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Abstract The aim of this paper is to establish the existence and uniqueness of solution for
nonlinear implicit fractional differential equations with non local conditions. The arguments are
based upon the Krasnoselskii’s fixed point theorem and contraction mapping principle. Finally,
one illustrative example is given to demonstrate the theoretical results.

1 Introduction

Fractional calculus is a generalization of ordinary differentiation and integration to arbitrary
non-integer order. The origin of fractional calculus goes back to Newton and Leibniz in the sev-
entieth century. In recent years, fractional differential equations have been proved to be valuable
tools for the modeling of many phenomena in various fields of applied sciences and engineer-
ing such as acoustic control, signal processing, porous media, electrochemistry, viscoelastic-
ity, rheology, polymer physics, proteins, electromagnetics, optics, medicine, economics, astro-
physics, chemical engineering, chaotic dynamics, statistical physics and so on. see for example
([1],[3],[5],[6],[11],[12],[13],[14],[16],[18]), and the references therein. Due to its importance
in different fields, it is receiving increasing attention and has held a central place in attention
researchers and mathematicians.

In recent years, many authors have studied the existence of solutions of fractional differential
equations with Caputo fractional derivative. See for example ([2], [4], [8], [10], [17], [19], [20])
and references therein.

In [7], using Banach contraction principle, M. Benchohraa and S. Bouriaha discussed exis-
tence and stability results for nonlinear boundary value problem for implicit fractional differen-
tial equations (IFDES) of the type:

cDαy(t) = f(t, y(t), cDαy(t)), t ∈ J = [0, T ], T > 0, 0 < α ≤ 1

ay(0) + by(T ) = c

where cDα is the fractional derivative of caputo, f : J × R × R → R is a continuous function,
and a, b, c are real constants with a+ b 6= 0, and

cDαy(t) = f(t, y(t), cDαy(t)), t ∈ J = [0, T ], T > 0, 0 < α ≤ 1

y(0) + g(y) = y0

where g : C(J,R)→ R is a continuous function and y0 a real constant.
In [9], using Banach contraction principle, Schauder’s fixed point theorem and the nonlinear

alternative of Leray-Schauder type, M. Benchohra and J.E. Lazreg investigated the existence
and uniqueness results for nonlinear implicit fractional differential equations (NIFDEs) with
boundary conditions of the type:

cDαy(t) = f(t, y(t), cDαy(t)), t ∈ J = [0, T ], T > 0, 1 < α ≤ 2
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y(0) = y0, y(T ) = y1

where cDα is the fractional derivative of caputo, f : J × R × R → R is a given function and
y0, y1 ∈ R.

In [15], using Krasnoselskii’s fixed point theorem, G. M. N’Guérékata investigated the exis-
tence and uniqueness of solutions to the Cauchy problem for the fractional differential equation
with non local conditions of the type :

cDαy(t) = f(t, y(t)), t ∈ I = [0, T ], 0 < α < 1

y(0) + g(y) = y0

Motivated by the above cited works, in this paper, we investigate the existence and uniqueness re-
sults to the following nonlinear implicit fractional differential equation ( NIFDE ) with nonlocal
conditions:

cDαy(t) = f(t, y(t), cDαy(t)), t ∈ J = [0, T ], T > 0, 0 < α < 1 (1.1)

y(0) + g(y) = y0 (1.2)

where cDα is the fractional derivative of caputo, f : J × R × R → R is a continuous function,
g : C(J,R) → R is a continuous function and y0 a real constant. We take an example of non-
local conditions as follows:

g(y) =
p∑
i=1

ciy(ti) (1.3)

where ci, i=1,.....,p are constants and 0 < t1 < ....... < tp ≤ T.

2 Preliminaries

In this section, we collect some definitions, notations and results from ([13], [16],[20]) which
are used throughout this paper. By C(J, R) we denote the Banach space of continuous functions
from J into R with the norm

||y||∞ := sup{|y(t)| : t ∈ J}.

Definition 2.1. The fractional (arbitrary) order integral of the function h ∈ L1([0, T ],R+) of
order α ∈ R+ is defined by

Iαh(t) =
1

Γ(α)

∫ t

0
(t− s)α−1h(s) ds.

where Γ is the Euler gamma function defined by Γ(α) =
∫ +∞

0 tα−1e−t dt, α > 0.

