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AbstractIn this paper, we investigate symmetric q−Dirac operator acting in L2
q((0, a),C2).

We describe maximal dissipative, maximal accumulative, self-adjoint and the other extensions of
such operators via the boundary conditions. We construct a self-adjoint dilation of the dissipative
operator and determine the scattering matrix of dilation. Later, we construct a functional model
of the diisipative operator and define its characteristic function. Finally, we prove that all root
vectors of the dissipative operator are complete in the Hilbert space L2

q((0, a),C2).

1 Introduction

Studies on quantum analysis (q−analysis) began in the 19th century by Jackson [1]. Since then,
the quantum analysis play an important role in various fields of science and engineering for
example, the theory of relativity, quantum theory, basic hypergeometric functions, string theory,
quantum chromodynamics. For more information, see [3], [2].

In this paper, we consider the following q−Dirac equations:

−1
q
Dq−1y2 + p (x) y1 = λy1, (1.1)

Dqy1 + r (x) y2 = λy2,

where λ is a complex parameter, and p and r are q−regular at zero and q is a positive number
which is less than 1. This equation is the q−analogue of the one dimensional Dirac system

−y′2 + p (x) y1 = λy1, (1.2)

y′1 + r (x) y2 = λy2.

As is known, The equation (1.2) describe a relativistic electron in the electrostatic field (see [4]).
On the other hand, the class of dissipative operator is one of the main research areas of the

operator theory. In spectral analysis of dissipative operators, the theory of dilations with appli-
cations of functional models is one of the basic methods. Specially, the characteristic function
carries important information regarding the spectral properties of these operators. We know that
the absence of the singular factor in the factorization of the characteristic function is guarantee
the completeness of the system of root vectors of maximal dissipative operators [6].

In the present article, we work q−Dirac operator acting in the Hilbert spaceH := L2
q((0, a),C2) (0 <

a < ∞). In Section 2, we construct a space of boundary value for minimal symmetric q−Dirac
operator and describe all the maximal dissipative, maximal accumulative, self-adjoint and other
extensions of such operator. In Section 3, we construct a self-adjoint dilation and its incoming
and outgoing spectral representations. Thus, we determine the scattering matrix of the dila-
tion according to the Lax and Phillips scheme [5], [6]. In Section 4, using incoming spectral
representations, we construct a functional model of the maximal dissipative q−Dirac operator.
Furthermore, we determine characteristic function of this operator. Finally, we prove that all root
vectors of the maximal dissipative q−Dirac operator are complete in the space H .
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A similar way was employed earlier in the differential/difference operator cases in [8]-[10],
[15]-[17].

Now, we recall some necessary concepts of quantum analysis for convenience.
Following the standard notations in [7], [2], let q be a positive number with 0 < q < 1,

A ⊂ R and a ∈ A. A q-difference equation is an equation that contains q−derivatives of a
function defined on A. Let y be a complex-valued function on A. The q-difference operator Dq

is defined by

Dqy (x) =
y (qx)− y (x)
(q − 1)x

for all x ∈ A.

The q−derivative at zero is defined by

Dqy (0) = lim
n→∞

y (qnx)− y (0)
qnx

(x ∈ A),

if the limit exists and does not depend on x. A right-inverse to Dq, the Jackson q−integration is
given by ∫ x

0
f (t) dqt = x (1− q)

∞∑
n=0

qnf (qnx) (x ∈ A),

provided that the series converges, and∫ b

a

f (t) dqt =

∫ b

0
f (t) dqt−

∫ a

0
f (t) dqt (a, b ∈ A).

A function f which is defined on A, 0 ∈ A, is said to be q−regular at zero if

lim
n→∞

f (xqn) = f (0) ,

for every x ∈ A. Through the remainder of the paper, we deal only with functions q−regular at
zero. Let L2

q(0, a) be the space of all complex-valued functions defined on [0, a] such that

‖f‖ :=
(∫ a

0
|f (x)| dqx

)1/2

<∞.

The space L2
q (0, a) is a separable Hilbert space with the inner product

(f, g) :=
∫ a

0
f (x) g (x)dqx, f, g ∈ L2

q(0, a),

and the orthonormal basis

φn (x) =

{ 1√
x(1−q)

, x = aqn,

0, otherwise,

where n = 0, 1, 2, ...(see [2]).

