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Abstract. In this paper Lie group analysis is used to investigate invariance properties of
nonlinear fractional partial differential equations with conformable fractional time derivative.
The analysis is applied to Korteweg-de Vries, modified Korteweg-de Vries, Burgers, and mod-
ified Burgers equations. For each equation, all of the vector fields and the Lie symmetries are
obtained. Moreover, exact solutions are given to these equations.

1 Introduction

In the last decades the interest in studding fractional calculus was rapidly growing due to its
applications in many fields of applied sciences such as: Mathematics, Physics, Chemistry, En-
gineering, Finance, and Social sciences. These applications show the importance of fractional
calculus. As a result several definitions for fractional derivatives appear in the literature that are
utilized to present more accurate models for real life phenomena. Some of known fractional
derivatives are Riemann-Liouville, modified Riemann-Liouville, Caputo, Hadmard, Erdélyi-
Kober, Riesz, Grünwald-Letnikov, Marchaud and others (see [1]–[10]). It should be noted that
all definitions satisfy the linear property, which is the only property inherited from the usual
derivative. However, properties such as the derivative of a constant is zero, the product rule, the
quotient rule, and the chain rule does not hold or too complicated in many fractional derivatives.

Recently, a new definition of fractional derivative that extends the familiar limit definition of
the derivatives of a function has been introduced by Khalil et. al. [11]. The new definition is
called the conformable fractional derivative. Unlike other definitions, this new definition promi-
nently compatible with the classical derivative and it seems to satisfy all the requirements of
the standard derivative. The importance of it lies in satisfying the product formula, the quotient
formula, and it has a simpler formula for the chain rule. After Khalil et. al. [11] many stud-
ies related to this new fractional derivative were published [12]–[22]. A generalization of this
definition can be found in [23].

The Lie symmetry theory plays a significant role in the analysis of differential equations.
The Norwegian mathematician Sophus Lie proposed the first work devoted exclusively to the
subject of Lie symmetry in the 19th century. The Lie symmetry analysis is regarded as the most
important approach for constructing analytical solutions of nonlinear differential equations. A
huge number of papers and many excellent textbooks have been devoted to the theory of Lie
symmetry groups and their applications to differential equations; some of these are [24]–[29]. In
recent years, Lie group analysis of fractional differential equations was investigated [30]–[48].
The Lie symmetry analysis of time-fractional Burgers and Korteweg-de Vries (KdV) equations
with Riemann-Liouville time derivative was studied in [32]. The Lie symmetry analysis of the
KdV equation with modified Riemann-Liouville time-fractional derivative was studied in [35].
It was shown that each of these equations can be reduced to a nonlinear ordinary differential
equation of fractional order with a new independent variable. The fractional derivative in the
reduced equation is the Erdelyi-Kober fractional derivative. The new equations are not solv-
able as in the classical derivative. It is well known that the KdV and Burgers equations with
classical derivatives can be transformed to equations related to Painlevé and Riccati equations
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respectively.
In this paper we propose prolongation formulas for conformable fractional derivatives and ap-

ply the method of Lie group to conformable fractional partial differential equations (CFPDEs).
We study the Lie analysis of Korteweg-de Vries, modified Korteweg-de Vries, Burgers, and mod-
ified Burgers equations with conformable fractional time partial derivative. For each equation,
all of the vector fields and the Lie symmetries are obtained. We show that the equations under
consideration can be reduced to ordinary differential equations with classical derivative.

2 Conformable Fractional Calculus

Definition 2.1. [11] Given a function f : [0,∞)→ R, the conformable fractional derivative of f
of order α is defined by

Dα(f)(t) = lim
ε→0

f(t+ εt1−α)− f(t)
ε

, (2.1)

for all t > 0, α ∈ (0, 1]. If Dα(f)(t) exists for t in some interval (0, a), a > 0, and
lim
t→0+

Dα(f)(t) exists, then Dα(f)(0) = lim
t→0+

Dα(f)(t).

If Dα(f)(t) exists for t ∈ [0,∞), then f is said to be α-differentiable at t.

Theorem 2.2. [11] Let α ∈ (0, 1] and f, g be α-differentiable at a point t > 0. Then

(i) Dα(af + bg)(t) = a(Dαf)(t) + b(Dαg)(t), for all a, b ∈ R.

(ii) Dα(tp) = ptp−α, for all p ∈ R.

