be expressed as in [1]:

g(w) = f−1(w) = w +
∞∑
n=2

1
n
K−nn−1 (a2, a3, ...)w

n, (2.3)
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where

K−nn−1 =
(−n)!

(−2n+ 1)! (n− 1)!
an−1

2 +
(−n)!

(2 (−n+ 1))! (n− 3)!
an−3

2 a3 +
(−n)!

(−2n+ 3)! (n− 4)!
an−4

2 a4

(2.4)

+
(−n)!

(2 (−n+ 2))! (n− 5)!
an−5

2

[
a5 + (−n+ 2) a2

3
]
+

(−n)!
(−2n+ 5)! (n− 6)!

an−6
2

[a6 + (−2n+ 5) a3a4] +
∑
j≥7

an−j2 Vj ,

such that Vj with 7 ≤ j ≤ n is a homogeneous polynomial in the variables a2, a3, ..., an [2].

In particular, the first three terms of K−nn−1 are

K−2
1 = −2a2, K

−3
2 = 3

(
2a2

2 − a3
)
, K−4

3 = −4
(
5a3

2 − 5a2a3 + a4
)
. (2.5)

In general, for any p ∈ N := {1, 2, 3, ...}, an expansion of Kp
n is as in [1],

Kp
n = pan +

p(p− 1)
2

D2
n +

p!
(p− 3)!3!

D3
n + · · ·+

p!
(p− n)!n!

Dn
n, (2.6)

whereDp
n = Dp

n (a2, a3, ...) , and by [22],Dm
n (a1, a2, ..., an) =

∞∑
n=1

m!
i1!...in!a

i1
1 ...a

in
n while a1 = 1,

and the sum is taken over all non-negative integers i1, ..., in satisfying i1 + i2 + · · · + in = m,
i1 + 2i2 + · · ·+ nin = n, it is clear that Dm

n (a1, a2, ..., an) = an1 .

Now, we are ready to establish a new subclass of analytic and bi-univalent functions based
on subordination.

Definition 2.2. For λ ≥ 1, µ ≥ 0, and δ ≥ 0, A function f ∈ Σ is said to be in the class
BΣ(µ, λ,Φ, ξ), if the following subordinations are satisfied:

(1− λ)
(
f(z)

z

)µ
+ λf ′(z)

(
f(z)

z

)µ−1

+ ξδzf ′′(z) ≺ Φ(z) (2.7)

and

(1− λ)
(
g(w)

w

)µ
+ λg′(w)

(
g(w)

w

)µ−1

+ ξδwg′′(w) ≺ Φ(w) (2.8)

where the function g(w) = f−1(w) is defined by (1.2) and ξ = 2λ+µ
2λ+1 .

3 Coefficient bounds for the function class BΣ(µ, λ,Φ, ξ)

Theorem 3.1. For λ ≥ 1, µ ≥ 0,and δ ≥ 0, let the function f ∈BΣ(µ, λ,Φ, ξ) be given by (1.1).
Then

|a2| ≤ min

{
2

µ+ λ+ 2ξδ
,

√
8

(µ+ 2λ)
(
µ+ 1 + 12δ

2λ+1

)}
and

|a3| ≤ min
{

4
(µ+λ+2ξδ)2 ,

8
(µ+2λ)(µ+1+ 12δ

2λ+1)

}
+

2
(µ+ 2λ)

(
1 + 6δ

2λ+1

) .
Proof. Let f ∈ BΣ(µ, λ,Φ, ξ).The inequalities (2.7) and (2.8) imply the existence of two posi-
tive real part functions

$(z) = 1 +
∞∑
n=1

tnz
n
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and

ϕ(w) = 1 +
∞∑
n=1

snz
n

where Re ($(z)) > 0 and Re (ϕ(w)) > 0 in C so that

(1− λ)
(
f(z)

z

)µ
+ λf ′(z)

(
f(z)

z

)µ−1

+ ξδzf ′′(z) = Φ ($(z)) , (3.1)

(1− λ)
(
g(w)

w

)µ
+ λg′(w)

(
g(w)

w

)µ−1

+ ξδwg′′(w) = Φ (ϕ(w)) . (3.2)

It follows from (3.1) and (3.2) that

(µ+ λ+ 2ξδ) a2 = Φ1t1 (3.3)

(µ+ 2λ)
[
µ− 1

2
a2

2 +

(
1 +

6δ
2λ+ 1

)
a3

]
= Φ1t2 + Φ2t

2
1, (3.4)

and
− (µ+ λ+ 2ξδ) a2 = Φ1s1, (3.5)

(µ+ 2λ)
[(

µ+ 3
2

+
12δ

2λ+ 1

)
a2

2 −
(

1 +
6δ

2λ+ 1

)
a3

]
= Φ1s2 + Φ2s

2
1. (3.6)

From (3.3) and (3.5), we find

|a2| ≤
|Φ1t1|

µ+ λ+ 2ξδ
=

|Φ1s1|
µ+ λ+ 2ξδ

≤ 2
µ+ λ+ 2ξδ

. (3.7)