2 Extensions of symmetric q−Dirac Operators

In this section, we describe all extensions (dissipative, accumulative, self-adjoint and other) of
symmetric q−Dirac Operators. We consider the q−Dirac systems

Γy :=

{
− 1
qDq−1y2 + p (x) y1

Dqy1 + r (x) y2
= λy =

(
λy1

λy2

)

where p and r are real-valued functions defined on [0, a] and q−regular at zero and q is a positive
number which is less that 1.



202 B. P. Allahverdiev and Hüseyin Tuna

Now, using the inner product

(f, g) :=
∫ a

0
(f (x) , g (x))C2 dqx,

we introduce convenient Hilbert space H := L2
q((0, a),C2) (0 < a <∞) of vector-valued func-

tions.

Let us consider the set D consisting of all vector-valued functions y =

(
y1

y2

)
∈ H in

which y1 and y2 are q−regular at zero and Γy ∈ H. We define the maximal operator ϒmax on the
set D by the equality ϒmaxy := Γy. Now we have a

Lemma 2.1 (Green’s formula). Let y =

(
y1

y2

)
, z =

(
z1

z2

)
∈ D. Then, we have

(Γy, z)− (y,Γz) = [y, z]a − [y, z]0 ,

where [y, z]x := y1 (x) z2 (q−1x)− z1 (x)y2
(
q−1x

)
.

Proof. Let y, z ∈ D. Then, we obtain

(Γy, z)− (y,Γz) =

∫ a

0

(
−1
q
Dq−1y2 + p (x) y1

)
z1dqx

+

∫ a

0
(Dqy1 + r (x) y2) z2dqx

−
∫ a

0
y1

(
−1
q
Dq−1z2 + p (x) z1

)
dqx

−
∫ a

0
y2(Dqz1 + r (x) z2)dqx

= −
∫ a

0

[(
1
q
Dq−1y2

)
z1 + y2(Dqz1)

]
dqx

+

∫ a

0

[
(Dqy1) z2 + y1

(
1
q
Dq−1z2

)]
dqx

Since

Dq(z1 (x)y2
(
q−1x

)
) =

(
Dqy2

(
q−1x

))
Dq

(
q−1x

)
(z1 (x) + y2 (x) (Dqz1 (x))

=
1
q
(Dq−1y2)z1 + y2(Dqz1)

and

Dq(z2 (q−1x)y1 (x)) = (Dqz2 (q−1x))Dq (q−1x)y1 (x) + z2 (x) (Dqy1 (x))

=
1
q
(Dq−1z2)y1 + z2 (x)Dqy1 (x) .

Hence we get

(Γy, z)− (y,Γz) = −
∫ a

0
Dq(z1 (x)y2

(
q−1x

)
)dqx

+

∫ a

0
Dq(y1(x)z2 (q−1x))dqx =

∫ a

0
Dq

[
y1(x)z2 (q−1x)− z1(x)y2

(
q−1x

)]
dqx

= [y, z]a − [y, z]0
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Let Dmin denote the linear set of all vectors y ∈ D satisfying the conditions

y1 (0) = y2 (0) = y1 (a) = y2
(
aq−1) = 0.

If we restrict the operator ϒmax to the set Dmin, then we obtain the minimal operator ϒmin. It is
clear that ϒ∗min = ϒmax, and ϒmin is a closed symmetric operator (see [11] ). Now we recall the
following.

Definition 2.2. A linear operator M (with dense domain D (M) ) acting on some Hilbert space
H is called dissipative (accumulative) if Im (Mf, f) ≥ 0 ( Im (Mf, f) ≤ 0) for all f ∈
D (M) and maximal dissipative (maximal accumulative) if it does not have a proper dissipative
(accumulative) extension (see [8]-[10]).

Definition 2.3. A triplet (H,Λ1,Λ2) is called a space of boundary values of a closed symmetric
operator M on a Hilbert space H if Λ1 and Λ2 are linear maps from D (M∗) to H, with equal
deficiency numbers and such that:

i) For every f, g ∈ D (M∗) we have

(M∗f, g)H − (f,M∗g)H = (Λ1f,Λ2g)H − (Λ2f,Λ1g)H ;

ii) For any F1, F2 ∈ H there is a vector f ∈ D (A∗) such that Λ1f = F1 and Λ2f = F2 (see
[12]).

Let’s define by Λ1, Λ2 the linear maps from D to C2 by the formula

Λ1y =

(
−y1 (0)
y1 (a)

)
, Λ2y =

(
y2 (0)

y2
(
aq−1

) ) . (2.1)

Now we will state and prove a theorem.