(iii) Dα(c) = 0, for any constant c.

(iv) Dα(fg)(t) = f(t)Dα(g)(t) + g(t)Dα(f)(t).

(v) Dα
(
f
g

)
(t) = g(t)Dα(f)(t)−f(t)Dα(g)(t)

g2(t)
.

(vi) If, in addition, f is differentiable, then Dα(f)(t) = t1−α d
dtf(t).

Definition 2.3. [11] Iα(f)(t) = I(tα−1f)(t) =
∫ t

0
f(x)
x1−α dx, where the integral is the usual Rie-

mann improper integral, and α ∈ (0, 1].

Theorem 2.4. [11] DαIα(f)(t) = f(t), for t ≥ 0, where f is any continuous function in the
domain of Iα.

Lemma 2.5. [13] Let f : [0, b) → R be differentiable and 0 < α ≤ 1. Then, for all t > 0 we
have IαDα(f)(t) = f(t)− f(0).

Lemma 2.6. [21] Let 0 < α ≤ 1, f be differentiable at g(t), and g be α-differentiable at t > 0,
then Dα(fog)(t) = f ′(g(t))Dα(g)(t).

3 Lie Symmetry Analysis of Conformable Fractional Partial Differential
Equations

Consider the following time-fractional partial differential equation

∂αu

∂tα
= F [u], 0 < α ≤ 1, (3.1)

where u = u(x, t), F [u] is a nonlinear differential operator and ∂α

∂tα is the conformable fractional
derivative. Our aim is to study the symmetry transformations of equation (3.1).

The invertible point transformations

x̂ = X(t, x, u, ε), t̂ = T (t, x, u, ε), û = U(t, x, u, ε), (3.2)
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depending on a continuous parameter ε, are said to be symmetry transformations of equation
(3.1), if equation (3.1) has the same form in the new variables x̂, t̂, û. The set G of all such
transformations forms a continuous group called the symmetry group. The symmetry group G
is also known as the Lie group admitted by equation (3.1).

The key step to find a Lie group of symmetry transformations is to find the infinitesimal
generator of the group. In order to provide a basis of group generators one has to create and then
to solve the so called determining system of equations.

The infinitesimal transformations of (3.2) read

x̂ = x+ εξ(t, x, u) + o(ε2),

t̂ = t+ ετ(t, x, u) + o(ε2),

û = u+ εη(t, x, u) + o(ε2).

(3.3)

It is convenient to introduce the operator

V = ξ(t, x, u)
∂

∂x
+ τ(t, x, u)

∂

∂t
+ η(t, x, u)

∂

∂u
, (3.4)

which is known as the infinitesimal operator (or generator of the group G). The group trans-
formations (3.2) corresponding to operator (3.4) can be obtained by solving the Lie equations

dx̂

dε
= ξ(t̂, x̂, û),

dt̂

dε
= τ(t̂, x̂, û),

dû

dε
= η(t̂, x̂, û), (3.5)

subject to the initial conditions

x̂|ε=0 = x, t̂|ε=0 = t, û|ε=0 = u.

A surface u = u(t, x) is mapped to it self by the group of transformations generated by V if

V (u− u(t, x)) = 0 when u = u(t, x). (3.6)

By definition, the transformations (3.2) form a symmetry group G of equation (3.1) if the func-
tion û(t̂, x̂) satisfies the equation

∂αû

∂t̂α
= F [û], 0 < α ≤ 1, (3.7)

whenever the function u = u(t, x) satisfies equation (3.1). Extending transformation (3.3) to
the operator of fractional differentiation ∂αu

∂tα and to the operator of x differentiation of various
orders ∂ru

∂xr , r = 1, 2, 3, ..., one can obtain

∂αû
∂t̂α

= ∂αu
∂tα + εηtα(t, x, u) + o(ε2),

∂û
∂x̂ = ∂u

∂x + εηx(t, x, u) + o(ε2),

∂2û
∂x̂2 = ∂2u

∂x2 + εηxx(t, x, u) + o(ε2),

∂3û
∂x̂3 = ∂3u

∂x3 + εηxxx(t, x, u) + o(ε2),

...

(3.8)

where
ηx = Dx(η)− utDx(τ)− uxDx(ξ),

ηxx = Dx(ηx)− uxtDx(τ)− uxxDx(ξ),

ηxxx = Dx(ηxx)− uxxtDx(τ)− uxxxDx(ξ).
...