Definition 2.2. For a function h given on the interval [0,T], the caputo fractional-order α of h, is
defined by

cDαh(t) =
1

Γ(n− α)

∫ t

0
(t− s)n−α−1h(n)(s) ds,

where n = [α] + 1 and [α] denotes the integer part of the real number α.

Lemma 2.3. Let α > 0 and n = [α] + 1. Then

Iα(cDαf(t)) = f(t)−
n−1∑
k=0

f (k)(0)
k!

tk.

Lemma 2.4. Let α ≥ 0. Then the differential equation

cDαh(t) = 0

has a solutions h(t) = c0 + c1t+ c2t
2 + .......+ cn−1t

n−1, where ci, i=0,1 ,2 ,......,n are constants
and n=[α]+1.
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Lemma 2.5. Let 0 < α ≤ 1 and let h : [0, T ] → R is a continuous function. Then the linear
problem

cDαy(t) = h(t), t ∈ J

y(0) + g(y) = y0

has a unique solution which is given by:

y(t) = y0 − g(y) +
1

Γ(α)

∫ t

0
(t− s)α−1h(s) ds.

Lemma 2.6. Let f : J×R×R→ R is a given continuous function, then the problem (1.1)–(1.2)
is equivalent to the followimg problem

y(t) = y0 − g(y) +
1

Γ(α)

∫ t

0
(t− s)α−1f(t, y(s), cDαy(s)) ds.

Theorem 2.7. (Krasnoselskii’s fixed point theorem) Let M be a closed convex and nonempty
subset of a Banach space X. Let A, B be two operators such that
(i) Ax+By ∈M whenever x, y ∈M ;
(ii) A is compact and continuous;
(iii) B is a contraction mapping.
Then there exists z ∈M such that z = Az +Bz.

3 Existence of Solutions

We investigate in our paper the NIFDE (1.1)-(1.2) with the following assumptions:

(H1): f : J ×R×R→ R is a given continuous function.

(H2): |f(t, x, y)− f(t, x̄, ȳ)| ≤ p(t) |x− x̄| + N |y − ȳ|, t ∈ J and x, y, x̄, ȳ ∈ R, where
p(t) ∈ C(J,R+), 0 < N < 1.

(H3): g : C(J,R) → R is a continuous function and ||g(x)− g(y)|| ≤ b ||x− y||, for all
x, y ∈ C(J,R).

(H4): |f(t, x, y)| ≤ q(t) |x| + L |y|, t ∈ J and x, y ∈ R, where q(t) ∈ C(J,R+) and
0 < L < 1.

Theorem 3.1. Under assumptions (H1)-(H3), if b < 1
2 and P ∗ ≤ (1−N)Γ(α+1)

2Tα , where P ∗ =
Sup{p(t) : t ∈ J}, then Eq. (1.1)–(1.2) has a unique solution.

Proof. Define T : C(J,R)→ C(J,R) by

Ty(t) = y0 − g(y) +
1

Γ(α)

∫ t

0
(t− s)α−1f(t, y(s), cDαy(s)) ds. (3.1)

Choose

R ≥ 2
(
|y0|+G+

MNTα

(1−N)Γ(α+ 1)
+

MTα

Γ(α+ 1)

)
(3.2)

and let

M = Supt∈J ||f(t, 0, 0)|| . (3.3)

Then we can show that T (BR) ⊂ BR, where BR := {y ∈ C(J,R) : ||y||∞ ≤ R}. So let y ∈ BR
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and set G = Supy∈C(J,R) ||g(y)|| . Thus we get

|Ty(t)| ≤ |y0|+G+
1

Γ(α)

∫ t

0
(t− s)α−1 |f(t, y(s), cDαy(s))| ds

≤ |y0|+G

+
1

Γ(α)

∫ t

0
(t− s)α−1 |f(t, y(s), cDαy(s))− f(t, 0, 0)| ds

+
1

Γ(α)

∫ t

0
(t− s)α−1 |f(t, 0, 0)| ds

≤ |y0|+G+
1

Γ(α)

∫ t

0
(t− s)α−1{p(s) |y(s)|+N |cDαy(s)|} ds

+
1

Γ(α)