Theorem 2.4. The triplet
(
C2,Λ1,Λ2

)
defined by (3) is a boundary spaces of the operator ϒmin.

Proof. Let y, z ∈ D. Then, we have

(Λ1y,Λ2z)C2 − (Λ2y,Λ1z)C2 = −y1 (0) z2 (0) + z1 (0) y2 (0)

+y1 (a) z2
(
aq−1)− z1 (a) y2

(
aq−1) .

By Green’s formula, we obtain

(Λ1y,Λ2z)C2 − (Λ2y,Λ1z)C2 = [y, z]a − [y, z]0 .

Hence
(ϒmaxy, z)H − (y,ϒmaxz)H = (Λ1y,Λ2z)C2 − (Λ2y,Λ1z)C2 .

Thus, we obtain the first condition of the definition of a space of boundary value.

Now, we will prove the second condition. Let u =

(
u1

u2

)
, v =

(
v1

v2

)
∈ C2. Then the

vector-valued function

y (t) =

(
y1

y2

)
= α1 (t)u1 (t) + α2 (t) v1 (t) + β1 (t)u2 (t) + β2 (t) v2 (t) ,

where α1 (t) =

(
α11 (t)

α12 (t)

)
, α2 (t) =

(
α21 (t)

α22 (t)

)
, β1 (t) =

(
β11 (t)

β12 (t)

)
, β2 (t) =

(
β21 (t)

β22 (t)

)
∈

H satisfy the conditions

α11 (0) = −1, α12 (0) = α11 (a) = α12
(
aq−1) = 0,

α22 (0) = 1, α21 (0) = α21 (a) = α22
(
aq−1) = 0,

β11 (a) = 1, β11 (0) = β12 (0) = β12
(
aq−1) = 0,

β22
(
aq−1) = 1, β21 (0) = β21 (a) = β22 (0) = 0,

belongs to the set D and Λ1y = u, Λ2y = v. This finishes the proof.
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Corollary 2.5. For any contraction K in C2 the restriction of the operator ϒmax to the set of
functions y ∈ D satisfying either

(K − I)Λ1y + i (K + I)Λ2y = 0 (2.2)

or
(K − I)Λ1y − i (K + I)Λ2y = 0 (2.3)

is respectively the maximal dissipative and accumulative extension of the operator ϒmin. Con-
versely, every maximal dissipative (accumulative) extension of the operator ϒmin is the restriction
of ϒmax to the set of functions y ∈ D satisfying (2.2) ( (2.3) ), and the extension uniquely de-
termines the contraction K. Conditions (2.2) ( (2.3) ), in which K is an isometry describe the
maximal symmetric extensions of ϒmin in H . If K is unitary, these conditions define self-adjoint
extensions.

In particular, the boundary conditions

y2 (0) + α1y1 (0) = 0, (2.4)

y2
(
aq−1)+ α2y1 (a) = 0, (2.5)

with Imα1 ≥ 0 or α1 = ∞, Imα2 ≥ 0 or α2 = ∞, ( Imα1 = 0 or α1 = ∞, Imα2 = 0
or α2 = ∞) describe the maximal dissipative (self-adjoint) extensions of ϒmin with separated
boundary conditions. Note that if α1 =∞ (α2 =∞), then the boundary condition (2.4) ( (2.5) )
should be replaced by y1 (0) = 0 (y1 (a) = 0).

From now on, we shall study the maximal dissipative operators ϒα1α2 generated by (1.1) and
the boundary conditions (2.4) and (2.5) with =α1 > 0 and Imα2 = 0 or α2 =∞.

3 Self-adjoint dilation

While we investigate the spectral analysis of the maximal dissipative operators, we will use the
functional model theory of Sz.-Nagy-Foiaş (see [6]). Hence, we must construct the characteristic
function of a contraction. But this is not easy. To overcome this problem, we will use the abstract
scattering function of Lax-Phillips ( see [5]) because it is unitary equivalent to the characteristic
function of Sz.-Nagy-Foias (see [6]).

In this section, we construct a self-adjoint dilation and its incoming and outgoing spectral
representations. Later, we determine the scattering matrix of the dilation according to the Lax
and Phillips scheme [5], [6].