(3.9)
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Here Dx denotes the total derivative operator and is defined as

Dx =
∂

∂x
+ ux

∂

∂u
+ uxx

∂

∂ux
+ utx

∂

∂ut
+ · · ·

Proposition 3.1. The prolongation of the point transformation (3.2) to the αth derivative for
some α ∈ (0, 1] (with the conformable fractional operator (2.1)) is given by ∂αû

∂t̂α
= ∂αu

∂tα +

εηtα + o(ε2), where ηtα is the αth extended infinitesimal related to conformable fractional time
derivative with u and û are differentiable functions.

Proof. Assume that û is a differentiable function, then

∂αû

∂t̂α
= t̂1−α

∂û

∂t̂
. (3.10)

But
t̂ = t+ ετ(t, x, u) + o(ε2),

∂û

∂t̂
=
∂u

∂t
+ εηt + o(ε2), (3.11)

where ηt = Dtη − uxDtξ − utDtτ . Substituting equation (3.11) into equation (3.10), gives

∂αû
∂t̂α

= [t+ ετ(t, x, u) + o(ε2)]1−α[∂u∂t + εηt + o(ε2)]

= [t1−α + ε(1− α)τt−α + o(ε2)][∂u∂t + εηt + o(ε2)]

= t1−αut + ε[t1−αηt + (1− α)τt−αut] + o(ε2)

= ∂αu
∂tα + εηtα + o(ε2).

The αth extended infinitesimal related to conformable fractional time derivative reads

ηtα = Dα
t η − uxDα

t ξ − utDα
t τ + (1− α)τt−αut, (3.12)

where the operator Dα
t express the total fractional derivative operator, whenever the function is

differentiable it is given by Dα
t = t1−αDt, and Dt is the total derivative operator given by

Dt =
∂

∂t
+ ut

∂

∂u
+ uxt

∂

∂ux
+ utt

∂

∂ut
+ · · ·

If the vector field (3.4) generates a symmetry of (3.1), then V must satisfy Lie symmetry
condition

pr(n)V (∆1)
∣∣∣
∆1 = 0

= 0, (3.13)

where ∆1 =
∂αu
∂tα − F [u].

4 The fractional Korteweg-de Vries equation

In this section we consider the following time-fractional Korteweg-de Vries (KdV) equation of
the form

∂αu

∂tα
+ auux + buxxx = 0, (4.1)

where 0 < α ≤ 1, a, b are constants, and α is a parameter describing the order of the con-
formable fractional time derivative. According to the Lie theory, applying the third prolongation
pr(3)V to (4.1), one can find the infinitesimal criterion (3.13) to be

aηux + ηtα + auηx + bηxxx = 0, (4.2)

which must be satisfied whenever ∂αu
∂tα + auux + buxxx = 0. Substituting the general formulas

for ηx, ηxxx and ηtα from (3.9) and (3.12) into (4.2), replacing uxxx by− 1
b
∂αu
∂tα −

a
buux whenever
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it occurs, and equating the coefficients of the various monomials in partial derivatives of u, one
can get the full determining equations for the symmetry group of (4.1). Solving these equations,
one can obtain

τ =
−3c1

2α
t+ c4t

1−α, ξ =
−c1

2
x+

ac2

α
tα + c3, η = c1u+ c2, (4.3)

where c1, c2, c3 and c4 are arbitrary constants. Therefore, the symmetry group of (4.1) is spanned
by the four vector fields

V1 = t1−α
∂

∂t
, V2 =

∂

∂x
, V3 =

atα

α

∂

∂x
+

∂

∂u
, V4 =

−3t
2α

∂

∂t
− x

2
∂

∂x
+ u

∂

∂u
. (4.4)

It is easily checked that the set of these vector fields is closed under the Lie bracket ([ρ, σ] =
ρσ − σρ). In fact we have the following commutation relations between these vector fields

[V1, V2] = 0, [V1, V3] = aV2, [V1, V4] =
−3
2
V1,

[V2, V3] = 0, [V2, V4] =
−1
2
V2, [V3, V4] = V3.

It is remarkable that the Lie algebra for fractional and classical KdV equation have the same
dimension. Moreover, when α = 1 the Lie algebra for the fractional KdV equation reduces to
that of classical KdV equation [25].