From (3.4) and (3.6), we get

(µ+ 2λ)
(
µ+ 1 +

12δ
2λ+ 1

)
a2

2 = Φ1 (t2 + s2) + Φ2
(
t21 + s2

1
)

or, equivalently

|a2| ≤
√

8
(µ+ 2λ)

(
µ+ 1 + 12δ

2λ+1

) . (3.8)

Next, in order to find the bound on the coefficient |a3|, we subtract (3.6) from (3.4). We thus
get

2 (µ+ 2λ)
(

1 +
6δ

2λ+ 1

)(
a3 − a2

2
)
= Φ1 (t2 − s2) + Φ2

(
t21 − s2

1
)

(3.9)

or

|a3| ≤ |a2|2 +
|Φ1 (t2 − s2)|

2 (µ+ 2λ)
(
1 + 6δ

2λ+1

) (3.10)

= |a2|2 +
2

(µ+ 2λ)
(
1 + 6δ

2λ+1

) .
Upon substituting the value of a2

2 from (3.7) and (3.8) into (3.10), it follows that

|a3| ≤
4

(µ+ λ+ 2ξδ)2 +
2

(µ+ 2λ)
(
1 + 6δ

2λ+1

)
and

|a3| ≤
8

(µ+ 2λ)
(
µ+ 1 + 12δ

2λ+1

) + 2
(µ+ 2λ)

(
1 + 6δ

2λ+1

)
Which completes the proof of Theorem 3.1.
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Theorem 3.2. Let f ∈ BΣ(µ, λ,Φ, ξ). If am = 0 with 2 ≤ m ≤ n− 1, then

|an| ≤
2

µ+ (n− 1)λ+ n (n− 1) ξδ
(n ≥ 4). (3.11)

Proof. By using the Faber polynomial expansion of functions f ∈ A of the form (1.1) and its
inverse map g = f−1, we can write

(1−λ)
(
f(z)

z

)µ
+λf ′(z)

(
f(z)

z

)µ−1

+ξδzf ′′(z) = 1+
∞∑
n=2

Fn−1 (a2, a3, ..., an) z
n−1 (3.12)

and

(1− λ)
(
g(w)

w

)µ
+ λg′(w)

(
g(w)

w

)µ−1

+ ξδwg′′(w) = 1 +
∞∑
n=2

Fn−1 (A2, A3, ..., An)w
n−1

(3.13)
where

F1 = (µ+ λ+ 2ξδ)a2, F2 = (µ+ 2λ)
[
µ− 1

2
a2

2 +

(
1 +

6δ
2λ+ 1

)
a3

]
(3.14)

and, in general (see [5])

Fn−1 (a2, a3, ..., an) = [µ+ (n− 1)λ+ n (n− 1) ξδ]× [(µ− 1)!]

×
∞∑

i1+2i2+···+(n−1)in−1=n−1

(
µ+ nλ

µ+ nλ+ n (n+ 1) ξδ

)1−in−1

·

ai12 a
i2
3 ...a

in−1
n

i1!i2! · · · in−1! [µ− (i1 + i2 + · · ·+ in−1)]!
.

Next, by using the Faber polynomial expansion of functions $,ϕ ∈ C, we also obtain

Φ ($(z)) = 1 +
∞∑
n=1

∞∑
k=1

ΦkF
k
n (t1, t2, ..., tn) z

n, (3.15)

and

Φ (ϕ(z)) = 1 +
∞∑
n=1

∞∑
k=1

ΦkF
k
n (s1, s2, ..., sn)w

n. (3.16)

Comparing the corresponding coefficients yields

[µ+ (n− 1)λ+ n (n− 1) ξδ] an =
n−1∑
k=1

ΦkF
k
n−1 (t1, t2, ..., tn−1) (n ≥ 2)

and

[µ+ (n− 1)λ+ n (n− 1) ξδ]An =
n−1∑
k=1

ΦkF
k
n−1 (s1, s2, ..., sn−1) (n ≥ 2). (3.17)

Note that for am = 0, 2 ≤ m ≤ n− 1, we have An = −an and so

[µ+ (n− 1)λ+ n (n− 1) ξδ] an = Φ1tn−1,

− [µ+ (n− 1)λ+ n (n− 1) ξδ] an = Φ1sn−1, (3.18)

Now taking the absolute values of either of the above two equations and using the facts that
|Φ1| ≤ 2, |tn−1| ≤ 1, and |sn−1| ≤ 1, we obtain

|an| ≤
|Φ1tn−1|

µ+ (n− 1)λ+ n (n− 1) ξδ
=

|Φ1sn−1|
µ+ (n− 1)λ+ n (n− 1) ξδ

(3.19)

≤ 2
µ+ (n− 1)λ+ n (n− 1) ξδ

(3.20)

This evidently completes the proof of Theorem 3.2.
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Remark 3.3. As a final remark, for δ = 0 in
(i) Theorem 3.1 we obtain Theorem 1 in [4].
(ii) Theorem 3.2 we obtain Theorem 2 in [4].
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