Now, let us define the main Hilbert space of the dilation H =τ− ⊕ H ⊕ τ+ where τ− =
L2 (−∞, 0) and τ+ = L2 (0,∞) are the “incoming” and “outgoing” subspaces. In the space H,
we consider the operator Γ on the set D (Γ) , its elements consisting of vectors w = 〈ϕ−, y, ϕ+〉,
generated by the expression

Γ〈ϕ−, y, ϕ+〉 = 〈i
dϕ−
dξ

,Γy, i
dϕ+

dζ
〉 (3.1)

satisfying the conditions: ϕ− ∈W 1
2 (−∞, 0) , ϕ+ ∈W 1

2 (0,∞) , y ∈ H,

y2 (0)− α1y1 (0) = γϕ− (0) , y2 (0)− α1y1 (0) = γϕ+ (0) ,

y2
(
aq−1)− α2y1 (a) = 0.

where W 1
2 are Sobolev spaces and γ2 := 2 Imα1, γ > 0.

Theorem 3.1. The operator Γ is self-adjoint inH and it is a self-adjoint dilation of the operator
ϒα1α2 .

Proof. Let f, g ∈ D (Γ) , f = 〈ϕ−, y, ϕ+ 〉 and g = 〈ψ−, z, ψ+〉. Then we have

(Γf, g)H − (f,Γg)
H
= (Γ〈ϕ−, y, ϕ+〉, 〈ψ−, z, ψ+〉)− (〈ϕ−, y, ϕ+〉,Γ〈ψ−, z, ψ+〉)
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= i

0∫
−∞

dϕ−
dξ

ψ−dξ + (Γy, z)H + i

∞∫
0

dϕ+

dξ
ψ+dξ

−i
0∫
−∞

ϕ−
dψ−
dξ

dξ − (y,Γz)H − i
∞∫
0

ϕ+
dψ+

dξ
dξ

= i

0∫
−∞

dϕ−
dξ

ψ−dξ + [y, z]a + i

∞∫
0

dϕ+

dξ
ψ+dξ

−i
0∫
−∞

ϕ−
dψ−
dξ

dξ − [y, z]0 − i
∞∫
0

ϕ+
dψ+

dξ
dξ

= iψ− (0)ϕ− (0)− iϕ+ (0)ψ+ (0) + [y, z]a − [y, z]0.

By direct computation, we get

iψ− (0)ϕ− (0)− iϕ+ (0)ψ+ (0) + [y, z]a − [y, z]0 = 0.

Thus, Γ is a symmetric operator.
Now, we will prove that Γ is self-adjoint, i.e., Γ∗ ⊆ Γ. Let g = 〈ψ−, z, ψ+〉 ∈ D (Γ∗) and

Γ∗g = g∗ = 〈ψ∗−, z∗, ψ∗+〉 ∈ H, such that

(Γf, g)H = (f,Γ∗g)H = (f, g∗)H . (3.2)

Then, it is not difficult to show that ψ− ∈ W 1
2 (−∞, 0) , ψ+ ∈ W 1

2 (0,∞) , g ∈ D (Γ) and
g∗ = Γg. Using (3.2), we obtain

(Γf, g)H = (f,Γg)H , f ∈ D (Γ∗) .

Furthermore, g ∈ D (Γ∗) satisfies the conditions

y2 (0)− α1y1 (0) = γϕ− (0) , y2 (0)− α1y1 (0) = γϕ+ (0) ,

y2
(
aq−1)− α2y1 (a) = 0.

Consequently, D (Γ∗) ⊆ D (Γ) , i.e., Γ is self-adjoint.
On the other hand, we know that the self-adjoint operator Γ generates on H a unitary group

Ut = exp (iΓt) (t ∈ R). Let denote by P : H → H and P1 : H → H the mapping acting
according to the formulae P : 〈ϕ−, y, ϕ+〉 → y and P1 : y → 〈0, y, 0〉. Let Zt := PU tP1, t ≥ 0.
Then, the family {Zt} (t ≥ 0) of operators is a strongly continuous semigroup of completely
nonunitary contraction on H . The generator of this semigroup is defined by the formula

By = lim
t→+0

1
it
(Zty − y)

The domain ofB consists of all the vectors for which the limit exists. The operatorB is maximal
dissipative. The operator Γ is called the self-adjoint dilation of B (see [6], [14]). We next show
that ϒα1α2 = B and therefore Γ is self-adjoint dilation of B. For this purpose, it is sufficient to
verify the equality (see [6], [14])

P (Γ− λI)−1 P1y = (ϒα1α2 − λI)
−1
y, y ∈ H, text Imα1 < 0 text. (3.3)