As a next step, we can fined the invariant solution of equation (4.1). For example, the sim-
ilarity variables for the infinitesimal generator V4 can be found by solving the corresponding
characteristic equation

−2dx
x

=
2αdt
−3t

=
du

u
. (4.5)

The corresponding invariants are

ζ = x(3t)
−α

3 , u = (3t)
−2α

3 Ψ(ζ). (4.6)

Substituting transformation (4.6) into equation (4.1), one can find that (4.1) can be reduced to a
nonlinear ODE with the classical derivative. Consequently, we have

bΨ′′′(ζ) + aΨ(ζ)Ψ′(ζ)− αζΨ
′(ζ)− 2αΨ(ζ) = 0, (4.7)

where Ψ′(ζ) := dΨ(ζ)
dζ .

For the special case a = 6, b = 1, the time fractional KdV (4.1) becomes

∂αu

∂tα
+ 6uux + uxxx = 0. (4.8)

By using the scale in (4.6), then (4.7) reduces to

Ψ
′′′(ζ) + 6Ψ(ζ)Ψ′(ζ)− αζΨ

′(ζ)− 2αΨ(ζ) = 0. (4.9)

The change of variables z = α
1
3 ζ, Ψ(ζ) = α

2
3W (z) transforms (4.9) to the form

...
W (z) + 6W (z)Ẇ (z)− zẆ (z)− 2W (z) = 0, (4.10)

where Ẇ = dW
dz , whose solutions are also expressible in terms of solutions of second Painlevé

equation PII . Indeed there exists a one-to-one correspondence between solutions of (4.10) and
those of PII , given by

W = −Φ̇−Φ
2, Φ =

Ẇ + γ

2W − z
, (4.11)

where Φ satisfies the PII equation

Φ̈(z) = 2Φ
3(z) + zΦ(z) + γ, (4.12)
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(for further details see [49], [50]).
Another special solution of the time fractional KdV equation (4.1) can be obtained from

the linear combination V3 − 1
µV1 = atα

α
∂
∂x + ∂

∂u −
1
µ t

1−α ∂
∂t , (µ is a constant). Solving the

corresponding characteristic equation

αdx

atα
=
−µdt
t1−α

=
du

1
, (4.13)

we obtain the invariants

ζ = x+
aµ

2α2 t
2α, u =

−µ
α
tα + Ψ(ζ). (4.14)

Substituting transformation (4.14) into equation (4.1), one can find that (4.1) can be reduced to
a nonlinear ODE with the classical derivative

bΨ′′′(ζ) + aΨ(ζ)Ψ′(ζ)− µ = 0, (4.15)

where Ψ′(ζ) := dΨ(ζ)
dζ . Integrating equation (4.15) gives

bΨ′′(ζ) +
a

2
Ψ

2(ζ)− µζ = γ, (4.16)

where γ is a constant of integration.
When a = 6, b = 1, the time fractional KdV (4.1) becomes

∂αu

∂tα
+ 6uux + uxxx = 0. (4.17)

Using the scale in (4.14), and integrating the result then (4.17) can be reduced to

Ψ
′′(ζ) + 3Ψ

2(ζ)− µζ = γ. (4.18)

Equation (4.18) can be converted by the scale z =
(−µ

2

) 1
5
(
ζ + γ

µ

)
and Ψ(ζ) = −2

(−µ
2

) 2
5

Φ(z)

to the first Painlevé equation (PI )

Φ̈(z) = 6Φ
2(z) + z, (4.19)

with Φ̈(z) := d2
Φ(z)
dz2 .

5 The fractional modified Korteweg-de Vries equation

In this part, the same methodology as in Section 4 will be used to investigate the Lie symmetry
analysis of the time fractional modified Korteweg-de Vries (mKdV) equation

∂αu

∂tα
+ au2ux + buxxx = 0, (5.1)

where 0 < α ≤ 1, a, b are constants, and α is a parameter describing the order of the con-
formable fractional time derivative. According to the Lie theory, applying the third prolongation
pr(3)V to (5.1), one can find the infinitesimal criterion (3.13) to be