∫ t

0
(t− s)α−1M ds

Note that, for any t ∈ J

|cDαy(t)| ≤ |f(t, y(t), cDαy(t))− f(t, 0, 0)|+ |f(t, 0, 0)|
≤ p(t) |y(t)|+N |cDαy(t)|+M

This gives

|cDαy(t)| ≤ p(t)

(1−N)
|y(t)|+ M

(1−N)
(3.4)

Using (3.4), we have
|Ty(t)|

≤ |y0|+G+
1

Γ(α)

∫ t

0
(t− s)α−1{p(s) |y(s)|+ Np(s)

(1−N)
|y(s)|

+
MN

(1−N)
}ds+ M

Γ(α)

∫ t

0
(t− s)α−1ds

≤ |y0|+G+
P ∗R

(1−N)Γ(α)

∫ t

0
(t− s)α−1ds

+
MN

(1−N)Γ(α)

∫ t

0
(t− s)α−1ds+

M

Γ(α)

∫ t

0
(t− s)α−1ds

≤
(
|y0|+G+

MNTα

(1−N)Γ(α+ 1)
+

MTα

Γ(α+ 1)

)
+

P ∗RTα

(1−N)Γ(α+ 1)
≤ R

by the choice of P ∗ and R.
Now take x, y ∈ C(J,R) and for any t ∈ J, then we have

|Tx(t)− Ty(t)| ≤ b ||x− y||+ 1
Γ(α)

∫ t

0
(t− s)α−1{p(t) |x(s)− y(s)|

+N |cDαx(s)− cDαy(s)|} ds

Note that, for any t ∈ J

|cDαx(t)− cDαy(t))| ≤ |f(t, x(t), cDαx(t))− f(t, y(t), cDαy(t)))|
≤ p(t) |x(t)− y(t)|+N |cDαx(t)− cDαx(t)|

This gives

|cDαx(t)− cDαy(t)| ≤ p(t)

(1−N)
|x(t)− y(t)| (3.5)
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Using (3.5), we have

||Tx(t)− Ty(t)||∞ ≤ ΩP∗.T.α ||x− y||∞ ,

where ΩP∗.T.α := b+ P∗Tα

(1−N)Γ(α+1) depends only on parameters of problem. And since ΩP∗.T.α <

1, by contraction mapping principle, T has a unique fixed point which is a unique solution of the
problem (1.1)–(1.2).

Our next result is based on Krasnoselskii’s fixed point theorem.

Theorem 3.2. Assume (H1),(H3) with b < 1, (H4) andQ∗ ≤ (1−L)Γ(α+1)
2Tα , whereQ∗ = Sup{q(t) :

t ∈ J}. Then Eq. (1.1)-(1.2) has at least one solution on J.

Proof. Choose R ≥ 2(|y0| + G) and consider BR := {y ∈ C(J,R) : ||y||∞ ≤ R}. Now we
define operators A, B on BR as follows:

Ax(t) =
1

Γ(α)

∫ t

0
(t− s)α−1f(t, x(s), cDαx(s)) ds,

and
Bx(t) = y0 − g(x).

Let x, y,∈ BR, t ∈ J and set G = Supy∈C(J,R) ||g(y)||, then we have

|Ax(t) +By(t)| ≤ |y0|+G+
1

Γ(α)

∫ t

0
(t− s)α−1 |f(t, x(s), cDαx(s))| ds

≤ |y0|+G+
1

Γ(α)

∫ t

0
(t− s)α−1{q(s) |x(s)|+ L |cDαx(s)|} ds

Note that, for any t ∈ J

|cDαx(t)| ≤ |f(t, x(t), cDαx(t))|
≤ q(t) |x(t)|+ L |cDαx(t)|

This gives

|cDαx(t)| ≤ q(t)

(1− L)
|x(t)| (3.6)

Using (3.6), we have

|Ax(t) +By(t)| ≤ |y0|+G+
1

Γ(α)

∫ t

0
(t− s)α−1{ q(s)

(1− L)
|x(s)|} ds

≤ |y0|+G+
Q∗RTα

(1− L)Γ(α+ 1)
≤ R

Thus

||Ax(t) +By(t)||∞ ≤ R.