Let (Γ− λI)−1 P1y = g = 〈ψ−, z, ψ+〉. Then, we have (Γ− λI) g = P1y. Conse-quently,
Γz − λz = y, ψ− (ξ) = ψ− (0) e−iλξ and ψ+ (ξ) = ψ+ (0) e−iλξ. Since g ∈ D (Γ) , then ψ− ∈
W 1

2 (−∞, 0) , it follows that ψ− (0) = 0, and consequently z satisfies the boundary condition
y2 (0)− α1y1 (0) = 0. Therefore z ∈ D (ϒα1α2) , and since point λ with Imλ < 0 cannot be an
eigenvalue of dissipative operator, then z = (ϒα1α2 − λI)

−1
y. Thus

(Γ− λI)−1 P1y = 〈0, (ϒα1α2 − λI)
−1
y, γ−1 (y2 (0)− α1y1 (0)) e−iλξ〉
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for y ∈ H and Imλ < 0. On applying the mapping P, we obtain (3.3). Furthermore, using by
(3.3), we get

(ϒα1α2 − λI)
−1

= P (Γ− λI)−1 P1 = −iP
∞∫
0

Ute−iλtdtP1

= −i
∞∫
0

Zte
−iλtdt = (B − λI)−1

, Imλ < 0,

i.e., ϒα1α2 = B.

On the other hand, the unitary group {Ut} has an important property which makes it possible
to apply it to the Lax-Phillips (see [5]). In the following theorem, we will give its properties.

Theorem 3.2. Let τ− = 〈L2 (−∞, 0) , 0, 0〉 and τ+ = 〈0, 0, L2 (0,∞)〉 be orthogonal incom-
ing and outgoing subspaces of the unitary group {Ut} , t ∈ R. Then they have the following
properties:

(i) Utτ− ⊂ τ−, t ≤ 0 and Utτ+ ⊂ τ+, t ≥ 0;
(ii) ∩

t≤0
Utτ− = ∩

t≥0
Utτ+ = {0} ;

(iii) τ− ⊥ τ+.

Proof. (i) For all λ, with Imλ < 0, we have

Rλf = (Γ− λI)−1
f = 〈0, 0,−ie−iλξ

ξ∫
0

eiλsϕ+ (s) ds〉, f = 〈0, 0, ϕ+〉 ∈ τ+,

i.e., Rλf ∈ τ+. Furthermore, if g ⊥ τ+, then

0 = (Rλf, g)H = −i
∞∫
0

e−iλt (Utf, g)H dt, text Imλ < 0.

which implies that (Utf, g)H = 0 for all t ≥ 0. Hence, for t ≥ 0, Utτ+ ⊂ τ+, the proof for τ− is
similar.

(ii) Let us define the mappings P+ : H → L2 (0,∞) and P+
1 : L2 (0,∞) → τ+ as follows

P+ : 〈ϕ−, y, ϕ+〉 → ϕ+ and P+
1 : ϕ → 〈0, 0, ϕ〉, respectively. We take into consider that the

semigroup of isometries Ut := P+UtP+
1 (t ≥ 0) is a one-sided shift in L2 (0,∞) . Indeed, the

generator of the semigroup of the one-sided shift Vt in L2 (0,∞) is the differential operator i ddξ
with the boundary condition ϕ (0) = 0. On the other hand, the generator S of the semigroup of
isometries Ut (t ≥ 0) is the operator

Sϕ = P+ΓP+
1 ϕ = P+Γ〈0, 0, ϕ〉 = P+〈0, 0, idϕ

dξ
〉 = i

dϕ

dξ
,

where ϕ ∈W 1
2 (0,∞) and ϕ (0) = 0. Since a semigroup is uniquely determined by its generator,

it follows that Ut = Vt, and, hence,

∩
t≥0
Utτ+ = 〈0, 0, ∩

t≤0
VtL

2 (0,∞)〉 = {0}.

(iii) The proof is clear.
Now, we will give a definition and three lemmas to prove the another property of incoming

and outgoing subspaces of the unitary group {Ut} , t ∈ R.

Definition 3.3 ([8]). In the Hilbert space H, the linear operator A (with domain D (A)) is called
simple (or completely non-self-adjoint) if there is no invariant subspace N ⊆ D (A) (N 6= {0})
of the operator A on which the restriction A to N is self-adjoint.
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Lemma 3.4. The operator ϒα1α2 is simple.

Proof. Suppose the assertion of the lemma is false. Then we could find a nontrivial subspaceH´⊂
H such that ϒα1α2 induces a self-adjoint operator ϓα1α2

with domainD(ϓα1α2
) = H´∩D (ϒα1α2) .