2aηuux + ηtα + aηxu2 + bηxxx = 0, (5.2)

which must be satisfied whenever ∂αu
∂tα + au2ux + buxxx = 0. Direct substitution of ηx, ηxxx

and ηtα from (3.9), (3.12) into (5.2), replacing uxxx by − 1
b
∂αu
∂tα −

a
bu

2ux whenever it occurs, and
equating the coefficients of the various monomials in partial derivatives of u, one can get the full
determining equations for the symmetry group of (5.1). Solving these equations, one can obtain

τ =
−3c2

α
t+ c3t

1−α, ξ = −c2x+ c1, η = c2u, (5.3)
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where c1, c2 and c3 are arbitrary constants. Therefore, the symmetry group of (5.1) is spanned
by the three vector fields

V1 = t1−α
∂

∂t
, V2 =

∂

∂x
, V3 =

3t
α

∂

∂t
+ x

∂

∂x
− u ∂

∂u
. (5.4)

These vector fields satisfy Lie bracket relations

[V1, V2] = 0, [V1, V3] = 3V1, [V2, V3] = V2.

Note that when α = 1, the vector fields of the fractional mKdV equation reduces to the vector
fields of the classical mKdV equation [24].

The similarity variables for the infinitesimal generator V3 can be found by solving the corre-
sponding characteristic equations

dx

x
=
αdt

3t
=

du

−u
. (5.5)

The corresponding invariants are

ζ = x(3t)
−α

3 , u = (3t)
−α

3 Ψ(ζ). (5.6)

Substituting transformation (5.6) into equation (5.1), one can find that (5.1) can be reduced to a
nonlinear ODE with the classical derivative

bΨ′′′(ζ) + aΨ
2(ζ)Ψ′(ζ)− α[ζΨ

′(ζ) + Ψ(ζ)] = 0, (5.7)

where Ψ′(ζ) := dΨ(ζ)
dζ . As a result, we have

bΨ′′(ζ) +
a

3
Ψ

3(ζ)− αζΨ(ζ) = γ, (5.8)

where γ is a constant of integration.
For the special case a = −6, b = 1, the time fractional mKdV (5.1) becomes

∂αu

∂tα
− 6u2ux + uxxx = 0. (5.9)

By using the scale in (5.6) and integrating the result, then (5.9) reduces to

Ψ
′′(ζ) = 2Ψ

3(ζ) + αζΨ(ζ) + γ. (5.10)

Equation (5.10) can be converted by the scale ω = α
1
3 ζ, Ψ(ζ) = α

1
3 Φ(ω) to the second Painlevé

equation PII
Φ̈(ω) = 2Φ

3(ω) + ωΦ(ω) + µ, (5.11)

where Φ̈(ω) := d2
Φ(ω)
dω2 , and µ = γ

α .

6 The fractional Burgers equation

In this section we consider the following time-fractional Burgers equation

∂αu

∂tα
+ auux + buxx = 0, (6.1)

where 0 < α ≤ 1, a, b are constants, and α is a parameter describing the order of the con-
formable fractional time derivative. According to the Lie theory, applying the second prolonga-
tion pr(2)V to (6.1), one can find the infinitesimal criterion (3.13) to be

aηux + ηtα + auηx + bηxx = 0, (6.2)

which must be satisfied whenever ∂αu
∂tα + auux + buxx = 0. Using (3.9), (3.12) into (6.2) to

substitute ηx, ηxx and ηtα, replacing uxx by− 1
b
∂αu
∂tα −

a
buux whenever it occurs, and equating the
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coefficients of the various monomials in partial derivatives of u, one can get the full determining
equations for the symmetry group of (6.1). Solving these equations, one can obtain

τ = c1
α2 t

1+α + c4
α t+ c5t

1−α, ξ =
(
c1
α t

α + c4
2

)
x+ ac2

α t
α + c3,

η =
(−c1
α tα − c4

2

)
u+ c1

a x+ c2,

(6.3)

where c1, c2, c3, c4 and c5 are arbitrary constants. Therefore, the symmetry group of (6.1) is
spanned by the five vector fields

V1 = t1−α ∂
∂t , V2 =

∂
∂x , V3 =

atα

α
∂
∂x + ∂

∂u ,

V4 =
x
2
∂
∂x + t

α
∂
∂t −

u
2
∂
∂u , V5 =

xtα

α
∂
∂x + t1+α

α2
∂
∂t +

(
x
a −

tαu
α

)
∂
∂u .