This gives Ax+By ∈ BR. It is clear that from (H3), B is a contration mapping for b < 1. Since
x is continuous, then Ax(t) is continuous in view of (H1). Note that A is uniformly bounded on
BR. This follows from the inequality

||Ax(t)||∞ ≤
Q∗RTα

(1− L)Γ(α+ 1)

Now let’s prove Ax(t) is equicontinuous.
Let t1, t2 ∈ J and x ∈ BR
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|Ax(t1)−Ax(t2)|

≤ 1
Γ(α)

∫ t1

0
{(t1 − s)α−1 − (t2 − s)α−1} |f(t, x(s), cDαx(s))| ds

− 1
Γ(α)

∫ t2

t1

(t2 − s)α−1 |f(t, x(s), cDαx(s))| ds

≤ 1
Γ(α)

∫ t1

0
{(t1 − s)α−1 − (t2 − s)α−1}{q(s) |x(s)|+ L |cDαx(s)|}ds

+
1

Γ(α)

∫ t2

t1

(t2 − s)α−1{q(s) |x(s)|+ L |cDαx(s)|}ds

Using (3.6), we get

|Ax(t1)−Ax(t2)| ≤
1

Γ(α)

∫ t1

0
{(t1 − s)α−1 − (t2 − s)α−1} q(s)

(1− L)
|x(s)| ds

+
1

Γ(α)

∫ t2

t1

(t2 − s)α−1 q(s)

(1− L)
|x(s)| ds

≤ Q∗R

(1− L)Γ(α)

∫ t1

0
{(t1 − s)α−1 − (t2 − s)α−1} ds

+
Q∗R

(1− L)Γ(α)

∫ t2

t1

(t2 − s)α−1 ds

≤ Q∗R

(1− L)Γ(α+ 1)
{2(t2 − t1)α + tα1 − tα2 }.

which does not depend on x. So A(BR) is relatively compact. By Arzela-Ascoil Theorem, A is
compact. As a consequence of Krasnoselskii’s theorem, We conclude that Eq. (1.1)–(1.2) has at
least one solution.

4 Illustrative Example

Consider the boundary value problem:

cD1/2y(t) =
e−t

(9 + et)

[
|y(t)|

1 + |y(t)|

]
− 1

2

[ ∣∣cD1/2y(t)
∣∣

1 +
∣∣cD1/2y(t)

∣∣
]
, t ∈ J = [0, 1] (4.1)

y(0) +
n∑
i=1

ciy(ti) = 1 (4.2)

where 0 < t1 < ....... < tn < 1 and ci, i=1,.....,n are positive constants with

n∑
i=1

ci ≤
1
3

(4.3)

Set

f(t, x, y) =
e−t

(9 + et)

[
x

1 + x

]
− 1

2

[
y

1 + y

]
, t ∈ [0, 1], x, y ∈ [0,+∞).

Clearly f is continuous. For each x, x̄, y, ȳ ∈ R and t ∈ [0, 1] :

|f(t, x, y)− f(t, x̄, ȳ)| ≤ e−t

(9 + et)
|x− x̄|+ 1

2
|y − ȳ|

≤ 1
10
|x− x̄|+ 1

2
|y − ȳ| .
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we see that p(t) = e−t

(9+et) : [0, 1]→ (0,∞) is continuous function.
Also, we have

|g(x)− g(x̄)| ≤

∣∣∣∣∣
n∑
i=1

cix−
n∑
i=1

cix̄

∣∣∣∣∣
≤

n∑
i=1

ci |x− x̄|

≤ 1
3
|x− x̄| .

Hence condition (H2) and (H3) is satisfied with P ∗ = 1
10 , N = 1

2 and b = 1
3 . We have

(1−N)Γ(α+ 1)
2Tα

=

√
π

8
> P ∗ =

1
10

and
b <

1
2
.

Also for each x, y ∈ R and t ∈ [0, 1] :

|f(t, x, y)| ≤ e−t

(9 + et)
|x|+ 1

2
|y|

≤ 1
10
|x|+ 1

2
|y| .

we see that q(t) = e−t

(9+et) : [0, 1]→ (0,∞) is continuous function.
Hence the condition (H3), (H4) are satisfied with Q∗ = 1

10 , L = 1
2 and b = 1

3 .
We have

(1− L)Γ(α+ 1)
2Tα

=

√
π

8
> Q∗ =

1
10

and
b < 1.

It follows from Theorem (3.1) and (3.2) the problem (4.1)–(4.2) has unique solution on [0,1].
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