If y ∈ D(ϓα1α2
), then y ∈ D(ϓ∗α1α2

) and

y2 (0)− α1y1 (0) = 0, y2 (0)− α1y1 (0) = 0,

y2
(
aq−1)− α2y1 (a) = 0.

Since the eigenfunctions of the operator ϒα1α2 lie inH´ and are eigenfunctions of the operator ϓα1α2
,

we have y2 (0) = y1 (0) = 0. By the uniqueness theorem of the Cauchy problem for the equation
Γy = λy, we obtain y (x, λ) ≡ 0. Hence, the resolvent Rλ (ϒα1α2) of the operator ϒα1α2 is a
compact operator, and the spectrum of ϒα1α2 is purely discrete. Consequently, by the theorem
on expansion in the eigenvectors of the self-adjoint operator ϓα1α2

, we obtain H´ = {0} . This
contradicts our assumption.

Now, let us define H− = ∪
t≥0
Utτ−, H+ = ∪

t≤0
Utτ+. Then, we have a

Lemma 3.5. The equality H− +H+ = H holds.

Proof. From Theorem 3.2, we show that the subspaceH´ = H� (H− +H+) is invariant relative
to the group {Ut} and has the formH´ = 〈0, H ,́ 0〉, where H´ is a subspace in H. Therefore, if the
subspace H´

(
and hence also H

)́
were nontrivial, then the unitary group {Ut} restricted to this

subspace would be a unitary part of the group {Ut}, and hence, the restriction ϓα1α2
of ϒα1α2 to

H´ would be a self-adjoint operator in H.́ Then, it follows thatH´ = {0}, since the operator ϒα1α2

is simple.

Assume that ϕ (x, λ) =

(
ϕ1 (x, λ)

ϕ2 (x, λ)

)
and ψ (x, λ) =

(
ψ1 (x, λ)

ψ2 (x, λ)

)
are solutions of Γy =

λy satisfying the conditions

ϕ1 (0, λ) = 0, ϕ2 (0, λ) = −1, ψ1 (0, λ) = 1, ψ2 (0, λ) = 0.

The Titchmarsh-Weyl function m∞,α2 (λ) of the self-adjoint operator ϒ∞,α2 generated by the
boundary conditions y1 (0) = 0, y2

(
aq−1

)
− α2y1 (a) = 0 is determined by the condition

ψ2
(
aq−1)+m∞,α2 (λ)ϕ2

(
aq−1)− α2 [ψ1 (a) +m∞,α2 (λ)ϕ1 (a)] = 0.

Hence, we have

m∞,α2 (λ) = −
ψ2
(
aq−1

)
− α2ψ1 (a)

ϕ2 (aq−1)− α2ϕ1 (a)
. (3.4)

Note that the Weyl-Titchmarsh function m∞,α2 (λ) is a meromorphic function on C, and is a
holomorphic function with Imλ 6= 0, Imλ Imm∞,α2 (λ) > 0 and m∞,α2 (λ) = m∞,α2

(
λ
)
.

Then m∞,α2 (λ) has a countable number of isolated poles on the real axis, these poles are the
eigenvalues of the self-adjoint operator ϒ∞,α2 , and the operator ϒ∞,α2 (also every self-adjoint
extension of the symmetric operator ϒmin) has a purely discrete spectrum ([18], [19], [20]).

We set

Ω
−
λ (x, ξ, ζ) = 〈e−iλξ, 1

m∞,α2 (λ)− α1
γκ (x, λ) , Kα1α2 (λ) e

−iλζ〉, (3.5)

Ω
+
λ (x, ξ, ζ) = 〈Kα1α2 (λ) e

−iλξ,
1

m∞,α2 (λ)− α1
γκ (x, λ) , e−iλζ〉, (3.6)

where

κ (x, λ) = ψ (x, λ) +m∞,α2 (λ)ϕ (x, λ) ,

Kα1α2 (λ) =
m∞,α2 (λ)− α1

m∞,α2 (λ)− α1
. (3.7)
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It is clear that the vectors Ω
∓
λ (x, ξ, ζ) for real λ do not belong to the space H. However,

Ω
∓
λ (x, ξ, ζ) satisfies the equation ΓU = λU and the corresponding boundary conditions for

the operator Γ.