(6.4)

It is easily checked that these five vector fields satisfy

[V1, V2] = [V2, V3] = [V3, V5] = 0, [V2, V4] =
1
2
V2, [V2, V5] =

1
a
V3,

[V1, V3] = aV2, [V1, V4] = V1, [V1, V5] = 2V4, [V3, V4] =
−1
2
V3, [V4, V5] = V5.

Thus the Lie algebra of infinitesimal symmetries of equation (6.1) is spanned by these five vector
fields. The number of the vector fields coincides with that of the classical Burgers equation and
when α = 1 these vector fields reduces to that of the classical Burgers equation [29].

The similarity variables for the infinitesimal generator V4 can be found by solving the corre-
sponding characteristic equations

2dx
x

=
αdt

t
=
−2du
u

, (6.5)

and the corresponding invariants are

ζ = xt
−α

2 , u = t
−α

2 Ψ(ζ). (6.6)

Substituting transformation (6.6) into equation (6.1), one can find that (6.1) can be reduced to a
nonlinear ODE with a new independent variable

bΨ′′(ζ) + aΨ(ζ)Ψ′(ζ)− α

2
[ζΨ

′(ζ) + Ψ(ζ)] = 0, (6.7)

Ψ′(ζ) := dΨ(ζ)
dζ . Consequently, we have

bΨ′(ζ) +
a

2
Ψ

2(ζ)− α

2
ζΨ(ζ) = γ, (6.8)

where γ is a constant of integration. The produced equation is a first order nonlinear differential
equation with classical derivative (Riccati equation).

As another similarity variable we consider the linear combination V3− 1
µV1, (µ is a constant).

As a result a similarity reduction can be found by solving the corresponding characteristic equa-
tions

αdx

atα
=
−µdt
t1−α

=
du

1
, (6.9)

and the corresponding invariants are

ζ = x+
aµ

2α2 t
2α, u =

−µ
α
tα + Ψ(ζ). (6.10)

Substituting transformation (6.10) into equation (6.1), one can find that (6.1) can be reduced to
a nonlinear ODE with the classical derivative

bΨ′′(ζ) + aΨ(ζ)Ψ′(ζ)− µ = 0, (6.11)

where Ψ′(ζ) := dΨ(ζ)
dζ . From which we obtain

bΨ′(ζ) +
a

2
Ψ

2(ζ)− µζ = γ, (6.12)

where γ is a constant of integration. The produced equation is a Riccati equation with classical
derivative.
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7 The fractional modified Burgers equation

In this section we will study the Lie theory of the following nonlinear time-fractional modified
Burgers equation

∂αu

∂tα
+ au2ux + buxx = 0, (7.1)

where 0 < α ≤ 1, a, b are constants, and α is a parameter describing the order of the con-
formable fractional time derivative. According to the Lie theory, applying the second prolonga-
tion pr(2)V to (7.1), one can find the infinitesimal criterion (3.13) to be

2aηuux + ηtα + aηxu2 + bηxx = 0, (7.2)

which must be satisfied whenever ∂αu
∂tα + au2ux + buxx = 0. Using (3.9), (3.12) to substitute

ηx, ηxx and ηtα into (7.2), replacing uxx by− 1
b
∂αu
∂tα −

a
bu

2ux whenever it occurs, and equating the
coefficients of the various monomials in partial derivatives of u, one can get the full determining
equations for the symmetry group of (7.1). Solving these equations, one can obtain

τ =
c2

α
t+ c3t

1−α, ξ =
c2

2
x+ c1, η =

−c2

4
u, (7.3)

where c1, c2 and c3 are arbitrary constants. Therefore, the symmetry group of (7.1) is spanned
by the three vector fields

V1 = t1−α
∂

∂t
, V2 =

∂

∂x
, V3 =

t

α

∂

∂t
+
x

2
∂

∂x
− u

4
∂

∂u
. (7.4)

The commutation relations between these vector fields are given by

[V1, V2] = 0, [V1, V3] = V1, [V2, V3] =
1
2
V2.

Once again the vector fields of the fractional modified Burgers equation reduces to those of the
classical equations as α reduces to 1 [41].