Lemma 3.6. Let us define the transformation F∓ : f →
∼
f∓ (λ) by

(F−f) (λ) : =
∼
f− (λ) :=

1√
2π

(f,Ωλ)H ,

(F+f) (λ) : =
∼
f+ (λ) :=

1√
2π

(
f,Ω+

λ

)
H , f = 〈ϕ−, y, ϕ+〉

where ϕ−, ϕ+, y are smooth, compactly supported functions. Then the transformation F∓
isometrically maps H∓ onto L2 (R). For all vectors f, g ∈ H∓, the Parseval equality and the
inversion formulae hold:

(f, g)H = (
∼
f−,

∼
g−)L2 =

∞∫
−∞

∼
f− (λ)

∼
g− (λ)dλ, f =

1√
2π

∞∫
−∞

∼
f− (λ)Ωλdλ, (3.8)

(f, g)H = (
∼
f+,

∼
g+)L2 =

∞∫
−∞

∼
f+ (λ)

∼
g+ (λ)dλ, f =

1√
2π

∞∫
−∞

∼
f+ (λ)Ω

+
λdλ, (3.9)

where
∼
f− (λ) = (F−f) (λ),

∼
g− (λ) = (F−g) (λ) ,

∼
f+ (λ) = (F+f) (λ) and

∼
g+ (λ) = (F+g) (λ) .

Proof. We will just prove the formula (3.8) since the proof of (3.9) is similar. By Paley-Wiener
theorem, we have

∼
f− (λ) =

1√
2π

(f,Ωλ)H =
1√
2π

0∫
−∞

ϕ− (ξ) e
−iλξdξ ∈ H2

−,

where f, g ∈ τ−, f = 〈ϕ−, 0, 0〉, g = 〈ψ−, 0, 0〉. Using Parseval equality for Fourier integrals,
we obtain

(f, g)H =

∞∫
−∞

ϕ− (ξ)ψ− (ξ)dξ =

∞∫
−∞

∼
f− (λ)

∼
g− (λ)dλ = (F−f,F−g)L2 ,

where H2
± denote the Hardy classes in L2 (R) consisting of the functions analytically extendible

to the upper and lower half-planes, respectively. Now, we extend to the Parseval equality to the
whole of H−. We consider in H− the dense set of H´

− of the vectors obtained as follows from
the smooth, compactly supported functions in τ− : f ∈ H´

− if f = Ut f0, f0 = 〈ϕ−, 0, 0〉,
ϕ− ∈ C∞0 (−∞, 0) , where T = Tf is a nonnegative number depending on f . If f, g ∈ H´

−,
then for T > Tf and T > Tg we have U−T f, U−T g ∈ τ−, moreover, the first components of
these vectors belong to C∞0 (−∞, 0) . Therefore, since the operators Ut (t ∈ R) are unitary, by
the equality

F−Utf = (Utf,Ωλ)H = eiλt (f,Ωλ)H = eiλtF−f,

we have
(f, g)H = (U−T f,U−T g)H = (F−U−T f,F−U−T g)L2

and
(eiλTF−f, e

iλTF−g)L2 = (
∼
f ,
∼
g)L2 . (3.10)

By taking the closure (3.10), we obtain the Parseval equality for the space H−. The inversion
formula is obtained from the Parseval equality if all integrals in it are considered as limits in the
of integrals over finite intervals. Finally

F−H− = ∪
t≥0

F−Utτ− = ∪
t≥0
eiλtH2

− = L2 (R) ,

that is F− maps H− onto the whole of L2 (R). The lemma is proved.
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It is immediate that the function Kα1α2 (λ) is meromorphic in C and all poles are in the lower
half-plane. From (3.7), |Kα1α2 (λ)| ≤ 1 for all λ ∈ R. Hence, it explicitly follows from the
formulae for the vectors Ωλ and Ω

+
λ that

Ω
+
λ = Kα1α2 (λ)Ωλ. (3.11)

Moreover, H− = H+. Together with Lemma 3.5, this shows that H− = H+ = H.
Summarizing, we have been proved the following theorem for the incoming and outgoing

subspaces (i.e., for the spaces τ− and τ+).

Theorem 3.7. ∪
t≥0
Utτ− = ∪

t≤0
Utτ+ = H.

Thus, the transformation F− isometrically mapsH− ontoL2 (R) with the subspace τ− mapped
onto H2

− and the operators Ut are transformed into the operators of multiplication by eiλt. This
means that F− is the incoming spectral representation for the group {Ut}. Similarly, F+ is
the outgoing spectral representation for the group {Ut} . It follows from (3.11) that the passage
from the F− representation of an element f ∈ H to its F+ representation is accomplished as
∼
f+ (λ) = Kα1α2 (λ)

∼
f− (λ) . Consequently, according to [5], we have proved the following.

Theorem 3.8. The scattering function of the group {Ut} is the function Kα1α2 (λ) i.e., the scat-
tering function of the self-adjoint operator Γ is the function Kα1α2 (λ) .

4 Functional model of the maximal dissipative q−Dirac operator

In this section, we construct a functional model of the maximal dissipative q−Dirac operator with
the help of incoming spectral representation. Furthermore, we determine characteristic function
of this operator and prove that all root vectors of the maximal dissipative q−Dirac operator are
complete.

Now, we will give some definitions.

Definition 4.1 ([6]). The analytic function S (λ) on the upper half-plane C+ is called inner func-
tion on C+ if |S (λ)| ≤ 1 for all λ ∈ C+ and |S (λ)| = 1 for almost all λ ∈ R

Definition 4.2 ([6]). Let us define Ψ = H2
+ � SH2

+, where S (λ) be an arbitrary nonconstant
inner function on the upper half-plane. It is obvious that Ψ 6= {0} is a subspace of the Hilbert
space H2

+. We consider the semigroup of operators Zt (t ≥ 0) acting in Ψ according to the
formula

Ztϕ = P
[
eiλtϕ

]
, ϕ = ϕ (λ) ∈ Ψ,

where P is the orthogonal projection from H2
+ onto Ψ. The generator of the semigroup {Zt} is

denoted by
Tϕ = lim

t→+0
(it)
−1

(Ztϕ− ϕ) ,

which T is a maximal dissipative operator acting in Ψ and with the domain D(T ) consisting
of all functions ϕ ∈ Ψ, such that the limit exists. The operator T is called a model dissipative
operator.

Recall that this model dissipative operator, which is associated with the names of Lax-Phillips
[5], is a special case of a more general model dissipative operator constructed by Nagy and Foiaş
[6]. The basic assertion is that S (λ) is the characteristic function of the operator T.

Let V = 〈0, H, 0〉, so that H =τ− ⊕ V ⊕ τ+. It follows from the explicit form of the unitary
transformation F− under the mapping F−

H → L2 (R) , f →
∼
f− (λ) = (F−f) (λ) , τ− → H2

−, τ+ → Kα1α2H
2
+, (4.1)

V → H2
+ �Kα1α2H

2
+, Ut → (F−UtF−1

−
∼
f−) (λ) = eiλt

∼
f− (λ) .

The formulas (4.1) show that operator ϒα1α2 is a unitarily equivalent to the model dissipative
operator with the characteristic function Kα1α2 (λ) . We have thus proved following theorem.
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Theorem 4.3. The characteristic function of the maximal dissipative operator ϒα1α2 coincides
with the function Kα1α2 (λ) defined by (3.7).

Theorem 4.4. For all the values of α1 with =α1 > 0, except possibly for a single value α1 = α0
1

and for fixed α2 ( Imα2 = 0 or α2 = ∞), the characteristic function Kα1α2 (λ) of the maximal
dissipative operator ϒα1α2 is a Blaschke product. The spectrum of ϒα1α2 is purely discrete and
belongs to the open upper half-plane. The operator ϒα1α2

(
α1 6= α0

1

)
has a countable number

of isolated eigenvalues with finite multiplicity and limit points at infinity. The system of all
eigenvectors and associated vectors (or all root vectors) of the operator ϒα1α2 is complete in the
space H .

Proof. It is obvious that Kα1α2 (λ) is an inner function in the upper half-plane, and it is mero-
morphic in the whole complex λ-plane. Therefore, we can say

Kα1α2 (λ) = eiλcBα1α2 (λ) , c = c (α1) ≥ 0, (4.2)

where Bα1α2 (λ) is a Blaschke product. Hence, we get

|Kα1α2 (λ)| ≤ e−c(α1) Imλ, Imλ ≥ 0. (4.3)

From (3.7), we obtain

m∞,α2 (λ) =
α1Kα1α2 (λ)− α1

Kα1α2 (λ)− 1
. (4.4)

If c (α1) > 0, ( Imα1 > 0), then (4.3) implies that

lim
x→+∞

Kα1α2 (ix) = 0,

and then (4.4) gives us that
lim

x→+∞
m∞,α2 (ix) = α0

1.

Since m∞,α2 (λ) does not depend on α1, this implies that c (α1) can be nonzero at not more than
a single point α1 = α0

1.
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