The one-parameter group generated by V3 can be found by solving the corresponding char-
acteristic equations

dx

x
=
αdt

2t
=
−2du
u

, (7.5)

and the corresponding invariants are

ζ = xt
−α

2 , u = t
−α

4 Ψ(ζ). (7.6)

Substituting transformation (7.6) into equation (7.1), one can find that (7.1) can be reduced to a
nonlinear ODE with a new independent variable. Consequently, we have

bΨ′′(ζ) + aΨ
2(ζ)Ψ′(ζ)− α

2
ζΨ
′(ζ)− α

4
Ψ(ζ) = 0, (7.7)

Ψ′(ζ) := dΨ(ζ)
dζ . The produced equation is a second order nonlinear differential equation with

classical derivative.
The scale z =

(
α
4

) 1
2 ζ, Ψ(ζ) = (α4 )

1
4 Φ(z) transform (7.7) to an equivalent form

bΦ̈(z) + aΦ
2(z)Φ̇(z)− 2zΦ̇(z)−Φ(z) = 0, (7.8)

where Φ̈(z) := d2
Φ(z)
dz2 .

8 Conclusion

We have applied the Lie group analysis to the time fractional Korteweg-de Vries, modified
Korteweg-de Vries, Burgers, and modified Burgers equations, where the time derivative is the
conformable fractional derivative. All the generating vector fields for each equation have been
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calculated. Thus it is evident that the Lie group analysis can be used successfully to study con-
formal fractional partial differential equations. It worth to note that the number of the generating
vector fields for each of the four time-fractional equations is the same as that of the classical
equation and the generating vector fields of each of these equation reduce to that of the corre-
sponding classical equation when α = 1.

Using the obtained Lie symmetries, we have shown that the equations under consideration
can be transformed to ordinary differential equations with classical derivative. More precisely,
we have shown that the time fractional KdV equation can be transformed into the first and second
Painlevé equations. For the time fractional modified KdV equation, we obtained a solution in
terms of the second Painlevé equation. In the case of Burgers equation, we derived solutions in
terms of Riccati equations.

It should be noted that the similarity reduction method convert a fractional partial differential
equation with conformable fractional derivative to an ordinary differential equation with classical
derivative. However, fractional partial differential equation with Riemann-Liouville fractional
derivative is transformed to an ordinary fractional differential equation with an Erdélyi-Kober
derivative depending on a parameter α.

It is interesting to apply the Lie group analysis to other partial differential equations with
time and space fractional derivatives.
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[21] P. Michal, L. P. S̆kripková, “Sturm’s theorems for conformable fractional differential equations", Math.
Commun., 21, 273-281 (2016).

[22] U. Fuat, Z. S. Mehmet, “Explicit bounds on certain integral inequalities via conformable fractional calcu-
lus", Cogent Mathematics, 4, 1277505 (2017).

[23] D. Zhao, M. Luo,“General conformable fractional derivative and its physical interpretation", Calcolo,
1-15 (2017)

[24] G. W. Bluman, S. Kumei, “Symmetries and differential equations”, (1989).

[25] P. J. Olver, “Applications of Lie groups to differential equations", (second ed.), GTM 107, Berlin:
Springer, (1993).

[26] N. H. Ibragimov, “Handbook of Lie group analysis of differential equations", (ed) vol 1 (Boca Raton, FL:
CRC Press), (1994).

[27] G. W. Bluman, S. C. Anco, “Symmetry and integration methods for differential equations", Heidelburg:
Springer- Verlag, (2002).

[28] G. W. Bluman, A. F. Cheviakov, S. C. Anco, “Applications of symmetry methods to partial differential
equations", New York: Springer, (2010).

[29] I. L. Freire, “Note on Lie point symmetries of Burgers equations”, Trends in Applied and Computational
Mathematics, 11 (2), 151-157 (2010).

[30] E. Buckwar, Y. Luchko, “Invariance of a partial differential equation of fractional order under the Lie
group of scaling transformations", J. Math. Anal. Appl., 227, 81-97 (1998).

[31] R. K. Gazizov, A. A. Kasatkin, S. Yu. Lukashchuk, “Continuous transformation groups of fractional
differential equations", Vestnik, USATU, 9, 125-135 (2007).

[32] R. Sahadevan, T. Bakkyaraj, “Invariant analysis of time-fractional generalized Burgers and Korteweg- de
Vries equations", J.Math.Anal.Appl., 393, 341-347 (2012).

[33] R. K. Gazizov, A. A. Kasatkin, S. Yu. Lukashchuk, “Symmetry properties of fractional diffusion equa-
tions", Phys. Scr., T136, 014016 (2009).

[34] G. C. Wu, “A fractional Lie group method for anomalous diffusion equations", Commun. Frac. Calc., 1,
27-31 (2010).

[35] G. Wang and T. Xu, “Symmetry properties and explicit solutions of the nonlinear time fractional KdV
equation”, Boundary Value Problems, 232 (2013).

[36] G. Wang, X. Liu, Y. Zhang, “Lie symmetry analysis to the time-fractional generalized fifth-order KdV
equation", Commun.Nonlinear Sci. Numer. Simul., 18, 2321-2326 (2013).

[37] Q. Huang, R. Zhdanov, “Symmetries and exact solutions of the time-fractional Harry-Dym equation with
Riemann-Liouville derivative", Physica A., 409, 110-118 (2014).

[38] G. Wang, T. Xu, “Invariant analysis and exact solutions of nonlinear time-fractional Sharma-Tasso-Olver
equation by Lie group analysis", Nonlinear Dyn., 76, 571-80 (2014).

[39] J. Hu, Y. J. Ye, S. F. Shen, J. Zhang, “Lie symmetry analysis of the time-fractional KdV-type equation",
Appl.Math.Comput., 233, 439-444 (2014).

[40] A. Ouhadan, E. H. Elkinani, “Exact solutions of time-fractional kolmogorov equation by using Lie sym-
metry analysis", Journal of Fractional Calculus and Applications; 5, 97-104 (2014).

[41] O. O. Vaneeva, C. Sophocleous, and P. G. L. Leach, “Lie symmetries of generalized Burgers equations:
application to boundary-value problems”, Journal of Engineering Mathematics, 91 (1), 165-176 (2015).

[42] S. Yu. Lukashchuk, A. V. Makunin, “Group classfication of nonlinear time-fractional diffusion equation
with a source term", Appl.Math.Comput., 257, 335-343 (2015).

[43] H. Jafari, N. Kadkhoda , D. Baleanu, “Fractional Lie group method of the time-fractional Boussinesq
equation", Nonlinear Dyn., 81, 1569-1574 (2015).

[44] T. Bakkyaraj, R. Sahadevan, “Invariant analysis of nonlinear fractional ordinary differential equations
with Riemann-Liouville fractional derivative", Nonlinear Dyn., 80: 447-455 (2015).

[45] M. S. Hashemi, “Group analysis and exact solutions of the time fractional Fokker- Planck equation", Phys
A: Stat Mech Appl., 417, 141-149 (2015).

[46] G. Wang, A. H. Kara, K. Fakhar, “Symmetry analysis and conservation laws for the class of time-fractional
nonlinear dispersive equation", Nonlinear Dyn., 82, 281-287 (2015).

[47] W. Rui, X. Zhang, “Lie symmetries and conservation laws for the time fractional Derrida-Lebowitz-Speer-
Spohn equation", Commun Nonlinear Sci Numer Simul., 34, 38-44 (2016).

[48] M. L. Gandarias, C. M. Khalique, “Symmetries, solutions and conservation laws of a class of nonlinear
dispersive wave equations", Commun Nonlinear Sci Numer Simul., 32, 114-121 (2016).

[49] A. S. Fokas, M. J. Ablowitz, “On a unified approach to transformations and elementary solutions of
Painlevé equations", J. Math. Phys., 23, 2033-2042 (1982).



Symmetries and Exact Solutions 311

[50] P. A. Clarkson, “Painlevé equations - nonlinear special functions", in (Orthogonal Polynomails and Special
Functions: Computation and Application) [Editors F Marcellàn and W van Assche], Lect. Notes Math.,
1883, Springer, Berlin 331-411 (2006).

Author information
B. A. Tayyan and A. H. Sakka, Department of Mathematics, Islamic University of Gaza, P. O. Box 108, Rimal,
Gaza, Palestine.
E-mail: asakka@iugaza.edu.ps

Received: August 17, 2017.

Accepted: March 3, 2018


	1 Introduction
	2 Conformable Fractional Calculus
	3 Lie Symmetry Analysis of Conformable Fractional Partial Differential Equations
	4 The fractional Korteweg-de Vries equation
	5  The fractional modified Korteweg-de Vries equation
	6 The fractional Burgers equation
	7  The fractional modified Burgers equation
	8 Conclusion

